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Abstract:The clonal selection algorithm (CLONALG) is a nature-inspired metaheuristic algorithm that has been applied

to various complex optimization problems from different fields of study. Tournament selection (TS) is a selection operator

that is mainly used in genetic algorithms. In this paper, a novel improved clonal selection algorithm by using the TS

operator (ICSAT) is introduced. To observe the improvement, ICSAT was first tested on selected benchmark functions

and then to validate its efficiency ICSAT was applied to a microstrip coupler design problem. Although showing some

disadvantages that generally exist in all modified algorithms, it is observed that ICSAT has a significant improvement

on the performance of CLONALG and can be a good candidate for real case optimization problems.

Key words: Clonal selection algorithm, improved metaheuristics, microstrip coupler design, tournament selection

operator, optimization

1. Introduction

Over the last few decades, artificial immune systems and their applications have been preferred by many

researchers from different fields of research areas [1–5]. The clonal selection algorithm (CLONALG) is a subfield

of artificial immune systems that mimics the immune system of an organism in the way of antibodies reacting

to an intruding antigen [5,6]. CLONALG was initially proposed to solve pattern recognition tasks by De Castro

and Von Zuben [7]. After that, it was adapted to optimization tasks from various fields [8–11]. However,

there is no algorithm that performs superiorly for all types of problems. Some optimization algorithms produce

better results for some problems, while performing unsatisfactorily for others [12]. Instead of introducing new

algorithms for optimization problems, applying certain modifications to the algorithms or their hybrid versions

according to given problems may produce better results [13–17].

In this paper, tournament selection (TS), which is generally preferred in genetic algorithms as a se-

lection operator [18,20], is used to improve the performance of the standard CLONALG. Due to its ease of

implementation and efficiency, TS has a wide range of applications that can be accommodated via optimization

algorithms [16,19,21]. As another advantage, TS increases the diversity by giving an opportunity to all members

in the population to be selected. The main drawback of TS is that because of consideration of all individuals,

convergence speed may be decreased. In this paper, improvements are done on crucial steps of CLONALG,

which are selection and mutation processes. In CLONALG, the antibodies that have inadequate affinity values
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are discarded from the population and are selected according to their affinity values. In ICSAT, selection and

mutation processes are handled by the TS operator. The antibodies that have inadequate affinity values are

considered, which avoids loss of performance caused by elimination of antibodies. A performance comparison

test for ICSAT and CLONALG is first studied on benchmark functions, and then the performance of ICSAT is

validated for the design of a microstrip coupler. A microstrip coupler circuit design problem is used to demon-

strate the performance and effectiveness of the ICSAT algorithm. Using graphical results and formulas, the

design of microstrip couplers, which is known as a complex and nonlinear problem with three variables, can be

achieved to a certain extent. However, with the aid of optimization algorithms, the dimensions of the structure

are optimized and more precise values can be obtained, which leads to better performance.

The rest of the paper is organized as follows: Section 2 gives the details of the standard clonal selection

algorithm (CLONALG) and the improved version of it by using the TS operator (ICSAT). Section 3 presents

performance analysis results of CLONALG and ICSAT on selected benchmark functions. Section 4 proposes

a real case problem for designing a microstrip coupler and the results obtained by ICSAT. In section 5, the

concluding remarks are given.

2. Evolutional and computational aspects of the standard CLONALG and ICSAT

Clonal selection theory was derived from Darwin’s theory and contains the major steps of evolution, such as

diversity, genetic variation, and natural selection [22]. The main aim of evolution is to improve the ability of an

organism to survive and to adapt to a challenging environment [23]. The standard CLONALG was originally

proposed by De Castro and Von Zuben in 2000 by mimicking the adaptive immune system [7].

When any organism is invaded by an antigen (Ag), bone-marrow cells (B lymphocytes) produce antibodies

(Abs). Abs are aimed to recognize Ags and to bind to them. Each B lymphocyte cell produces a unique type

of Ab that is also specific for the Ag. After that, with a signal from the T-helper cells, the Ag activates the B

lymphocytes to divide (proliferate) and to transform (differentiate) into plasma cells. The cell division process

generates clones and B lymphocytes can also transform into long-lived B memory cells. The B memory cells are

located in the blood, tissues, and lymph. When the organism is exposed to the same antigen again, high affinity

Abs can be produced. CLONALG steps are constructed according to the clonal selection theory in Figure 1.

 

     Step 1: Initialization of a set of antibodies (Ab) by B lymphocyte cells. 

 Step 2: Definition of the objective function, antigen (Ag), that is needed to be optimized. 

     Step 3: Calculation of affinity values for each Ab. 

     Step 4: Selecting n number of Abs from the best affinity values. 

   Step 5: Cloning the Abs proportionally to their affinity values (Proliferating). 

  Step 6: Selecting n number of Abs from the best affinity values and applying a  mutation 

proportionally according to their affinity values (Differentiating). 

  Step 7: Recalculation of affinity values for new mutated Abs. 

  Step 8: Introducing new n number of Abs to the population by discarding n number of the 

worst affinity elements. 

  Step 9: Repeat steps 3-8 until a stopping criterion is met. 

 
Figure 1. Steps of CLONALG.

As in all evolutionary algorithms, the selection operator plays a crucial role in CLONALG. Researchers

pay attention to the importance of selection operators for the performances of evolutionary algorithms [24–27].

Tournament selection (TS) is used as a selection operator for CLONALG, which is aimed at improving the

performance of the algorithm. TS is generally preferred as a selection operator in a genetic algorithm and it
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increases the diversity by giving a probability to all individuals to be selected in the population. The major

steps of the TS operator are as follows:

• In TS, the group size (Gsize) should be initialized where Gsize < N (population size).

• The TS operator selects the Gsize number of individuals randomly among the N number of individuals,

compares the individuals, and selects the winner for the next generation.

When the TS operator is used with high selection pressure in which Gsize is selected as a very big

number, diversity will decrease, but convergence speed will increase [16], and vice versa. For Gsize = N , the

best individual will be selected at each time. For Gsize = 1, each member in the population has the same

probability to be selected. According to Darwin’s rule of evolution theory, the best individuals have higher

probability rates to survive. Because of this theory, Gsize is not selected as 1. In this paper, different values of

Gsize are selected and the effect of selection pressure on the performance of ICSAT is observed.

In CLONALG, the selection process is expressed as selecting n number of best affinity elements from the

population (N). Selection among the best ones will lead to faster convergence. It is assumed that elimination of

an antibody that has the worst affinity avoids premature convergence, and introducing new random antibodies

increases diversity. However, introducing new random antibodies to the population may cause low convergence.

In CLONALG, when the antibody that has the worst affinity is eliminated from the population, some desired

attributes of it are eliminated as well.

ICSAT aims to preserve the desired attributes of antibodies that are discarded from the population.

Antibodies are selected not only from the best affinity elements, but from all the elements in the population.

The TS operator handles the selection and mutation processes. Gsize number of antibodies is selected randomly

from the population and the winners of the tournament are considered for the next generation. An antibody

that is selected by the TS operator can be selected again for the next generation. This may decrease the diversity

but, since the antibody is the winner of the tournament, the convergence speed may increase. Gsize affects

the performance of ICSAT, which is directly related to selection pressure. Selection pressure drives natural

selection, which is defined as any organism’s particular characteristics being either eliminated or surviving.

When particular characteristics of organisms are against the conditions, then they are not passed on to the next

generation. According to the TS operator used in ICSAT, the randomly selected Gsize number of individuals

compete against each other and the characteristics of the winners are preserved for the next generation. Also,

in ICSAT, a common mutation rate is applied to the winners. The next generation’s characteristics change

according to the environmental conditions and the survival rate of the population increases.

During the mutation process, a common mutation rate is applied to the antibodies that are selected

by TS. In the original algorithm, after the mutation process, nonstimulated antibodies are discarded from the

population and new antibodies are added randomly. In ICSAT, nonstimulated antibodies are selected by TS

and a common mutation rate is applied to the winners of the tournament. It is aimed to keep their potentials

within the population by applying a small rate of mutation without introducing new antibodies. Replacement

is performed if the mutated antibodies are better than unmutated ones. The detailed steps of ICSAT and the

differences between the algorithms are given in Figure 2. Improvements on the main processes of CLONALG

are shown in italics in Figure 2.

3. Experimental results and discussion

3.1. Testing with benchmark functions

ICSAT is applied to five selected benchmark functions to observe its performance. The selected benchmark

functions are shown in Table 1 and they are classified as unimodal and multimodal. In a multimodal benchmark
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Step 1: Initialization of a set of antibodies (Ab) by B lymphocyte cells. 

Step 2: Definition of the objective function, antigen (Ag), that is needed to be optimized. 

Step 3: Calculation of affinity values for each Ab. 

Step 4: Competition of randomly selected Gsize number of Abs from the population and 

keeping the winner for the next generation. 

Step 5: Selecting Gsize number of Abs randomly from the population and  applying a mutation 

to the winners of the tournament.  

Step 6: Recalculation of affinity values for new mutated antibodies. 

Step 7: Selecting Gsize  number of Abs randomly among  the n number of the worst affinity 

values and applying an equal mutation rate to the winners of the tournament.  

Step 8:  Replacing the Abs if the affini ty value of the mutated Ab is better than the affinity 

value of the same Ab that is not mutated. 

Step 9: Repeat steps 3-8 until a stopping criterion is met. 

 
Figure 2. Steps of ICSAT.

problem, many local optimum points exist. Therefore, the final result obtained by the algorithm is crucial for

the algorithm. In a unimodal benchmark function, since there is only one optimum point, the convergence rate

is a distinguishing characteristic for the algorithm.

Table 1. Benchmark functions selected for experiments.

Function name Characteristic Function expression Range Optimum point

Sphere Unimodal
D∑
i=1

x2
i [–100, 100] 0

Rosenbrock Unimodal
D∑
i=1

 100
(
xi+1 − x2

i

)2
+(xi − 1)

2

 [–30, 30] 0

Schwefel Multimodal

[
D∑
i=1

−xi sin
(√

|xi|
)]

[–500, 500] –12,569.5

Rastrigin Multimodal
D∑
i=1


x2
i−

10 cos (2πxi)

+10

 [–5.12, 5.12] 0

Ackley Multimodal


−20 exp

(
−0.2

√
1
D

D∑
i=1

x2
i

)

− exp

(
1
D

D∑
i=1

cos(2πxi)

)
+ 20 + e

 [–32, 32] 0

The experimental results are given as average and best value of a function. The values are collected

over 30 independent runs. The number of the population (N) is fixed to 100 and the dimension (D) is set

to 30. The algorithms were simulated using Windows 7 on an Intel i5 processor with 4 GB of RAM using the

C++ language. Stopping criteria are selected as a fixed number of iterations. In order to observe the effects of

modifications, different numbers of iterations are applied to CLONALG and ICSAT. For the proposed algorithm

ICSAT, the population size for TS (Gsize) is selected as 5 and 15 by observational experiments. In Tables 2–6

average and best results obtained by CLONALG and ICSAT with different Gsize values for TS are given. In

general, CLONALG and its improved algorithm ICSAT are capable of finding the optimum points of given

functions. Even for 5000 iterations, the algorithms converge or reach the global optimum points for almost all

benchmarks.
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Experimental results of the sphere function are shown in Table 2, and the convergence graph of average

affinity values is plotted in Figure 3. It is observed that the proposed algorithm ICSAT is capable of finding

the optimum point. When the population size (Gsize) for TS is selected as 15, ICSAT performs well. However,

in terms of solution quality, CLONALG performs slightly better than ICSAT (15).

Table 2. Experimental results of the sphere function.

Number of iterations CLONALG ICSAT (5) ICSAT (15)

5000
Best 117.79E-10 10,872.1 259.5E-4
Avg. 124.9E-9 12,523.7 352.4E-3

10,000
Best 1.16E-24 8562.9 118.9E-11
Avg. 1.95E-23 9920.9 126.73E-10

50,000
Best 6.25E-44 0.23E-11 2.15E-39
Avg. 0.89E-42 1.95E-10 3.24E-38

100,000
Best 1.03E-62 0.02E-24 0.11E-43
Avg. 0.512E-60 4.23E-23 3.82E-40

1.00E-61

1.00E-47

1.00E-33

1.00E-19

1.00E-05
5000 10. 000 50. 000 100. 000
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Figure 3. Convergence graph for sphere function.

Table 3 shows the experimental results of the Rosenbrock function. Average affinity values obtained by

the algorithms are shown in Figure 4. It can be found that after 50,000 iterations, the algorithms converge to

the global optimum point, but considering the solution quality, ICSAT (15) performs better than CLONALG.

Table 3. Experimental results of the Rosenbrock function.

Number of iterations CLONALG ICSAT (5) ICSAT (15)

5000
Best 9.27 18.3 8.49
Avg. 17.85 29.7 13.49

10,000
Best 5.02 8.24 0.0034
Avg. 15.24 14.8 2.38

50,000
Best 3.81E-10 1.7E-4 2.44E-11
Avg. 19.7E-8 0.031 3.27E-9

100,000
Best 1.27E-19 9.75E-6 0.79E-26
Avg. 4.78E-15 0.29E-4 1.48E-23

The results for the Schwefel function are given in Table 4, and average affinity values for each algorithm

are shown in Figure 5. As the final results show in Table 4, all algorithms reached the global optimum point.

However, CLONALG reached the global optimum point faster than ICSAT. For this multimodal function, the

performance of ICSAT for a low number of iterations is not satisfactory, but after 50,000 iterations, the global

optimum point of Schwefel is found.

The experimental results of the Ackley function are given in Table 5. The convergence graph of average

affinity values for the algorithms is shown in Figure 6. Even after 5000 iterations, all algorithms converged to
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Figure 4. Convergence graph for Rosenbrock function.

Table 4. Experimental results of the Schwefel function.

Number of iterations CLONALG ICSAT (5) ICSAT (15)

5000
Best 0.376E-6 0.12E-4 0.75E-10
Avg. 1.487E-5 0.079 0.00609

10,000
Best –12,569.5 –4697.8 6.48E-6
Avg. –12,569.7 –3249.6 7.597E-6

50,000
Best –12,569.5 –12,569.5 –12,569.5
Avg. –12,569.5 –11,442.9 –12,569.5

100,000
Best –12,569.5 –12,569.5 –12,596.5
Avg. –12,569.5 –12,569.5 –12,569.5
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Figure 5. Convergence graph for Schwefel function.

this function’s global optimum point. In terms of solution quality, ICSAT (15) produces much better results

than the standard algorithm.

Table 5. Experimental results of the Ackley function.

Number of iterations CLONALG ICSAT (5) ICSAT (15)

5000
Best 2.49E-5 0.24E-3 0.38E-11
Avg. 8.59E-4 0.1147 0.464E-9

10,000
Best 1.21E-12 1.36E-7 0.12E-31
Avg. 6.78E-12 8.38E-5 0.124E-29

50,000
Best 9.47E-16 1.44E-16 5.49E-42
Avg. 3.23E-14 1.44E-16 6.29E-40

100,000
Best 0.29E-23 1.44E-16 0.075E-43
Avg. 1.12E-20 1.44E-16 1.289E-40

In Table 6, experimental results for the Rastrigin function are given. According to the convergence graph

shown in Figure 7, after 50,000 iterations, CLONALG and ICSAT (5) converge to the global optimum point
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Figure 6. Convergence graph for Ackley function.

of the Rastrigin function. It can be seen from Table 6 that in terms of solution quality ICSAT (15) performs

better than the others.

Table 6. Experimental results of the Rastrigin function.

Number of iterations CLONALG ICSAT (5) ICSAT (15)

5000
Best 9.84 8.72 0.11E-3
Avg. 11.04 15.21 0.0241

10,000
Best 6.23 5.48 2.67E-5
Avg. 9.72 11.38 3.45E-4

50,000
Best 0.027 0.0032 0.65E-12
Avg. 0.042 1.98 1.28E-8

100,000
Best 0.49E-28 1.52E-20 0.37E-32
Avg. 8.51E-23 7.38E-18 7.45E-29
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Figure 7. Convergence graph for Rastrigin function.

Considering all experimental results obtained by the algorithms, it can be concluded that the proposed

algorithm ICSAT is capable of finding optimum points of different characteristics of given benchmark functions

that can be optimized by the standard CLONALG. When the comparison results obtained by ICSAT (5) and

CLONALG are studied, for all benchmark functions, the solution quality of CLONALG is better than the

solution quality of ICSAT (5). It is also found that selecting the tournament group size (Gsize) is directly

related to the performance of the algorithm. When the results of ICSAT (5) and ICSAT (15) were analyzed,

both of them obtained optimum points or approached the optimum points of benchmark functions. However,

in terms of convergence rate, ICSAT (15) outperformed ICSAT (5).

ICSAT aimed to outperform CLONALG by modifying the main operators of CLONALG using the TS

operator; according to the results, except for the sphere function, the solution quality of ICSAT (15) is better

than the solution quality of CLONALG. It is also seen that ICSAT (15) provides better results, except for the

1757
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Schwefel function in the early stages of optimization. However, in the later iterations, ICSAT (15) has the same

solution quality as CLONALG for the Schwefel function.

It is worth noting that according to the no free lunch theorem [12], an algorithm does not exist that

outperforms for all problems. In modified algorithms, suppression of undesired characteristics or improvement of

desired characteristics may provide some advantages and disadvantages. Therefore, as in all modified algorithms,

our proposed algorithm ICSAT (15) has its own advantages and disadvantages according to given problems to

be solved.

3.2. Optimizing the microstrip coupler

The proposed algorithm ICSAT is adapted to a microstrip coupler design problem to test its effectiveness

in practical applications. Directional couplers are passive microwave components that are usually used for

either power combining or power division. The design of a microwave microstrip coupler circuit using particle

swarm optimization was studied in [28]. Similar work for the design of a hybrid coupler using a jumping gene

evolutionary algorithm was demonstrated in [29]. The structure of a microstrip coupler can be designed by

using two parallel unshielded transmission lines with width w and spacing s that are fabricated on a grounded

dielectric substrate with thickness H . The power can be coupled between these lines due to the interaction of

electromagnetic fields of each transmission line [30]. This is demonstrated in Figure 8.

Figure 8. 3D view of a microwave microstrip coupler.

Mathematical models that represent the coupling between the transmission lines have been analyzed and

refined over the years. They are based on the equations derived by Akhtarzad et al. [31]. The coupling value

is directly related to finding the optimum values of w , s , and H for a given substrate with known dielectric

constant (εr). The objective function, which is the coupling ‘C ’, can be computed with a series of steps. First,

the ratio of w to H for even and odd mode values (valid for substrate dielectric constant values less than 6)

can be determined as follows, respectively:

w

H se
=

2

π
cosh−1

(
2h− g + 1

g + 1

)
(1)

w

H so
=

2

π
cosh−1

(
2h− g − 1

g − 1

)
+

4

π (1 + εr/2)
cosh−1

(
1 + 2

w/H

s/H

)
(2)
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g = cosh

(
1

2
π (s/H)

)
(3)

h = cosh

(
π (w/H) +

1

2
π (s/H)

)
. (4)

After the computation, even mode (Zoe) and odd mode (Zoo) impedances of the transmission line can be

obtained by using the w toH ratio for even and odd modes respectively in the equation below:

Zo =
120π (1/εr)

1/2

(w/H)s + 0.882 + ((εr + 1) / (πεr)) •
(
loge

((
w
H

)
s
+ 1.88

)
+ 0.758

)
+ 0.164 ((εr − 1) /ε2r)

. (5)

In the design problem, a substrate with a dielectric constant value of 3.9 (which shows the permittivity

characteristic of the substrate) is used, which means that the above equations are valid for this design. According

to the obtained values Zoe and Zoo , the coupling coefficient C can be calculated as follows:

C =
Zoe − Zoo

Zoe + Zoo
(6)

In the design problem, the coupling coefficient value is set to 0.2. Thirty independent sets of variables are

generated, which in turn provide the values of the coupling coefficient C . Gsize for the TS operator is selected

as 15 and the number of the population is fixed to 100. In the algorithm, it is also restricted that the even

mode (Zoe) and odd mode (Zoo) impedance values are to be between 15 Ω and 90 Ω as an extra optimization

criterion. The obtained final results are used in a simulator to test the operation of the coupler.

Different sets of values that satisfy the given criteria are obtained by ICSAT for the design of the coupler.

Among these values, two samples are selected and simulated in the Puff Microwave Simulator [32] to show the

coupling coefficient. Sample values are provided in Table 7, and the coupling coefficient with frequency graph

is given in Figure 9.

Table 7. Sample design values of coupler by ICSAT.

w (mm) s (mm) H (mm) Zoe (Ω) Zoo (Ω) C
Sample 1 11.871 3.414 7.5 70.33 46.88 0.19569
Sample 2 13.013 2.410 6.5 60.91 40.61 0.19888
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Figure 9. Frequency responses of two different samples of coupled lines.
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DENİZ ÜLKER/Turk J Elec Eng & Comp Sci

As seen for both sample design values, the desired coupling is obtained at the design frequency of 5 GHz.

For the first sample, the deviation from 0.2 is about 0.00431, which corresponds to 2.155% and is obtained

in 10 iterations. For the second sample, the deviation from the desired value of 0.2 is about 0.00112, which

corresponds to 0.56% and is obtained in 15 iterations. For real case optimization problems especially, the time

required to optimize the problems is a distinguishing characteristic for the algorithms. Design values gathered

by ICSAT are indications of an algorithm that performs well for real case optimization problems with a smaller

number of iterations.

4. Conclusion

In this paper, a novel and improved clonal selection algorithm with a tournament selection operator, ICSAT, is

proposed. Its efficiency is first tested with different characteristics of benchmark functions. Then it is applied

to the microstrip coupler design problem. Modified algorithms generally produce better results because of the

suppression of undesired characteristics or modification of main operators. As expected, the results denote that

the modifications on the main processes by tournament selection operator provide good performance in terms

of solution quality with a smaller number of iterations. The ICSAT algorithm is able to provide high solution

quality even in the early stages of optimization. For almost all benchmark functions, even in 5000 iterations,

ICSAT starts to converge to optimum points earlier than CLONALG. It is also seen that ICSAT obtained the

desired coupling values of the microstrip coupler design problem in less than 20 iterations. The time required

for optimization is crucial, especially for real case problems. Furthermore, the steps of ICSAT are quite easy to

implement and it can be used as an effective optimization tool for real case optimization problems.

However, it is worth noting that the proposed algorithm has its own limitations. The ICSAT algorithm

uses the potential of all antibodies in the population without elimination and without introducing new random

antibodies. This causes low convergence for some benchmark problems, and it is avoided by increasing the

population size (Gsize) used for the tournament selection operator. Gsize is the main control parameter of

ICSAT that affects the performance of the algorithm. For future work, performance analysis can be done by

changing the population size of the tournament selection operator.
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