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Abstract: The design problem of a static output feedback controller and multivariable proportional-integral-derivative

(PID) controller is investigated for linear time-invariant systems (LTI). First, the static output feedback stabilization

problem is taken into consideration and then an iterative linear matrix inequality (ILMI) algorithm is developed for the

synthesis of the controller. Second, choosing a multivariable PID control law, the whole system is transformed into a new

augmented system represented in the form of a static output feedback control system. This method allows us to convert

the multivariable PID controller design problem into a static output feedback synthesis problem. Thus, the proposed

ILMI algorithm can as well be utilized for the design of the multivariable PID controller. Two numerical examples are

presented to illustrate a practical application of the developed methodologies.

Key words: Linear systems, static output feedback, descriptor approach, multivariable PID controller, linear matrix

inequalities

1. Introduction

The static output feedback (SOF) control problem is one of the challenging problems in the community of

control systems. The difficulty of the problem comes from the requirement to solve a bilinear matrix inequality.

Although the synthesis of a static output feedback controller is a hard task, it still receives quite a lot of

interest among researchers [1–17]. The primary reason lies in the fact that the commonly used state feedback

compensators are not applicable in some circumstances for a number of reasons: (1) the system is not always

complete state controllable, (2) the full state information is usually unavailable. Therefore, this situation leads

the control engineer to employ a static output feedback control law.

The use of proportional-integral-derivative (PID) controllers is quite popular in industry. In order to

determine the feedback gain parameters of PID controllers, Zheng et al. [10] have proposed to convert the

PID controller synthesis problem to that of a SOF controller design. Based on the combination of an iterative

algorithm developed by Cao et al. [4] and the idea of transformation, Zheng et al. [10] have succeeded in solving

the problem of designing a PID controller. The approach of descriptor system representation is introduced by

Lin et al. [13] in order to overcome the invertibility constraint on the PID controller proposed by Zheng et

al. [10]. He and Wang (2006) [14] have introduced an iterative linear matrix inequality algorithm with two
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stages for the static output feedback stabilization problem. In the first stage, the Lyapunov matrix and its

inverse are optimized via a cone complementarity linearization (CCL) technique. The second stage tries to find

a feasible static output feedback controller gain from an LMI condition by utilizing the optimized Lyapunov

matrix obtained in the first stage. The approach is also extended to the design of a multivariable PID controller.

Recently, a system augmentation approach has been utilized by Wang and Huang [16] to represent the closed-

loop system as a descriptor system form. The existence of the desired static output feedback controller then has

been established in terms of matrix inequalities that are solvable through employing an iterative LMI approach

[16]. Finally, a robust static output feedback controller synthesis has been proposed by Dong and Yang [17] on

the basis of some LMI conditions with a line search over a scalar variable.

In this paper, first a static output feedback stabilization method and second a multivariable PID controller

design method are developed for unstable linear time-invariant systems. The contribution of the paper can be

summarized as follows. An iterative linear matrix inequality algorithm is developed for the static output feedback

control problem. Compared to the method of He and Wang [14], the proposed approach allows us to obtain a

stabilizing static output feedback controller gain iteratively by using a linear matrix inequality condition. The

optimization criterion is based on an eigenvalue condition achieved by guaranteeing the maximum real part of

the closed-loop eigenvalues remain on the open left half plane. Concerning the design of a multivariable PID

controller, the idea of transformation developed by Zheng et al. [10] is utilized. In particular, the original linear

time-invariant system with the multivariable PID controller is augmented such that it can be re-expressed in the

form of a static output feedback control system. The PID controller gains are thus synthesized by considering

the static output feedback control problem of the augmented system for which a feasible solution set is obtained

by means of the newly proposed iterative LMI method. Two numerical examples are presented to illustrate the

effectiveness of the proposed methods.

2. Problem statement

Let us consider a linear time-invariant continuous-time control system defined as

ẋ (t) = Ax (t) +Bu (t) (1a)

y (t) = Cx(t), (1b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, and y(t) ∈ Rp is the measured

output vector; A ∈ Rn×n is the state matrix, B ∈ Rn×m is the input matrix, and C ∈ Rp×n is the output

matrix. A static output feedback control law is chosen as

u (t) = uo(t) + u1(t) (2a)

ui (t) = Fiy (t) , i = 0, 1, (2b)

where F0 ∈ Rm×p and F1 ∈ Rm×p are the constant static output feedback gains to be selected and determined,

respectively. Substituting the control law (2) into system (1) yields the following closed-loop system

ẋ (t) = Ax (t) +B [uo (t) + u1 (t)]

= Ax (t) +BFoy (t) +Bu1 (t)

= Ax (t) +Bu1 (t) +BFoCx (t) (3)

1564
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Employing a quasi-descriptor form of representation, the system Eq. (1) can be re-expressed as follows

ẋ (t) = z (t) + BFoCx (t) (4a)

z (t) = Ax (t) +Bu1 (t) (4b)

y (t) = Cx (t) , (4c)

where z(t) ∈ Rn is the descriptor state vector. Therefore, the objective of the present work is to investigate a

method to select and find the appropriate static output feedback gains, Fi ∈ Rm×p, i = 0, 1 that stabilize the

closed-loop system (3) so that the entire closed-loop eigenvalues of A+B(F 0 + F1)C have real parts lying in

the left-half complex plane (LHP).

3. Main results

The static output feedback stabilization results are summarized in the following theorem.

Theorem 1 If there exist symmetric and positive definite matrix P ∈ Rn×n and appropriate matrices F0 ∈
Rm×p , F̄1 ∈ Rm×p , G1 ∈ Rn×n , G2 ∈ Rp×p , an appropriate nonsingular matrix G3 ∈ Rm×m and appropriate

matrices G4 ∈ Rp×n , G5 ∈ Rm×n , G6 ∈ Rn×n satisfying the matrix inequality

Ω =



−G1 −GT
1

(
−K1G2 +K2F̄1

−GT
4

) (G1B −K2G3

−GT
5

) (G1A+K1G2C

−GT
6 + P )

∗ −G2 −GT
2 G4B + F̄T

1

(G4A+G2C

−GT
2 K

T
1 + F̄T

1 KT
2 )

∗ ∗
(G5B +BTGT

5

−G3 −GT
3 )

(G5A+BTGT
6

−GT
3 K

T
2 )

∗ ∗ ∗

(G6A+ATGT
6

+K1G2C + CTGT
2 K

T
1

+PBF0C

+CTFT
0 BTP )



< 0, (5)

where (*) represents the terms that are induced by symmetry, and K1 =
[
Ip 0p×(n−p)

]T
and K2 =[

Im 0m×(n−m)

]T
, then the linear time-invariant continuous-time system (1) is asymptotically stabilizable

with a static output feedback controller (2) with the stabilizing static output feedback gain F = F 0 + F1 , where

F1 is obtained via F1 = G−1
3 F̄1 .

Proof Let us choose a candidate Lyapunov function as follows:

V (x (t) , t) = xT (t)Px(t) (6)

Taking the time derivative of V (x (t) , t) along the state trajectory of the closed-loop system (3), (4) gives

V̇ (x (t) , t) = 2xT (t)Pẋ (t)

= 2xT (t)Pz (t) + 2xT (t)PBF0Cx(t)
(7)
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PARLAKÇI and CAFEROV/Turk J Elec Eng & Comp Sci

Introducing the following extended state vector χ (t) =
[
zT (t) yT (t) uT

1 (t) xT (t)
]
, we shall consider the

following quadratic null expression as


0n×1

0p×1

0m×1

 =


−z (t) +Ax (t) +Bu1(t)

−y (t) + Cx(t)

−u1 (t) + F1y(t)

 = Γχ(t), (8)

where

Γ =


−In 0n×p B A

0p×n −Ip 0p×m C

0m×n F1 −Im 0m×n

 .

We introduce a slack matrix G ∈ R(2n+p+m)×(n+p+m) defined explicitly as follows:

G =


G1 K1G2 K2G3

G4 G2 0p×m

G5 0m×p G3

G6 K1G2 K2G3

 (9)

where Gi, i = 1, . . . , 6 and Kj , i = 1, 2 are defined in the statement of Theorem 1. We shall then construct

the following null expression in closed form that can be employed for the purpose of inserting a relaxation term

into the Lyapunov function derivative (7):

0 = 2χT (t)GΓχ(t)

= χT (t) (GΓ+ΓTGT )χ(t)
(10)

Now adding (10) to (7) yields

V̇ (x (t) , t) = χT (t)Ωχ(t) , (11)

where Ω is as defined in (5). In order to ensure that the closed-loop system (3), (4) remain globally asymp-

totically stable, it is sufficient to satisfy the matrix inequality (5) such that if (5) holds true then we obtain

V̇ (x (t) , t) = χT (t)Ωχ (t) < 0, (12)

implying that the closed-loop system (3), (4) with the static output feedback controller (2) is guaranteed to be

globally asymptotically stable. This completes the proof.

It can be clearly seen that the static output feedback stabilization criterion given in (5) is not in the form

of a convex LMI. In other words, the synthesis condition (5) does not allow the use of LMI control toolbox for

getting a feasible solution set. Instead, an iterative algorithm can be taken into consideration.

ILMI algorithm (for the static output feedback stabilization problem).

Step 1: Let k = 0 and F
(0)
0 = 0m×p . Choose a specified maximum number of iterations, say kmax .
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Step 2: Solve F
(k)
1 for the matrix inequality (5), which is converted into a linear matrix inequality with

the setting of F
(k)
0 in Step 1.

Step 3: Calculate F (k) = F
(k)
0 + F

(k)
1 and find the eigenvalues of A + BF (k)C . If the real parts of the

eigenvalues lie in the left half-plane (LHP), then go to Step 5.

Let k = k + 1. If k ≤ kmax then go to Step 4; otherwise go to Step 6.

Step 4: Assign F
(k)
0 = F

(k−1)
1 and go to Step 2.

Step 5: The stabilizing static output feedback gain is obtained as F = F (k) .

Step 6: Exit the iteration.

Remark 1 Note that a discussion statement about the convergence properties of the proposed iterative LMI

algorithm along with its convergence rate and conditions needs to be made accordingly. It can be easily seen

that if an appropriate F cannot be obtained after a prescribed maximum number of iterations by utilizing the

outlined ILMI algorithm such that the real parts of the eigenvalues of the closed-loop system matrix A+ BFC

are guaranteed to remain on the LHP then we can deduce that the static output feedback controller synthesis

summarized by Theorem 1 may not have a feasible solution set. Moreover, Step 5 is utilized to guarantee the

convergence of the ILMI algorithm. Indeed, the existence of the solution for the static output feedback control

problem is guaranteed by the matrix inequality (5) once it has a feasible solution set. As a result, we can conclude

that this ILMI algorithm is convergent although one may not acquire a feasible solution set for (5) as long as

the eigenvalues of A+BFC do not stay on the LHP.

Remark 2 Note that the static output feedback stabilization problem is solved directly via introducing an

iterative algorithm. The method outlined by He and Wang [14] involves the application of a CCL algorithm that

accomplishes the task of finding the feedback gains with an indirect approach. In particular, the CCL approach

proposed by He and Wang [14] does not yield the output feedback gain directly while the Lyapunov matrix is

obtained with a feasible solution set. However, in our case, unlike He and Wang’s [14] method, our proposed

iterative method is capable of yielding the output feedback gain matrix and design parameters simultaneously.

4. Multivariable PID controller design

Let us choose a multivariable PID control law as follows:

u (t) = Fpy (t) + Fi

∫ t

0

y(τ)dτ + Fdẏ (t) , (13)

where Fp ∈ Rm×p , Fi ∈ Rm×p , and Fd ∈ Rm×p represent the proportional, integral, and derivative feedback

gain matrices to be selected appropriately. The idea of transformation proposed by Zheng et al. [10] can be

applied to get an augmented system

ż (t) = Ā z (t) + B̄u (t) (14a)

ȳ (t) = C̄z (t) , (14b)

where z (t) =

[
xT (t) (

∫ t

0
y (τ) dτ)

T
]T

, A =

[
A 0n×p

C 0p

]
, B =

[
B

0

]
, C̄ =


C̄1

C̄2

C̄3

 ,
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C̄1 =
[
C 0p

]
, C̄2 =

[
0p×n Ip

]
, C̄3 =

[
CA 0p

]
. The static output feedback control law

for system (14) can be given by

u (t) = F̄ ȳ(t), (15)

where F̄ =
[
F̄p F̄i F̄d

]
. Therefore, designing a multivariable PID controller for system (1) is converted

into a static output feedback controller design problem. Once the composite matrix F̄ along with F̄p , F̄i , F̄d

is obtained, following the method proposed by Zheng et al. [10] enables us to obtain

Fd = F̄d(I + CBF̄d)
−1

(16a)

Fp = (I− FdCB)F̄p (16b)

Fi = (I− FdCB)F̄i (16c)

The nonsingularity of the matrix (I +CBF̄d) is guaranteed by the proposition presented in [10]. As a result, it

can be stated that Theorem 1 can as well be employed for seeking a stabilizing static output feedback controller

for the system (16). Therefore, the static output feedback controller synthesized by this way can be used to

generate a multivariable PID controller with the feedback gains obtained as in (16).

Remark 3 We shall also mention about the increased size of the matrix inequality by introducing the slack

matrix G in the proposed stabilization condition. The total number of decision variables (NoDV) introduced in

the statement of Theorem 1 resulting from the selection of symmetric real and positive definite matrix P ∈ Rn×n

and appropriate matrices G1 ∈ Rn×n , G2 ∈ Rp×p , an appropriate nonsingular matrix G3 ∈ Rm×m , and

appropriate matrices G4 ∈ Rp×n , G5 ∈ Rm×n , G6 ∈ Rn×n is NoDV = 3n2+p2+m2+pn+mn . One can also

calculate the number of decision variables introduced for the stabilization condition developed in [14]. Namely,

concerning the choice of symmetric real and positive definite matrices P ∈ Rn×n, L ∈ Rn×n , V1 ∈ Rn×p ,

V2 ∈ Rm×n in the iterative Algorithm 1 and symmetric real and positive definite matrix P ∈ Rn×n , and a

nonnegative scalar α give a total number of NoDV [14] = 2n2 + n + pn + mn + 1 . It appears that NoDV [14]

is smaller than NoDV of the proposed stabilization condition and the difference in the number of decision

variables between the two approaches is equal to n2 − n− 1 + p2 +m2 . Moreover, the exact number of decision

variables for each numerical example is calculated and given in the section of numerical examples for unstable

systems.

Remark 4 It can be seen that this approach may be extended to the design of 1) perturbed systems, and 2)

time-delay systems with appropriate modifications in the future.

5. Numerical examples for unstable systems

In this section, we take two numerical examples already reported in the literature into consideration in order to

demonstrate the application of the theoretical method developed in the previous sections.
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Example 1 Let us consider the following linear time-invariant control system given by Yoo and Chung [15]:

ẋ (t) =


1 2 −3

4 0 −3

0 0 −3

x (t) +


1 0

0 1

0 0

u(t) (17a)

y (t) =

[
0 1 −1

1 0 0

]
x(t) (17b)

This system is an unstable system as the eigenvalues of the open-loop system are 3.3723, –2.3723, –3.0000. The

proposed ILMI algorithm has yielded a feasible solution set after a number of two iterations with

P =


8.8493 −6.9903 2.0583

∗ 5.6144 −1.5480

∗ ∗ 8.7818

× 104, F =

[ −15.3206 14.2697

−17.6949 16.4751

]
,

and G3 =

[
1.9193 −1.7326

−1.2468 1.1874

]
× 104 . It can be seen that det(G3) = 1.1877 × 107 ̸= 0 , which shows that a

feasible solution set for the matrix inequality in (5) has been obtained with a nonsingular G3 . Computing the

eigenvalues of the closed-loop system yields −1.2126 ± j1.0365 , -3.0000. This result implies that the proposed

static output feedback controller stabilizes the unstable system. The number of decision variables employed for

this example is calculated as NoDV = 47 , while the number of decision variables used by He et al. [14] is

computed as NoDV [14] = 34 . Moreover, the state trajectories of the open-loop system (17) with u (t) = 0 are

presented in Figure 1, which shows that the open-loop system is not asymptotically stable. The state response of

the closed-loop system (17) with the static output feedback controller (2) is exhibited in Figure 2, which illustrates

that the closed-loop system is asymptotically stable under the proposed static output feedback controller.

0 1 2 3 4 5 6 7 8 9 10
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–4

–3

–2

–1

0

1
x 10

14

Time (s)

State responses x1(solid), x2(dashed), x3(dotted)

Figure 1. State trajectories of the open-loop system.
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Figure 2. a) State trajectories of the closed-loop system. b) Control inputs.

Example 2 Let us consider an aircraft control application example to accomplish the design of a multivariable

longitudinal PID-autopilot aircraft (controller). The longitudinal dynamics of an aircraft trimmed at 25,000

ft and 0.9 Mach are unstable and have two right half-plane phugoid modes. One state-space realization of its

linearized model is given in the form of system (1) [18] with the system parameters as

A =



−0.0266 −36.6170 −18.8970 −32.0900 3.2509 −0.7626

0.0001 −1.8997 0.9831 −0.0007 −0.1708 −0.0050

0.0123 11.7200 −2.6316 0.0009 −31.6040 22.3960

0 0 1.0000 0 0 0

0 0 0 0 −30.0000 0

0 0 0 0 0 −30.0000


,

B =



0 0

0 0

0 0

0 0

30 0

0 30


, C =

[
0 1 0 0 0 0

0 0 0 1 0 0

]

The state vector is defined such that it consists of the vehicle’s basic rigid body variables, that is, x =[
u α q θ

]T
, where u denotes the perturbations (or changes) along the forward velocity, α is the angle

between velocity vector and the aircraft’s longitudinal axis (angle of attack), q is the rate of change of aircraft

attitude angle (pitch rate), and θ represents the aircraft attitude angle (pitch angle). The elevon (elevator

displacement) (δe) and the canard (δc) actuators represent the control inputs, that is
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u =
[
δe δc

]T
. Moreover, two first-order lags are included in the state to define the actuator dynamics.

The angle of attack and the pitch angle are measured for the controller design. Therefore, the problem under

consideration involves two inputs and two outputs along with six states. The two unstable eigenvalues of A are

0.6886 ± j0.2455. For this system, CB = 0, which implies that I + CBF̄d is always nonsingular. A feasible

solution set is obtained through the ILMI algorithm with one iteration and the PID gains are obtained as

follows:

Fp =

[
40.2781 29.3931

−2.0669 −1.3609

]
, Fi =

[
0.1262 0.0714

−0.0058 −0.0040

]
× 10−5,

Fd =

[
1.7692 9.1638

−0.0904 −0.4565

]
with G3 =

[
0.0522 0.1385

0.6003 9.1021

]
× 103

One can compute that det(G3) = 3.9186× 105 ̸= 0, which implies that the feasible solution set has been

obtained with a nonsingular G3 . The closed-loop eigenvalues of the system under static output feedback control

are calculated as −17.8284± j102.2630, −7.2104, −2.9999, −0.7169, −0.0256, which shows that the system is

stabilized with the static PID output feedback control law of (15). The number of decision variables employed

for this example is calculated as NoDV = 296, while the number of decision variables used by He et al. [14]

is computed as NoDV [14] = 201. Moreover, Figures 3a and 3b depict the state trajectories of the linearized

open-loop aircraft system with u (t) = 0 showing that the unforced aircraft system is not asymptotically stable.

When the static output feedback for the augmented system is applied, the state responses of the closed-loop

system are exhibited in Figures 4a and 4b. Moreover, Figures 4c and 4d exhibit the elevon and the canard

control input signals, respectively. As a result, the simulation results indicate that the closed-loop aircraft

system is asymptotically stable under the proposed multivariable PID controller.
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Figure 3. a) State trajectories of the open-loop system. b) State trajectories of the open-loop system.
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Figure 4. a) State trajectories of the closed-loop system. b) State trajectories of the closed-loop system. c) The elevon

control input signal. d) The canard control input signal.

6. Conclusions

In this paper we have developed two new design methods: first a static output feedback stabilization and second

multivariable PID controller design for unstable linear time-invariant systems via an iterative LMI optimization

approach. The static output feedback control problem has been solved by introducing an iterative linear matrix

inequality algorithm. A stabilizing static output feedback controller gain has been obtained iteratively by using

a linear matrix inequality condition. The design of a multivariable PID controller has been considered with the

idea of a transformation previously developed in the literature. The original linear time-invariant system with

the multivariable PID controller has been represented as a static output feedback control system. The PID

controller gains are obtained once the static output feedback control problem has been resolved through the use

of the developed iterative LMI method. The proposed technique has been applied over two numerical examples.

In particular, the illustration of the aircraft control application example has been shown to be quite significant.

Simulation studies have also been conducted. The simulation results have shown that both the synthesized static
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output feedback controller and multivariable PID controller perfectly stabilized the corresponding systems under

consideration.
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