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Abstract:The article presents an example of using two optimisation methods, a genetic algorithm and cuckoo search, to

identify parameters of electric drive controllers using some quality criteria and by applying a limitation to the maximum

values of signals in the controlled facility. The results for both optimisation methods are compared. The impact of the

probability that the nest host discovers the laid eggs on the speed of finding the optimum solution is investigated.
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1. Introduction

The basic goal of control is to obtain a response of an object according to the design assumptions, i.e. to have

the object response error as small as possible against the requested response. Making a design that works in

a real system is an important aspect of designing. This means designing controls for a mathematical model

of a system that will work correctly with a real object despite making assumptions simplifying the design and

when the object contains nonmodelled dynamics. It is possible to achieve this goal by designing a controller

according to the H∞ norm [1]. Unfortunately, these goals tend to exclude one another. Reaching the first goal

makes the other one unachievable and vice versa. That is why it is necessary to find a compromise between the

goals, i.e. to use multicriteria optimisation.

It is a relatively easy task to design a control system for linear objects. It becomes more complicated when

the controlled object is nonlinear and additionally if it is necessary to take into account different limitations for

real signals.

This all makes designing an optimum control a complex and difficult process, where artificial intelligence

methods have been used more and more often [2,3]. The need to find the optimum of a function that tends to be

nonlinear, noncontinuous, and composed of several quality criteria as well as considering additional limitations

makes the search for the solutions extremely extensive, and there are either no tools for an analytical search

for the solution or the calculation time is unacceptable. In such cases it is sensible to use artificial intelligence

methods, such as genetic algorithms (GAs) or a cuckoo search (CS) algorithm.
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2. Controlled object

A DC drive with two secondary control loops with PI type controllers was selected as the test object (Figure

1). Both the control and the controller structure can be selected using different methods [4,5].

Figure 1. Control system with a DC motor.

The purpose of this paper is to compare two optimisation methods from the group of artificial intelligence

methods. That is why a classic control system was selected.

The motor is described by the following system of equations.
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Where:

u – armature voltage

R – armature resistance

i – armature current

L – armature inductance

k – constant coefficients dependent on the motor structure and excitation current in the SI units system

that make the flux linkage

M – mechanical torque

J – moment of inertia referred to the motor shaft

ω – angular speed of the motor

The motor is powered from a 6-pulse converter, which can be regarded (making a simplification) as a

first-order inertial element with the following transmittance:

Gp =
Kp

1 + sTp
(2)

Where:
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Kp – converter gain

Tp – converter time constant

The supply voltage of the motor must not be higher than the voltage corresponding to full controlling of

the converter, and that is why the maximum value of the converter controlling signal is limited.

Both controllers are of the PI type. The current controller (GI (s)), which is controlled by the difference

between the output signal from the speed controller and the real current signal, develops a signal sent to the

converter supplying the motor. The speed controller (GΩ (s)) is controlled by the difference between the setting

signal and the measured speed signal. The transmittances of the controllers are described by Eq. (3).

GI(s) =
kIp·s+kIi

s

GΩ(s) =
kΩp·s+kΩi

s

(3)

The setting signal completes the function in Eq. (4).

ucontrol(t) =

{
α · t+ u0 for ucontrol(t) < umax

umax
(4)

The motor torque is regarded as an interference that has an adverse impact on the motor speed. During

simulation of the model, the torque is changed in steps after 7 s, from 140 Nm to 60 Nm.

The parameters of the motor and auxiliary elements are as follows:

PN = 22 kW, UN = 440 V, IN = 56.2 A, J = 2.7 kgm2 , R = 0.465 Ω, L = 15.345 mH,

nN = 1500 rpm, k = 2.62, ωN = 157 s−1 , Kp = 100, Tp = 1.67 ms, ki = 0.1, kw = 0.05,

α = 2.7 V/s, u0 = 0.01 V, umax = 7.85 V.

Figure 1 additionally contains the MinMax block with feedback, detecting the maximum value of the

motor current and the speed. During start-up under full load, the current must not exceed twice the nominal

value of the current, i.e. 112.4 A. The speed is checked due to the need to reach the rated speed during

simulation.

Another additional element in Figure 1 is a collection of blocks calculating one of the optimisation criteria,

i.e. an integral from the square value of the set and measured motor speed error (Eq. (5)).

y1 =

10∫
0

(
ω − ucontrol

kw

)2

dt (5)

In order to identify the second criterion, the maximum value is calculated using the Bode characteristics

determined for the lines from the interfering inputs, i.e. from the load torque and from two inputs measuring

the speed and current. The values correspond to the value of the H∞ norm (Eq. (6)).

y2 = max (∥G (j · ω)∥) (6)

3. Selecting parameters of controllers using the genetic algorithm and cuckoo search

The purpose of the optimisation is to find four parameters of controllers (two parameters for the current

controller and two for the speed controller), for which the functions of the objective will successively reach the
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following minimum:

y1 =

10∫
0

(
ω − ucontrol

kw

)2

dt (7)

y2 = max (∥G (j · ω)∥) (8)

y3 = 10 · y1 + y2 (9)

Owing to the third function (Eq. (9)), it will be possible to reach a compromise between function one (Eq. (7))

and two (Eq. (8)), which exclude one another. In every optimisation case the maximum value of the current

has to be limited and the rated speed achieved. Each function will be minimised both by the genetic algorithm

and the cuckoo search.

3.1. Genetic algorithm

The GA is one of the tools proposed for performing optimisation; it belongs to the group of approximate methods

[6]. The method is inspired by nature. It is based on a population of solutions that evolves in every subsequent

generation, striving to ensure continuous improvement of its individuals. A better individual will have more

offspring, which means that an individual that is better adapted will survive. Individuals are improved just as

in nature by selection, crossover, and mutations.

Figure 2 shows the basic block diagram of the genetic algorithm.

initialize the first population 

calculation  
of the objective function 

check the  
termination condition 
 

selection 

crossover 
mutation 

 

NO 

selection  
of the best individual 

STOP  

YES  

decoding chromosomes  
to range of task parameters 

START  

Figure 2. Block diagram of the basic genetic algorithm.

Since the initial research on the form of GAs and components, they have undergone modifications and

the current form of the basic GA includes:

• initialisation of the first population,
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• decoding the chromosomes to the task parameters,

• determining the value of the objective function for each individual,

• checking the condition of ending the algorithm,

• selection,

• crossover and mutation.

Optimisations of the parameters of controllers for DC drives with a GA were already described [7],

whereby the limitation for the maximum value of the current was not taken into consideration.

All optimisations using the GA were made with the following configuration:

• range of variation of decision variables under the terms of the task:

kΩp , kΩi , kIp , kIi = (0–2000),

• parameters are coded in a string of 15 bits for each,

• populations of 200 individuals,

• probability of crossover pk = 0.95,

• probability of mutation pm = 0.01,

• condition of termination of work AG - 100 generations,

• ranking with the factors: Cmin = 0, Cmax = 2,

• selection method - stochastic universal sampling,

• crossing the shuffle.

4. Cuckoo search algorithm

The CS algorithm is the second optimisation method under consideration. Similarly to the GA, it is inspired

by nature and belongs to the group of algorithms based on the population of solutions. It should be highlighted

that the bee algorithm, the firefly algorithm, and the cockroach optimisation algorithm also belong to the same

class of algorithms [8,9]. Cuckoos lay their eggs in the nests of other birds so that they hatch their eggs and feed

their nestlings. It can happen that the host recognises the alien egg. Then the egg is thrown out of the nest or

the host abandons the whole nest and builds a new one. Some cuckoos specialise in making their eggs similar

in colour and size to the eggs of specific species of birds, which makes it difficult for the host to recognise the

alien egg.

Every egg identifies one potential solution for the set optimisation task. Information on all decision

variables are recorded in an egg.

The following rules are applicable for the CS algorithm:

• every cuckoo lays one egg and lays it in a randomly selected nest,

• only the best egg in the nest will survive by the next generation,
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• the number of nests is fixed,

• the laid egg is detected by the host with probabilitypa ∈ [0, 1]. If the laid egg is detected, the host either

throws it away or leaves the whole nest and randomly builds a new nest.

The CS algorithm was first presented by Yang and Deb in 2009 [10].

The Cuckoo Search algorithm is presented in Figure 3.

selection  
of the best nest 

START  

initialize the first nests 

check the termination 
condition 

searching new nests 
(Lévy !ight) 

NO 

STOP  

YES  

 

  

dropping of better eggs 

Host recognises the eggs 

Replacement of the 
recognised eggs 

Figure 3. Block diagram of the cuckoo search.

At the beginning of the algorithm, a random set of eggs is generated. Each egg is evaluated for how good

the solution it represents is.

Then new random cuckoo eggs are generated. For the needs of this article Lévy flights [11] by Mantegna’s

algorithm (Eq. (10)) were used.

ν =
x · σ (β)

|y|
1
β

(10)

Where:

σ (β) =

Γ (1 + β) · sin
(

π·β
2

)
Γ
(

1+β
2

)
· β · 2 β−1

2


1
β

(11)

Γ (α) =

∞∫
0

(
e−t · tx−1

)
dt (12)

A = 0.01 · z · ν · (s− best) (13)

snew = s+A (14)
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x , y , z – random numbers with normal distribution,

s – nest currently under consideration,

best – nest with the best egg,

A – identified cuckoo’s flight route,

snew – new nest of the cuckoo.

Eqs. (13) and (14) identify the new nest found by the cuckoo. Owing to the algorithm, the new egg can

potentially generate a better solution. If so, the cuckoo replaces the host’s egg in the nest with its own one.

Now there is time for the nest host, which tries to recognise the laid eggs. The host does it with

probability pa . New random solutions similar to the existing ones are generated to replace the recognised eggs

if they demonstrate a better solution.

snew = s+ k ·
(
srand − s

)
(15)

Where:

k – random number from the [0, 1] range,

srand – randomly selected nest.

When the whole cycle is finished, another generation of cuckoos is generated, coming back to the

generation of new eggs using Lévy flights.

The optimisation algorithm with the CS method was developed quite recently. Work on improving the

algorithm is under progress [12]. Despite the above, the CS was tested in practical applications [13–19].

The CS algorithm has been configured in the following way for this paper:

• range of variation of decision variables under the terms of the task:

kΩp , kΩi , kIp , kIi = (0–2000),

• condition of termination of work CS - 200 generations,

• number of nests - 200,

• probability of detecting a laid egg pa = 0.25,

• β = 3/2.

The quality of the proposed solution in both the GA and CS is identified using a computer simulation

of the operation of the system presented in Figure 1 in the MATLAB/Simulink package, which significantly

extends the process of optimisation.

4.1. Results

Optimisation using the GA and CS was performed, where Eqs. (7)–(9) were minimised one after another. One

should remember that the minimisations were performed with limiting of the maximum motor starting current

and the condition that the motor has to reach the rated speed. The Table presents the obtained results.

The presented results confirm that the criteria in Eqs. (7) and (8) exclude one another and their

combination in the criterion of Eq. (9) helps find a compromise between them.
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Table. List of obtained optimisation results.

Minimisation Method kΩp kΩi kIp kIi y1 y2 y

y1
AG 312.64 1532.2 4.39 5.87 0.0680 450.43 0.0680
CS 325.98 1637.9 1.13 58.56 0.0602 317.44 0.0602

y2
AG 6.16 0.488 1.96 38.12 3106 4.76 4.76
CS 11.82 0.0758 2.01 92.28 1269.7 9.76 9.76

y3
AG 119.93 214.22 0.49 0.78 1.60 62.95 78.49
CS 113.82 199.91 0.51 12.72 1.436 64.73 79.09

The results obtained using both methods are not identical despite many minimisation attempts. This is

mainly due to the fact that they are stochastic methods.

Figures 4 and 5 present the curves for the speed error and motor current, respectively, resulting from the

solutions found by both algorithms.
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Figure 4. Speed error curves: a) AG, b) CS.
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Figure 5. Motor current curves: a) AG, b) CS.
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One should pay attention to the fact that optimisation with the CS algorithm takes twice as much time

as for the GA. This results from twice the number of simulations carried out in Simulink to evaluate the quality

of the proposed solutions during one generation, that is from the structure of the algorithm itself. A second

reason for the longer computational process is twice the number of generations.

Figure 6 presents a diagram of the minimum values during objective function optimisation (Eqs. (7)–(9))

for both methods. The curves were plotted for the best case recorded during multiple optimisation.
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Figure 6. Minimum values of the objective function: a) y1 , b) y2 , c) y3 .

Figure 7 presents a process of searching for a solution with the CS algorithm for the objective function

of Eq. (9) at different values of the probability of discovering the laid eggs. Registration was made using the

CS algorithm for the searched four variables from the (0–250) range.

5. Conclusions

The paper presents an example of searching parameters for electric drive controllers. Optimisation of two

criteria excluding one another has been made, as well as a criterion that is a compromise of the first two

factors. Additionally, the optimisations were performed using limitations on the basic signals of the object.

Two optimisation methods from the group of artificial intelligence methods were employed, i.e. the GA and
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Figure 7. Curves of the minimum values during optimisation of the function of Eq. (9) with the CS algorithm, at

different values of probability pa .

CS with Lévy flight. The results are similar; however, there are certain differences that require attention. The

calculation time of each generation of the CS algorithm is twice that for the GA. This results from the structure

of the CS algorithm. Considering the number of generations, the CS also turned out to be slower than the GA.

Different optimisation times for different criteria can also be observed. For the y1 function (minimising the

square value of the motor speed error), both algorithms find similar solutions within a similar time (generation).

For the y2 criterion (H∞ norm) the CS clearly needs more time. The rule for criterion y3 is similar; however,

it proves better than for the y2 function.

Optimisations using the CS were also performed for different probabilities of detection of the laid eggs.

The CS algorithm with high probability (i.e. 75% and 100%) turned out to be much poorer at searching for

the solution.

It should be emphasised that both optimisation methods (GA and CS) found acceptable solutions;

however, CS was the slower algorithm in the presented example.
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