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Abstract: The Hadoop framework uses the MapReduce programming paradigm to process big data by distributing

data across a cluster and aggregating. MapReduce is one of the methods used to process big data hosted on large

clusters. In this method, jobs are processed by dividing into small pieces and distributing over nodes. Parameters

such as distributing method over nodes, the number of jobs held in a parallel fashion, and the number of nodes in the

cluster affect the execution time of jobs. The aim of this paper is to determine how the numbers of nodes, maps, and

reduces affect the performance of the Hadoop framework in a cloud environment. For this purpose, tests were carried

out on a Hadoop cluster with 10 nodes hosted in a cloud environment by running PiEstimator, Grep, Teragen, and

Terasort benchmarking tools on it. These benchmarking tools available under the Hadoop framework are classified as

CPU-intensive and CPU-light applications as a result of tests. In CPU-light applications, increasing the numbers of

nodes, maps, and reduces does not improve the efficiency of these applications; they even cause an increase in time spent

on jobs by using system resources unnecessarily. Therefore, in CPU-light applications, selecting the numbers of nodes,

maps, and reduces as minimum is found as the optimization of time spent on a process. In CPU-intensive applications,

according to the phase that small job pieces is processed, it is found that selecting the number of maps or reduces equal

to total number of CPUs on a cluster is the optimization of time spent on a process.

Key words: Big data, Hadoop, cloud computing, MapReduce, KVM virtualization environment, benchmarking tools,

Ganglia

1. Introduction

Unstructured and structured data obtained from different types of media (websites, blogs, smart phones,

embedded systems, etc.) can be referred to as big data. Big data are defined as any kind of data source

that has at least three characteristics: volume, velocity, and variety. Variety describes different formats of data

and different data sources. The data can be integrated and transformed into each other. Velocity is related to

the retrieval and storing speed of data. The volume of data grows exponentially. As the data size grows, the

applications and architectures need to be reevaluated quickly [1].

One of the most widely used methods for processing, analyzing, storing, and retrieving big data is the

MapReduce method [2]. The MapReduce method, developed by Google in 2004, has become an accepted

standard in the field of big data analysis [3].

The Hadoop framework is one of the common frameworks that processes distributed big data by ap-

plying the MapReduce method [4]. The Hadoop framework uses a distributed, scalable, and portable Hadoop
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Distributed File System (HDFS), which is written in the Java programming language in order to perform these

jobs [5]. HDFS allows big data to form blocks, distributed to nodes, processed and retrieved successfully [6].

On a Hadoop cluster, while the master node can serve as NameNode and DataNode, slave nodes can

serve only as DataNode. NameNode is responsible for creating data blocks, distributing the data to other nodes,

managing distribution operation, and recreating a data block in the case of failure on a data block. On the

other hand, a DataNode is responsible for saving data blocks and backing up data held in other DataNodes [7].

Multiple clusters can be used for big data processing and each cluster can have multiple nodes. While

increasing the number of nodes in a cluster makes it difficult to manage, virtualization solutions have been

developed for installation, deployment, scheduling, and efficient resource management. Kernel based virtual

machine (KVM) is one of the widely used open-source virtual machine solutions in this area [8].

Benchmarking tools for big data processing such as PiEstimator, Teragen, Terasort, and Grep are

presented under the Hadoop framework [9]. Data sets can be generated by these benchmarking tools and

also prepared data sets can be used. Big data works frequently used for searching, sorting, counting words, and

verifying can be performed on these data sets.

There are a few studies about performance of the Hadoop framework in the literature. Tan et al. reported

in their study that adjusting the configuration parameters of Hadoop framework provides the possibility of

obtaining higher operating performance and they introduced an analytical model for job execution time [10].

Extensible MapReduce (XMR) is a model consisting of determining the number of maps and reduces module

and creating a routing scheduler module in the shuffling stage [11]. XMR has focused on stages directly affecting

the workflow of the MapReduce method. It has made changes to the Hadoop code. Starfish is an automatic

adjustment application developed for big data analysis. It automatically adjusts various settings to improve the

performance of the Hadoop system. It collects monitoring data about works at runtime. Starfish is a complicated

system adjusting several Hadoop parameters automatically based on the collected data. The application itself

also brings the system some extra load. However, the application needs to work on Hadoop for a period of time

to make these adjustments [12]. Automatic Resource Inference and Allocation (ARIA) is a framework creating

job profiles starting from recorded information on the system about the works that Hadoop has done before.

It tries to estimate the execution time of a new job using this information [13]. Parameterized framework

developed by Zhang et al. creates a platform model by examining past works of the Hadoop system. At the

same time it creates a MapReduce performance model of existing work by monitoring it for a while. It tries

to predict the job execution time by using these two models. In Zhang’s proposal several counters are placed

in Hadoop code to reduce the impact of monitoring the framework on the system operating performance. It

is a complex method because it requires recompilation of Hadoop code [14]. Babu et al. revealed the impact

of Hadoop settings on big datasets [15]. Fadika et al. performed tests to realize which framework shows high

operating performance on which works by comparing two different MapReduce frameworks with Hadoop. In

their study, tested applications are classified as CPU-intensive, memory-intensive, or data-intensive applications

[16].

In the present study, tests were carried out on a Hadoop cluster with 10 nodes hosted on DigitalOcean

cloud infrastructure by running PiEstimator, Grep, Teragen, and Terasort benchmarking tools on it. DigitalO-

cean is a cloud service provider. Cloud service providers introduce customizable infrastructures on demand.

The cost is calculated according to the time of use. A distributed big data work’s cost is related to the size of

the cluster and completion time of the work.

The main goal of the present study was to investigate how the number of maps and reduces according to
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the number of working nodes on a cluster deployed on a cloud environment affects Hadoop framework working

performance depending on CPU usage.

In this context, answers to the following questions have been sought:

How does the number of maps, reduces, and nodes for distributed big data processing on Hadoop

framework structured with default parameter values affect working performance?

How are the values of parameters such as number of maps and reduces determined on a cluster?

What are CPU utilization rates of PiEstimator, Grep, Terasort, or Teragen benchmarking tools?

For optimization, is it possible to estimate the number of nodes, maps, and reduces of the Hadoop system

by executing PiEstimator, Grep, Terasort, or Teragen benchmarking tools?

2. Materials and methods

In this study, PiEstimator, Teragen, Grep, and Terasort benchmarking tools were tested using the same test

setup on different numbers of nodes with different numbers of maps and reduces with the default settings of

Hadoop.

2.1. Experimental setup

All tests in this study were implemented on DigitalOcean cloud infrastructure by creating 10 virtual machines

(nodes). Each node was configured with an Intel Hex-Core 2.6 GHz single-core processor, 1 GB of memory,

and 30 GB of solid-state drive (SSD). Ubuntu Linux 12.04 LTS 64 Bits Server Edition was preferred as the

operating system and KVM was selected as virtualization environment. On each node, Java Development Kit

(JDK) version jdk 1.6.0 45 was installed and its settings were adjusted. Then Hadoop 1.0.3 was installed and

necessary adjustments were made.

One of the nodes was selected as master and the other nodes were selected as slaves. Nodes were accessed
via Secure Shell (SSH). To increase the performance of the work, parameter settings can be performed in the

Hadoop framework depending on the type of data and CPU usage [12]. In this study, no extra parameter

adjustment was made to cause performance improvement; only basic parameter adjustments were done for

Hadoop to work on multiple nodes.

2.2. Realization of tests

In this study, tests were classified as CPU-light and CPU-intensive applications. CPU-intensive applications

tend to utilize CPU 100% but CPU-light applications do not [16]. Memory usage, disk usage, network traffic

usage etc. performances of nodes running on a cluster can be monitored and recorded by the Ganglia monitoring

tool [17].

CPU utilizations of benchmarking tools were measured and saved as average CPU utilization of nodes

with Ganglia. Before deciding to use 1 GB memory on nodes, some tests were carried out to monitor memory

usage of preferred benchmarking tools. 10 GB of data was sorted with the Terasort benchmarking tool on nodes

with 256 MB, 512 MB, 1 GB, and 2 GB memory. Figure 1 shows the memory usage of tests with 2 GB and 1

GB memory, and Figure 2 shows the results with 512 MB and 256 MB memory. According to the test results

presented, job execution time did not change on nodes with 2 GB, 1 GB, and 512 MB memory, but it changed

on nodes with 256 MB memory. Job execution times are shown in Table 1. 512 Mb and 256 MB memory usage

caused insufficient memory and swap area usage on nodes. 1 GB memory was selected as optimum amount

when the results were taken into consideration.
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Figure 1. 10 GB Terasort test on 2 nodes with 2 GB and 1 GB memory.

Table 1. 10 GB Terasort test on 2 nodes with different amounts of memory.

Memory amount Job execution time
2 GB 6m47.616s
1 GB 6m23.646s
512 MB 7m43.556s
256 MB 16m1.737s

In this study, equations were derived by using CPU core counts. CPU core count was taken into

consideration instead of node counts. Nodes were configured with 1 CPU core. Terasort tests with 10 GB

data were carried out on 2 nodes with 2 CPU cores each and 4 nodes with 1 CPU core each to decide on this
configuration. Job execution times are shown in Table 2. According to the results presented there, job execution

times for these different configurations are nearly the same.
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Figure 2. 10 GB Terasort test on 2 nodes with 512 MB and 256 MB memory.

Table 2. 10 GB Terasort tests job execution results on 2 nodes with 2 CPU cores each and 4 nodes with 1 CPU core

each.

Number Number Total CPU core count/ Job execution
of nodes of reduces memory amount times
2 4 4 / 4 GB 13m38.001s
4 4 4 / 4 GB 13m.47.987s

CPU utilization percentages are shown in Figure 3. CPU utilization of the Teragen test with 20 maps

on 2 nodes is shown between the time 10:00 and 10:05. CPU utilization of the Terasort test with 20 reduces on
5 nodes is shown between the time 10:06 and 10:14. CPU utilization of the Grep test with 1 map on 5 nodes

is shown between the time 10:16 and 10:19. CPU utilization of the PiEstimator test with 1 map on 5 nodes is

shown between the time 10:20:30 and 10:21:20. These graphical representations are selected among minimum

CPU utilizations. It is seen that Terasort and Teragen tests are intended to utilize CPU nearly 100% but Grep

and PiEstimator are intended to utilize nearly 15%.

Teragen and Terasort are described as CPU-intensive applications but Grep and PiEstimator are described

as CPU-light applications according to the results presented in Figure 3.
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Figure 3. CPU utilization graphics (as percentage) of Teragen, Terasort, Grep, and PiEstimator benchmarking tools

obtained with Ganglia monitoring tool.

Several tests for all benchmarking tools were performed on different number of nodes using different

numbers of maps and reduces. All tests were carried out 10 times and arithmetic averages of the results were

calculated. Benchmarking tools used in the tests and their details are presented below.

2.2.1. PiEstimator benchmarking tool

The PiEstimator benchmarking tool estimates pi using the Monte Carlo method [18]. The input number used

in the test was derived from multiplication of map number and sample number. Differentiation of input number

affects job execution time. At the map phase, inputs are divided into smaller parts and a specified number

of samples is used for each map. In this case, number of inputs becomes unchanged but number of job pieces

changes.

PiEstimator tests were performed on 1, 2, 5, and 10 nodes by using 1, 10, and 100 maps, respectively.

Sample number was chosen as 10000000, 1000000, and 100000, respectively, being careful not to change the

input number.

2.2.2. Grep benchmarking tool

The Grep benchmarking tool searches for the desired word or pattern in text files in an input directory and

finds the count [19]. It was executed with a data set consisting of a 1 GB text file that was the combination

and replication of a variety of files obtained from the Gutenberg project. Tests were performed on a 10-node
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cluster using 1, 2, 5, and 10 nodes, consecutively. On each node 1, 10, and 100 maps were used. For each map

1, 2, 5, 10, 20, 50, and 100 reduces were used.

Reduce number is given as a parameter while Grep is running. Map number also can be given as a

parameter but it is not used in the Grep benchmarking tool. Map number depends on size of the text file in

the input directory and the block size of the HDFS [10]. Map number was adjusted by changing HDFS block

size with copy parameters while copying files to the HDFS.

2.2.3. Teragen benchmarking tool

The Teragen benchmarking tool is used to generate random data to desired size. It can be specified how the

generated data will be written to the HDFS [20]. Teragen does not contain a reduce phase. Map number was

given as a parameter when executing. Teragen tests were performed on a 10-node cluster by using 1, 2, 5, and

10 nodes, and 1, 2, 5, 10, 20, 50, and 100 maps were used on these nodes. 10 GB of random data was generated

in each test.

2.2.4. Terasort benchmarking tool

The Terasort benchmarking tool sorts the data in files located in an input directory and writes sorted data to

files in an output directory [2]. Reduce number was given as a parameter when executing Terasort. 10 GB of

random data generated by Teragen was written to files located in an output directory by sorting with Terasort;

1, 2, 5, 10, 20, 50, and 100 reduces were used on a 10-node cluster when executing Terasort, and 2, 5, 8, 20, 50,

and 150 maps were used for each reduce value.

2.2.5. Evaluation of results

The test results are presented according to CPU usage of benchmarking tools.

2.3. CPU-light applications

PiEstimator and Grep benchmarking tools are classified as CPU-light applications according to test results

provided by Ganglia. The results of PiEstimator and Grep tests given as graphics are presented below.

2.3.1. PiEstimator benchmarking tool

For PiEstimator tests, job execution times on different number of nodes with different number of maps and

samples are presented in Figure 4 and CPU utilizations are presented in Figure 5.

According to Figure 4 values, it is seen that job execution time is minimum when number of nodes is

10 and number of maps is 1 (33.018 s). When system resources are increased 10 times, job execution time is

decreased only 15%. It is seen from the test results that CPU utilization is a maximum of 58% on 1 node with

100 maps and a minimum of 5% on 10 nodes with 1 map.

CPU utilization increases if number of maps increases and it decreases if number of maps decreases as

seen in Figure 5. Thus, the parameter said to affect the performance of a job is number of maps while number

of inputs is constant. According to the test results, job execution time increases if CPU utilization increases.

However, this increase is not stable.

In PiEstimator tests, using only 1 node instead of a cluster with 10 nodes provides 90% decrease in cost

with 15% increase in job completion time.
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Figure 4. PiEstimator test job execution times. Figure 5. PiEstimator test CPU utilizations.

2.3.2. Grep benchmarking tool

Grep tests were conducted on 10 nodes with using 10 maps and different reduces (1, 2, 5, 10, 20, 50, and 100

reduces). Increasing number of reduces caused increment of job execution time and CPU utilization. Therefore,

in all Grep tests, while keeping the number of reduces constant at the best value (1 reduce), tests were conducted

with different numbers of maps (1, 10, and 100 maps) on different number, of nodes (1, 2, 5, and 10 nodes) as

shown in Figure 6. CPU utilizations are shown in Figure 7.
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Figure 6. Grep test job execution times with constant

reduce number (1 reduce).

Figure 7. Grep test CPU utilizations with constant re-

duce number (1 reduce).

According to results presented in Figure 6, job execution time is minimum (67.523 s) with 1 map on 1

node. Change in job execution times with number of maps is shown in Figure 6. CPU utilization is minimum

(13%) with 1 map on 10 nodes and maximum (75%) with 100 maps on 1 node. As seen in Figure 7, increasing

number of maps causes an increment in CPU utilization and decreasing number of maps causes a decrease in

CPU utilization.

According to the test results, job execution time increases if CPU utilization increases. However, this

increase is not stable. Increasing number of maps does not decrease job execution time. It can be said that the

parameter affecting performance of a job execution on the same number of nodes is number of maps.
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In Grep tests, using only 1 node instead of a cluster with 10 nodes provides 90% decrease in cost with

also 1% decrease in job completion time.

2.4. CPU-intensive applications

Teragen and Terasort benchmarking tools are classified as CPU-intensive applications according to test results

provided by Ganglia. The results of Teragen and Terasort tests given as graphics are presented below.

2.4.1. Teragen benchmarking tool

For Teragen tests, CPU utilizations and job execution times on different number of nodes with different numbers

of maps are presented in Figures 8 and 9.
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Figure 8. Teragen test job execution times. Figure 9. Teragen test CPU utilizations.

According to the results presented in Figure 8, job execution time is minimum when number of maps is

selected as the same number of nodes. Minimum job execution times as shown in Figure 8 are 311.755 s with

1 node and 1 map, 168.923 s with 2 nodes and 2 maps, 218.111 s with 5 nodes and 5 maps, and 123.035 s with

10 nodes and 10 maps. Maximum CPU utilizations are 71% with 1 node and 1 map, 90% with 2 nodes and 2

maps, 80% with 5 nodes and 5 maps, and 85% with 10 nodes and 10 maps.

According to Figures 8 and 9, job execution time is minimum when CPU utilization is maximum.

Increasing number of nodes improves job performance. Job execution time is 311.755 s on 1 node with 1

map and 123.035 s (with 60% performance improvement) on 10 nodes with 10 maps.

The relationship between number of maps and number of nodes for system optimization is presented in

Eq. (1). Mn corresponds to number of maps, Nn is for number of nodes, and CPUn corresponds to existing

number of CPU cores on the node in Eq. (1).

Mn = Nn× CPUn (1)

In Teragen tests, job execution time is minimum when number of maps is 10 on a cluster with 10 nodes. Using

only 1 node with 1 map instead of a cluster with 10 nodes provides 90% decrease in cost with 60% increase

in job completion time. Using a cluster with 2 nodes with 2 maps provides 80% decrease in cost with 28%

increase in job completion time. Using a cluster with 5 nodes with 5 maps provides 50% decrease in cost with

44% increase in job completion time.
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2.4.2. Terasort benchmarking tool

Terasort tests were conducted on constant number of nodes (10 nodes) with constant number of reduces (10

reduces) and different number of maps (2, 5, 8, 20, 50, and 150 maps).

According to the test results on constant number of nodes with constant number of reduces, number of

maps is not an effective parameter on job execution time and CPU utilization performance. Number of maps

was selected as the default value (150 maps) according to HDFS file system block size (64 MB). CPU utilizations

and job execution times of Terasort tests on different number of nodes with using different number of reduces

and constant number of maps (150 maps) are shown in Figures 10 and 11. Job execution times are shown in

Figure 10 and CPU utilizations are shown in Figure 11.
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Figure 10. Terasort test job execution times with con-

stant number of maps (150 maps).

Figure 11. Terasort test CPU utilizations with constant

number of maps (150 maps).

According to results presented in Figure 10, minimum job execution times are 2299.372 s on 1 node with

1 reduces, 1590.587 s on 2 nodes with 2 reduces, 504.177 s on 5 nodes with 5 reduces, and 318.537 s on 10 nodes

with 10 reduces. These results can be seen in Figure 10. Maximum CPU usages are 82% on 1 map with 1

reduce, 85% on 2 nodes with 2 reduces, 87% on 5 nodes with 5 reduces, and 82% on 10 nodes with 10 reduces.

Job execution time performance is best when number of reduces is selected as the same number of nodes.

As seen in Figures 10 and 11, job execution time is minimum when CPU utilization is maximum.

While job execution time is a minimum of 2299.372 s on 1 node with 1 reduce, it is a minimum of 318.537

s (with 87% performance improvement) on 10 nodes with 10 reduces.

The relationship between number of reduces and number of nodes for optimization of system is presented

in Eq. (2). Rn corresponds to number of reduces, Nn is for number of nodes, and CPUn corresponds to existing

number of CPU cores on the node in Eq. (2).

π =
m

n
×4Rn = Nn× CPUn (2)

In Terasort tests, job execution time is minimum when the number of reduces is 10 on a cluster with 10 nodes.

Using only 1 node with 1 reduce instead of a cluster with 10 nodes provides 90% decrease in cost with 87%

increase in job completion time. Using a cluster with 2 nodes with 2 reduces provides 80% decrease in cost with

80% increase in job completion time. Using a cluster with 5 nodes with 5 reduces provides 50% decrease in cost

with 37% increase in job completion time.
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3. Conclusion

In this study, on a cloud system, a 10-node cluster is created by using KVM virtualization software. On

these nodes, tests are carried out on prepared data sets with different numbers of maps and reduces by using

benchmarking tools available under the Hadoop framework. In these tests, it is investigated how numbers of

maps and reduces affect the performance of the Hadoop framework.

According to the test results, PiEstimator and Grep benchmarking tools are classified as CPU-light

applications. It is not necessary to use a cluster for CPU-light applications to perform distributed processing.

It is seen that in a single node with minimum number of maps, job execution time becomes minimum. If a

CPU-light application is performed on a cluster, job execution time does not decrease; it even increases, because

splitting, shuffling, and fetching times are added to total time. Thus, numbers of nodes, maps, and reduces of

CPU-light applications should be minimum for system optimization. Number of nodes in a cluster is prepared

on demand by cloud service providers and charged according to the usage time. In this case, decreasing number

of nodes affects the cost.

Benchmarking tools Teragen and Terasort are classified as CPU-intensive applications according to the

test results. In CPU-intensive applications, it is seen that increasing the number of nodes and increasing CPU

utilization improve the job execution performance. Thus, according to the phase where the small job pieces is

processed, numbers of maps or reduces of CPU-intensive applications should be the same as number of CPU

cores in the cluster. In addition, increasing number of nodes of the cluster decreases the job completion time.

The number of nodes in the cluster would be chosen according to the budget.

Hadoop has more parameters to improve job execution performance. These parameters could be adjusted

in addition to number of nodes to improve job execution performance in future studies. In this paper, the data

set is generated by the selected benchmarking tools. In future studies, different data sets could be used to

measure job execution performance of the Hadoop framework.
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ÖZEN et al./Turk J Elec Eng & Comp Sci

[10] Tan YS, Tan J, Chng ES. Hadoop framework: impact of data organization on performance. Wiley Online Library

2011; 43: 1241-1260.

[11] Premchaiswadi W, Romsaiyud W. Optimizing and tuning MapReduce jobs to improve the large-scale data analysis

process. Int J Intell Syst 2013; 28: 185-200.

[12] Herodotou H, Lim H, Luo G, Borisov N, Dong L, Cetin FB, Babu S. Starfish: A self-tuning system for big data

analytics. In: 5th Biennial Conference on Innovative Data Systems Research; 9–12 January 2011; Asimolar, CA.

pp. 261-272.

[13] Verma A, Cherkasova L, Campbell RH. ARIA: Automatic resource inference and allocation for MapReduce envi-

ronments. In: Proceedings of the 8th ACM International Conference on Autonomic Computing; 14–18 June 2011;

Karlsruhe, Germany. New York, NY, USA: ACM. pp. 235-244.

[14] Zhang Z, Cherkasova L, Loo BT. Benchmarking approach for designing a MapReduce performance model. In:

Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering; 21–24 April 2013;

Prague, Czech Republic. New York, NY, USA: ACM. pp. 253-258.

[15] Babu S. Towards automatic optimization of MapReduce programs. In: Proceedings of the 1st ACM Symposium on

Cloud Computing; 10–11 June 2010; Indianapolis, IN, USA. New York, NY, USA: ACM. pp. 137-142.

[16] Fadika Z, Dede E, Govindaraju M, Ramakrishnan L. Benchmarking MapReduce implementations for application

usage scenarios. In: 12th IEEE/ACM International Conference, Grid Computing; 21–23 September 2011; Lyon,

France. New York, NY, USA: IEEE. pp. 90-97.

[17] Massie ML, Chun BN, Culler DE. The ganglia distributed monitoring system: design, implementation, and

experience. Parallel Comput 2004; 30: 817-840.

[18] Venner J. Pro Hadoop. New York, NY, USA: Apress, 2009.

[19] Maurya M, Mahajan S. Performance analysis of MapReduce programs on hadoop cluster. In: 2012 World Congress

on Information and Communication Technologies; 30 October 2012–02 November 2012; Trivandrum, India. New

York, NY, USA: IEEE. pp. 505-510.

[20] White T. Hadoop Definitive Guide. 2nd Ed. Sebastopol, CA, USA: O’Reilly Media, 2010.

716

http://dx.doi.org/10.1002/int.21563
http://dx.doi.org/10.1002/int.21563
http://dx.doi.org/10.1145/1998582.1998637
http://dx.doi.org/10.1145/1998582.1998637
http://dx.doi.org/10.1145/1998582.1998637
http://dx.doi.org/10.1145/2479871.2479906
http://dx.doi.org/10.1145/2479871.2479906
http://dx.doi.org/10.1145/2479871.2479906
http://dx.doi.org/10.1145/1807128.1807150
http://dx.doi.org/10.1145/1807128.1807150
http://dx.doi.org/10.1109/Grid.2011.21
http://dx.doi.org/10.1109/Grid.2011.21
http://dx.doi.org/10.1109/Grid.2011.21
http://dx.doi.org/10.1016/j.parco.2004.04.001
http://dx.doi.org/10.1016/j.parco.2004.04.001
http://dx.doi.org/10.1109/WICT.2012.6409130
http://dx.doi.org/10.1109/WICT.2012.6409130
http://dx.doi.org/10.1109/WICT.2012.6409130

	Introduction
	Materials and methods
	Experimental setup
	Realization of tests
	PiEstimator benchmarking tool
	Grep benchmarking tool
	Teragen benchmarking tool
	Terasort benchmarking tool
	Evaluation of results

	CPU-light applications
	PiEstimator benchmarking tool
	Grep benchmarking tool

	CPU-intensive applications
	Teragen benchmarking tool
	Terasort benchmarking tool


	Conclusion

