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Abstract: This paper presents a new approach with a three-stage optimization algorithm for the least-cost optimal

solution of the unit commitment problem. In the proposed work, the optimal schedule is obtained by optimizing the

lambda operator for the states that violate the inequality constraints. The objective of the work is to minimize the

fuel cost when subjected to various constraints such as load balance, minimum up/down time, ramp limit, and spinning

reserve. This method of committing the units yields the least-cost solution when applied to the IEEE 10-unit systems

and 7-unit Indian utility practical systems scheduled for 24 h and the results obtained are compared with the existing

methods.
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1. Introduction

Electric power is the basic necessity for any economic activity of a country. As a chief fuel resource, coal

provides about 30% of the global primary energy needs, generates 41% of the world’s electricity, and is used in

the production of 70% of the world’s steel. With the available global life span of another 190 years approximately,

the world’s primary fuel resource must be conserved to meet the growing demand. Moreover, the demand for

electricity is not the same at all times of the day and this also necessitates the conservation of the resource by

operating the units economically, which is realized through optimal unit commitment. Due to the ever increasing

need for power in all sectors, more optimization is required at the generation level in order to conserve the fuel

and minimize the production cost.

Unit commitment in power systems refers to the optimization problem of determining the schedule of

generating units that minimize the operating cost subject to a variety of constraints [1]. Obviously it is not

necessary to commit a unit when it is not required and this determination of ON/OFF must be done according

to some predetermined criteria that satisfy the constraint as well as minimize the cost. The research for the unit

commitment problem (UCP) is aimed at fast computing techniques and low production costs. In solving the UCP

[2,3], certain optimization methods are involved, which ensures bridging the gap between demand and supply.

The UCP is solved using both mathematical and nonmathematical approaches. The solving methodologies have

been advanced from simple rule-of-thumb methods to highly complex methods. Many mathematical approaches

exist in the literature, like priority lists [4,5], Lagrangian relaxation [6], mixed integer programming (MIP) [7],

branch and bound (B&B) [8], Bender’s decomposition [9], and dynamic programming (DP) [10–12]. Priority

list methods are fast but highly heuristic and give schedules with relatively high operating costs. Moreover, the
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quality of the final solution is not guaranteed to be good. Lagrangian relaxation uses Lagrange multipliers and

solves time-dependent constraints, but due to the duality gap, the solutions obtained are not optimal. MIP

methods have only been applied to small UCPs and have required major assumptions, which limit the solution

space, although they provide exact solutions theoretically. The B&B algorithm uses an intelligent structure to

search for the solution. The solution obtained from the B&B method is a local optimum and the computation

time is large for long-term commitment.

Many nonmathematical approaches like evolutionary programming [13], fuzzy logic [14], artificial neural

networks [15–17], simulated annealing (SA) [18], tabu search [19,20], and genetic algorithms (GAs) [21] provide

solutions to UCPs. The GA is a stochastic and parallel search method based on the mechanics of natural

selection and natural genetics. SA is a stochastic optimization technique that theoretically converges and

produces a global optimal solution. However, the GA and SA demand high computational time, many times

larger than the mathematical approaches. The metaheuristic approaches alone cannot guarantee the optimality

of the solution and it is difficult to estimate the quality of the solution accuracy due to parameter adjustments.

Hence, the mathematical method chosen must be efficient in terms of generating the optimal initial solutions.

Among the various methods available [22–24], one extensively employed method is DP, which provides the

exact solution for the UCP. DP is based on Bellman’s principle of optimality, and in the deterministic process of

finding the functional objective, DP is continuously applied to the subproblems, thereby producing the optimal

decision as the outcome. Practically it is very difficult to formulate the problem as it calls for a number of

states, but the problem could be framed with straightforward constraints to obtain the optimal schedule. DP

is a powerful mathematical model that overrides the priority list method in committing the units optimally. In

this paper the deterministic approach is modified in three stages, which promises an optimal solution with less

computation time.

2. Unit commitment problem

UC is a complex multistage decision-making process in electric power systems that involves determining the

ON/OFF schedules of the units to meet the forecasted load. This process helps the dispatcher manage the

uncertainties and various constraints. The period of 24 h (1 day) is considered to solve the UCP. The objective

is to minimize the total fuel costs while satisfying the system constraints and other local constraints.

2.1. Objective function

Min TFC =

[
T∑

t=1

∑n

i=1

(
ai + biPgi,t + ciPg2i,t

)]
+ SUC (1)

TFC - Total fuel cost
t - Time interval (1 to 24 h)

n - Number of generating units

Pgi,t− Power generation of ith unit at time period t

ai, bi, ci− Cost coefficients

SUC - Startup cost
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2.2. Constraints

• Subject to system constraints

Unit initial conditions
First hour schedule is based on the unit initial status
Unit status restrictions
Certain units under all load conditions are assigned with the must-run status

Power balance constraint
n∑

i=1

Pgi,t = PL (2)

Where
PL− Load at time interval t

Reserve constraint
n∑

i=1

Pgi,max ≥ PL +Rt (3)

Where
Rt− Reserve at time interval t

Pgi,max− Maximum generation limit in MW of ith unit

• Subject to local constraints

Inequality constraints

Pgi,min ≤ Pgi,t ≤ Pgi,max (4)

Where
Pgi,min− Minimum generation limit in MW of ith unit

Minimum up and minimum down time constraints

• Indicate that a unit must be ON/OFF for a certain number of hours before it can be committed or

decommitted

TON
i,t ≥ TUP

i (5)

TOFF
i,t ≥ TDOWN

i (6)

Where

TON
i,t − ON time of ith unit in interval t , t= 1 to T

TOFF
i,t − OFF time of ith unit in interval t , t= 1 to T

TUP
i − Minimum ON time of ith unit

TDOWN
i − Minimum OFF time of ith unit

Startup cost (SUC )

SUCi,t =

 hot startup cost, if downtime ≤ coldstart hours

cold startup cost, otherwise
(7)

SUCi,t= Soi[1−Die
−
(
Toff, i/Tdown, i

)
] + Ei (8)
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Soi - Cold startup cost

D i and E i - Startup cost coefficients

Ramp rate limits

The operating ranges of all online units are restricted by their ramp rate limits.

Pi−P 0
i ≤ URi

P 0
i − Pi ≤ DRi

(9)

P i - Power generation of unit i

P0
i - Power generation of unit i at previous hour

UR i - Ramp-up rate limit for unit i at hour t

DR i - Ramp-down rate limit for unit i at previous hour

Initial status
Unit status is taken into consideration at the beginning of the schedule.

Based on the load data, Eqs. (7) and (8) are used to calculate the startup cost. A simple UC problem

for a 10-unit system with 24 h of load can be realized with number of states resulting as (2n)T = (210)24 = too

many states. These huge states have to be checked to evaluate the best least-cost state for each load variation

over the specified time horizon.

Unit initial status, must-run constraints, and power balance constraints are met while solving the DP

subproblem itself. Must-run constraints decrease the startup cost during the later demand stages in solving the

UCP.

Reserve constraint is considered in solving the UCP and is assumed as a proportional percentage from

the maximum limit of the generating unit during each stage of the DP solution. Ramp rate constraints are

not violated and it is checked during every stage in the forward DP. Although penalty factors are normally

introduced whenever ramp constraints violate the limits, in this work no such factors are introduced as the

limits are stable during every transition.

Startup cost and shut-down cost constraints represented in Eq. (7) are applied for solving the IEEE

10-unit system and Eq. (8) is applied for solving the NTPS 7-unit Indian utility system. The DP starts initially

after checking whether the initial status conditions are met. This status restriction is for 24 h, represented for

10 unit and 7 unit systems, respectively.

Inequality constraints (min and max generation limit) are refined by lambda optimization for constraint

violating units and it is validated throughout every stage of the demand. Many constraints are satisfied

throughout the unit commitment problem solving and the inequality constraints are optimized through three

stages.

3. Modified dynamic programming for unit commitment

Although unit commitment and economic dispatch decisions are interdependent, for certain load changes the

satisfaction of one constraint would result in the violation of the other constraint. A method could be proposed

that can modify and update the commitment order [25] so as to produce a schedule that satisfies the constraints

and yields the optimal solution, thereby minimizing the production cost. This paper focuses on the modified

dynamic programming (MDP) method for solving the UCP as it demands superiority for suboptimal solutions

in the case of any divergence in terms of accuracy. This feature of MDP is used to find the optimal state
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in the second and third stages of the proposed algorithm. In the proposed MDP three-stage technique, the

number of states during each hour are considerably reduced and therefore the decision-making process is fast.

The decomposition does not always guarantee the convergence [26], yet the assumptions made would result

in convergence of the final schedule. In the proposed work, the states diverge for higher loads of the 10-

unit system and the convergence occurs by customizing the economic dispatch algorithm, thereby yielding a

suboptimal solution with minimum processing time. DP has been applied to the power system UC problem

as a powerful method in finding out the schedule of the generating units as observed from various works in

the literature [27,28]. In this paper, MDP is applied to the UCP. MDP identifies the best solution over fuzzy

dynamic programming (FDP) when applied to the 7-unit thermal power station (TPS) in India in terms of

cost and processing time. Since fuel cost is a major cost component in the total cost calculation, reducing the

fuel cost by 0.5% can result in saving millions of dollars per year for very large power system utilities. The

MDP method is efficient compared to ordinary DP in terms of the search for states performed using trial and

error logic in the already stored feasible states’ list. This is explained in the flowchart shown in Figure 1. It is

observed that for the 7-unit system the final commitment converged through all stages, but in the case of the

10-unit system for higher demands the states diverge and the final optimal state was identified by refining the

algorithm.

Algorithm

Step 1: Perform ED using lambda projection method

Step 2: Check if the inequality constraints are violated

Fix the generation to min or max

Step 3: Check and validate the fixed generation schedule using lambda calculation

{
for maximum violation and fixation

validate λnew ≤ λ , if true the schedule is optimal

else go to step 4

for minimum violation and fixation

validate λnew ≥ λ , if true the schedule is optimal

else go to step 4

}
Step 4: Modify the dispatch calculation and go to step 2

Step 5: Apply the constraints

Step 6: Select the state that promises low startup cost during each hour

Step 7: Modify the schedule to satisfy the up-time and down-time constraints by trial and error method

Step 8: Finalize the UC schedule

4. Lambda optimization

The first stage is the optimization of incremental fuel cost parameter λ . In the actual dispatch calculation, the

generation scheduling is tested for the inequality constraint violation, and if the constraints are violated, the

maximum/minimum values are fixed. The fundamental rule that tells when the optimum has been reached is

checked through Kuhn–Tucker conditions. Accordingly, this fixed generation of the particular units is checked
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Figure 1. Various stages of optimization algorithm.

for their validity through λ checking. Obviously, in the checking process, in certain cases the fixed unit may

not be eligible to form a state to meet the load if it does not satisfy the following Kuhn–Tucker conditions.

dF i

dPgi
= λ, Pgi,min < Pgi < Pgi,max

dF i

dPgi
≤ λ, Pgi = Pgi,max

dF i

dPgi
≥ λ, Pgi = Pgi,min

(10)

This checking helps to perform the optimal scheduling. Using DP the least-cost state for all loads ranging from

first hour to last hour is determined. The second stage of the algorithm checks for the nonavailability of states
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for any load. If no state exists for a particular load, the economic dispatch is modified and the least-cost state

is identified. In the third stage, while applying the constraints the least-cost state is obtained in two steps:

in step I by considering the startup cost coefficients, and in step II by calculating the startup cost for every

possible state through algorithmic search using a trial-and-error method. This method of searching the state

ends up satisfying both the UC and economic dispatch decisions. After applying MUT and MDT constraints

and fixing the expensive units in ON status, the startup cost is calculated for consecutive hours. The required

data for the NTPS 7-unit system [14] are given in Table 1. The load data for this system are given in Table 2.

Table 1. Unit data of 7-unit system for 24 h [14].

Unit Pmin MW Pmax MW
Running cost
ci bi ai

1 15 60 750 70 0.255
2 20 80 1250 75 0.198
3 30 100 2000 70 0.198
4 25 120 1600 70 0.191
5 50 150 1450 75 0.106
6 50 150 4950 65 0.0675
7 75 200 4100 60 0.074

Unit
Startup cost Minimum Minimum
Soi Di Ei Up time, h Down time, h

1 4250 29.5 10 3 3
2 5050 29.5 10 3 3
3 5700 28.5 10 3 3
4 4700 32.5 9.0 3 3
5 5650 32 9.0 5 5
6 14,100 37.5 4.5 5 5
7 11,350 32 5.5 6 6

Table 2. Load data of 7-unit system for 24 h [14].

Hour [h] Load [MW] Hour [h] Load [MW]
1 840 13 545
2 757 14 538
3 775 15 535
4 773 16 466
5 770 17 449
6 778 18 439
7 757 19 466
8 778 20 463
9 770 21 460
10 764 22 434
11 598 23 530
12 595 24 840

The schedule of a 7-unit Indian utility system is obtained, which yields a total cost of Rs 1,58,0269.417.

Startup cost is calculated from Eq. (2) based on the unit data available. Table 3 is obtained based on stage

I. Since the SUC is very high this schedule is considered the worst case. However, in the proposed method,

the total cost is reduced by identifying the high startup cost coefficients and the least possible state using a

trial-and-error method.
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Table 3. Schedule of 7-unit Indian utility system: worst case.

Hour Schedule GC (Rs) SUC (Rs) TFC (Rs)
1 1111111 86,237.69 86,237.69
2 1111111 77,574.65 77,574.65
3 1111111 79,404.67 79,404.67
4 1011111 79,160.62 79,160.62
5 1011111 78,822.85 78,822.85
6 1011111 79,731.23 79,731.23
7 1011111 77,394.7 77,394.7
8 1111111 79,712.22 34209 113,921.22
9 1111111 78,893.71 78,893.71
10 1111111 78,283.22 78,283.22
11 1001111 60,347.18 60,347.18
12 1001111 60,050.01 60,050.01
13 1000111 54,653.6 54,653.6
14 1000111 53,933.45 53,933.45
15 1000111 53,628 53,628
16 1000111 46,998.65 46,998.65
17 1000111 45,472.35 45,472.35
18 1000111 44,586.24 44,586.24
19 1000111 46,998.65 46,998.65
20 1000111 46,726.62 46,726.62
21 1000111 46,455.93 46,455.93
22 1000111 44,145.99 44,145.99
23 1000111 53,123.13 53,123.13
24 1111111 86,237.69 7487.42 93,725.11
Total cost (Rs) = 1,580,269.47

The startup cost of the 2nd unit at the 8th hour is high and the 3rd stage of the algorithm searches for

the optimal state. The state that obeys the MUT and MDT constraints is checked and the schedule is given

in Table 4. If the 2nd unit is kept committed during the 4th, 5th, 6th, and 7th hours instead of decommitting

as in the worst case, the startup cost of the 2nd unit at the 8th hour, Rs 34,209, is saved. If the 2nd unit is

committed during the 4th, 5th, 6th, and 7th hours, the ON status cost is only Rs 310. Since the total cost is

high, the schedule obtained at the end of the first stage is considered as the worst case. The total fuel cost

obtained for the schedule at the end of the third stage for hours 4 to 7 is Rs 1,546,331.707/-, realizing a net

savings of Rs 33,937.71/-.

Table 4. Best state of the schedule for hours 4 to 7 of 7-unit Indian utility system.

Hour Schedule SUC (Rs) TFC (Rs)
4 1111111 - 79,200.05
5 1111111 - 78,893.71
6 1111111 - 79,712.22
7 1111111 - 77,574.66
8 1111111 - 79,712.22
Total fuel cost for 24 h (Rs) = 1,546,331.707/-

SUC- Startup cost, TFC- total fuel cost.
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This is considered as the schedule of the best case. The schedule obtained at the end of the third stage

is more economical than the schedule obtained at the end of the first stage. The algorithm is checked for the

IEEE 10-unit system. The required unit data for the 10-unit generating system are given in Table 5. The load

data for this system are given in Table 6.

Table 5. Unit data of IEEE 10-unit system for 24 h.

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
Pmax (MW) 455 455 130 130 162
Pmin (MW) 150 150 20 20 25
a ($/h) 1000 970 700 680 450
b ($/MWh) 16.19 17.26 16.60 16.50 19.70
c ($/MWh2) 0.00048 0.00031 0.002 0.00211 0.00398
MUTi (h) 8 8 5 5 6
MDTi (h) 8 8 5 5 6
Hcosti ($) 4500 5000 550 560 900
Ccosti ($) 9000 10,000 1100 1120 1800
Chouri (h) 5 5 4 4 4
Ini State (h) 8 8 –5 –5 –6

Unit 6 Unit 7 Unit 8 Unit 9 Unit 10
Pmax(MW) 80 85 55 55 55
Pmin (MW) 20 25 10 10 10
a ($/h) 370 480 660 665 670
b ($/MWh) 22.26 27.74 25.92 27.27 27.79
c ($/MWh2) 0.00712 0.00079 0.00413 0.00222 0.00173
MUTi (h) 3 3 1 1 1
MDTi (h) 3 3 1 1 1
Hcosti ($) 170 260 30 30 30
Ccosti ($) 340 520 60 60 60
Chouri (h) 2 2 0 0 0
Ini State (h) –3 –3 –1 –1 –1

Table 6. Load data of IEEE 10-unit system for 24 h.

Hour [h] Load [MW] Hour [h] Load [MW]
1 700 13 1400
2 750 14 1300
3 850 15 1200
4 950 16 1050
5 1000 17 1000
6 1100 18 1100
7 1150 19 1200
8 1200 20 1400
9 1300 21 1300
10 1400 22 1100
11 1450 23 900
12 1500 24 800

Considering the best state, all units are committed during the 10th hour and the total cost of the schedule

increases due to rearranging the commitment order previously set for MUT and MDT constraint satisfaction.
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No states exists for the demand of 1450 MW and 1500 MW since the value of the new lambda in the lambda
projection method approaches infinity.

The problem persists for higher demands. For example, when demand is 1450 MW, all units are violating

the limits according to Kuhn–Tucker conditions.

The calculation of the new lambda is given in the following equation.

λnew =
[New Load+ (Sum of all nonviolating (b/c)coefficients)]

[Sum of nonviolating unit′s (1/c)coefficients]
(11)

The value becomes infinite since all units violate the limits for the loads of 1450 MW and 1500 MW. For
example, the generation fixed to maximum level and minimum level respectively during any hour is treated as

optimal only if it satisfies the following respective conditions.

λnew ≤ λ (12)

λnew ≥ λ (13)

This constraint checking helps to produce an optimal generation scheduling. The economic dispatch is performed

until the above constraints are met.

Consequently, for the higher loads, if the schedule of the respective unit is fixed for its limit violation,

the power balance constraint is not met. This is shown in Table 7. In order to commit the units and satisfy the

equality constraints, the algorithm is refined. The economic dispatch is optimized for the state that does not

meet the power balance constraint and the units involved in the state are fixed in either of the limits.

Table 7. Schedule of infeasible state for loads of 1450 MW and 1500 MW (Pgi < PL ).

Load (MW)
Generation schedule (MW)

Pgi [MW]
Total

1 2 3 4 5 6 7 8 9 10 cost ($)

1450
455 455 130 0 25 20 25 10 10 0 1130 25,039.66
455 455 130 130 162 20 25 10 10 10 1407 31,649.26

1500
455 455 130 130 25 20 25 10 0 0 1250 26,962.4
455 455 130 130 162 0 25 10 10 10 1387 30,831.21

In this case, since the maximum fixation does not promise the equality constraint satisfaction, the

corresponding units that are violating the maximum limits are fixed to minimum generation and the remaining

units’ schedule is adjusted to obtain the near-optimal solution, which is shown in Table 8.

Table 8. Schedule of new feasible states for loads of 1450 MW and 1500 MW (Pgi = PL ).

Load [MW]
Generation schedule (MW)

Pgi [MW]
Total

1 2 3 4 5 6 7 8 9 10 cost ($)
1450 455 455 130 130 162 0 53 0 55 10 1450 31,923.69
1500 455 455 130 130 162 0 85 0 55 28 1500 33,316.26

In this subproblem, it is observed that the ramp rate limit is not violated. This is done only for the

diverged state. The best optimal state is attached to the schedule that arrived in the first stage and the

constraints are applied at the end of the second stage. The algorithm searches for the least startup cost state

by discarding the expensive units and the final optimal schedule is obtained.

1320



KANDASAMY and SELVARAJ/Turk J Elec Eng & Comp Sci

5. Simulation results

MDP using Kuhn–Tucker conditions was implemented in MATLAB and the problem was tested for a 7-unit

NTPS system and the IEEE 10-unit system. The test runs are performed with a 1.8 GHz (4GB RAM) Intel

Core i3 processor under the Windows 8 operating system. The shut-down cost has been considered as zero for

every unit. Based on the schedule obtained at the end of the second stage, the inclusion of the ramp rate is

achieved with the modification of states by a backward sequence for satisfying the MUT and MDT constraints.

The final UC schedules of the 7-unit Indian utility system and IEEE 10-unit system have the least cost of

operation. Total costs of UC schedules for 7- and 10-unit systems are compared with other methods stated in

the literature and are given in Tables 9 and 10, respectively.

Table 9. Total cost of UC schedule for 7-unit Indian utility system.

Method Total cost
(Rs)

DP approach [14] 1,552,926
FDP approach [14] 1,547,340
MDP – worst 1,580,269.417
MDP – best 1,546,331.707

Table 10. Total cost of UC schedule for IEEE 10-unit system.

Method Total cost ($)
Ref [15] – HNN 588,750
Ref [21] – GA 610,500
Ref [29] – GA 609,023.69
Ref [30] – GA 591,715
Ref [31] – GA 623,441
MDP – best 581,541.9892

The UC solution for the 7-unit system is obtained by MDP and is given in Table 11. Various stages of

the MDP are shown in the flowchart in Figure 1

The commitment order converged through the first and third stages without passing through the second

stage in the case of the 7-unit system, whereas for the 10-unit system economic dispatch was refined in the

second stage in order to achieve the optimal schedule. In both the cases the ramp rate constraint is considered.

The total fuel cost of MDP compared with other methods for the 10-unit system and 7-unit Indian utility

system is shown in Figures 2 and 3, respectively.

The processing time of MDP is optimal for both the 7-unit and 10-unit system. The processing times of

various methods are compared with MDP as shown in Table 12.

Although some divergence occurs at higher loads for the IEEE 10-unit system, the MDP method provides

a more economical solution (using constraint relaxation) than the other methods stated in literature. As shown

in Table 11, the MDP produces the least cost of operation with less processing time. The final UC schedule for

the IEEE 10-unit system that yields the least cost of operation is shown in Table 13.
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Table 11. Final best schedule of 7-unit Indian utility system – best case.

Hour Schedule GC (Rs) SUC (Rs) TFC (Rs)
1 1111111 86,237.69 - 86,237.69
2 1111111 77,574.65 - 77,574.65
3 1111111 79,404.67 - 79,404.67
4 1111111 79,160.62 - 79,200.05
5 1111111 78,822.85 - 78,893.71
6 1111111 79,731.23 - 79,712.22
7 1111111 77,394.7 - 77,574.66
8 1111111 79,712.22 - 79,712.22
9 1111111 78,893.71 - 78,893.71
10 1111111 78,283.22 - 78,283.22
11 1001111 60,347.18 - 60,347.18
12 1001111 60,050.01 - 60,050.01
13 1000111 54,653.6 - 54,653.6
14 1000111 53,933.45 - 53,933.45
15 1000111 53,628 - 53,628
16 1000111 46,998.65 - 46,998.65
17 1000111 45,472.35 - 45,472.35
18 1000111 44,586.24 - 44,586.24
19 1000111 46,998.65 - 46,998.65
20 1000111 46,726.62 - 46,726.62
21 1000111 46,455.93 - 46,455.93
22 1000111 44,145.99 - 44,145.99
23 1000111 53,123.13 - 53,123.13
24 1111111 86,237.69 7487.42 93,725.11
Total cost (Rs) = 1,546,331.707
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Table 12. Comparison of CPU times among DP, FDP, and GA.

Method Average time (s)
Ref [14] – DP 180
Ref [14] – FDP 158
Ref [29] – GA 677
MDP – NTPS 7-unit 18.67
MDP – IEEE 10-unit 115

Table 13. Final best new schedule of MDP in 10-unit 24-h case.

Load
1 2 3 4 5 6 7 8 9 10

Unit GC SUC TFC
[MW]/unit schedule ($) ($) ($)
700 455 150 95 0 0 0 0 0 0 0 1110000000 14,326.85 550 14,876.85
750 455 150 62.27 82.73 0 0 0 0 0 0 1111000000 15,832.72 1120 16,952.72
850 455 150 115 130 0 0 0 0 0 0 1111000000 17,527.91 0 17,527.91
950 455 235 130 130 0 0 0 0 0 0 1111000000 19,261.5 0 19,261.5
1000 455 285 130 130 0 0 0 0 0 0 1111000000 20,132.56 0 20,132.56
1100 455 375 130 130 0 0 0 10 0 0 1111000100 22,623.99 60 22,683.99
1150 455 425 130 130 0 0 0 10 0 0 1111000100 23,499.39 0 23,499.39
1200 455 455 130 130 0 0 0 10 10 10 1111000111 25,911.37 120 26,031.37
1300 455 455 130 130 85 0 25 0 10 10 1111101011 28,319 2320 30,639
1400 455 455 130 130 162 0 25 0 33 10 1111101011 30,541 0 30,541
1450 455 455 130 130 162 0 53 0 55 10 1111101011 31,923.69 0 31,923.69
1500 455 455 130 130 162 0 85 0 55 28 1111101011 33,316.26 0 33,316.26
1400 455 455 130 130 162 0 25 0 33 10 1111101011 30,541 0 30,541
1300 455 455 130 130 85 0 25 0 10 10 1111101011 28,319 0 28,319
1200 455 440 130 130 25 20 0 0 0 0 1111110000 24,605.73 340 24,945.73
1050 455 420 0 130 25 20 0 0 0 0 1101110000 21,363.4 0 21,363.4
1000 455 370 0 130 25 20 0 0 0 0 1101110000 20,488.16 0 20,488.16
1100 455 455 0 130 25 0 25 10 0 0 1101101100 23,252.55 580 23,832.55
1200 455 455 0 130 115 0 25 10 0 10 1101101101 26,023.74 60 26,083.74
1400 455 455 0 130 162 0 70.33 55 55 17.67 1101101111 31,825.92 60 31,885.92
1300 455 455 130 130 85 0 25 0 10 10 1111101011 28,319 1100 29,419
1100 455 375 130 130 0 0 0 10 0 0 1111000100 22,623.99 60 22,683.99
900 455 305 130 0 0 0 0 10 0 0 1110000100 18,540.37 0 18,540.37
800 455 215 130 0 0 0 0 0 0 0 1110000000 16,052.85 0 16,052.85

575,172 6370 581,542
GC- Generation cost, SUC- startup cost, TFC- total fuel cost.

6. Conclusion

In this paper a MDP approach for solving the UCP was proposed. MDP for the UCP is proved to be economical

in terms of cost and CPU time. MDP yielded the optimal value of the schedule after many stages of refining and

checking procedures. The problem also considers the unit ramping constraint. The proposed algorithm refined

the divergence in the case of the 10-unit system and it was observed that for a 7-unit Indian utility system the

final UC passed through all stages without any divergence. The basic advantage of the proposed algorithm is

the high speed of convergence. Results reveal that the proposed MDP approach is very effective in reaching the

optimal schedule for the short-term unit commitment problem. Attempts are also being made to hybridize the

FDP approach with intelligent techniques, which could improve the solution quality and computational time.
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