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Abstract: A wavelet packet transform (WPT) is a well-known technique used for data and signal-processing that has

proven to be successful in condition monitoring and fault diagnosis. In this study, using feature extraction based on

wavelet transformation, sound signals emitted from automobile engines under both faulty and healthy conditions are

analyzed. The intention is to categorize sound signals into both healthy and faulty classes. Sound signals are generated

from 4 different automobile engines in both healthy and faulty conditions. The investigated fault is within the ignition

system of the engines. In addition, there are other possible problems that may also affect the generated sound signals.

In the reported study, a set of features is initially extracted from the recorded signals. The more informative features are

later selected using a correlation-based feature selection (CFS) algorithm. Results prove the efficiency of wavelet-based

feature extraction for the case study of the reported work.
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1. Introduction

The growth of the automobile industry requires cost-effective fault diagnosis and maintenance of automobiles.

Consequently, fault diagnosis for internal combustion engines is an important issue. Therefore, the development

of an automobile engine condition monitoring system capable of providing early warning about the engine’s

state of operation is needed. Both the vibration [1,2] and sound signals [3,4] have been widely used for fault

diagnosis. Xian et al. [2] used a wavelet packet transform (WPT) for feature extraction in their reported work;

however, the authors were targeting a vibration frequency band less affected by environment noise compared to

sound. In their approach, no feature selection was used. Wu et al., in their reported work [4], focused on the

sound of the engine, and a WPT was used to extract features for individual faults but no feature selection was

reported. They used a rule-based system that is slower than our proposed system.

Figlus et al. [5] used the sound of the engine for automatic detection of enlarged clearance valves. In

their work, the WPT was used for feature extraction. Once the WPT was applied maximum and minimum

values were used for the detection. Only 2 sampled engines were used in the experiments. In another reported

work [6], several faults were considered on only a single sample engine/automobile. There is also a reported

work that focused on motorbike piston-bore fault identification [7].

Our study concentrates on single-fault detection in 4 different categories of car models using 60 different

samples in each category (car model). In this way, the proposed approach is expected to be applicable for

a wide range of car categories; hence, it is more general in its capabilities. Operating in hearing range and
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sound frequency also proves that our approach can handle environmental noise efficiently and can make use

of inexpensive data collection equipment. Both sound and vibration signals generated by the engines contain

considerable dynamic information about the engine’s operating conditions [8]. The characteristics of the sound

signal generated by a mechanical system can be represented by a typical sound waveform. The typical waveform

associates with the state of operation for the monitored components within the device. Thus, signal-processing

techniques can provide useful methods for fault diagnosis and condition monitoring. Extracting information

or features that are closely related to a specific fault is a great challenge in fault diagnostic and condition

monitoring based on sound signal-processing techniques. Furthermore, the nature of the signals and the accuracy

that results from the extracted information determines the suitability of signal-processing techniques [9]. Many

signal-processing techniques have been proposed in the literature. For example, the fast Fourier transform (FFT)

is a frequency domain analysis that has been used to extract frequency domain features [10]. This method relies

on variations in frequency to identify different faulty conditions. The FFT transfers the signals to the frequency

domain with a loss of information occurring in the process. While implementing the FFT, signals are assumed

to be stationary or, in other words, their statistics do not change over time. The FFT of a nonstationary signal

is the frequency domain averaged over the duration of the signal. Consequently, the FFT cannot represent

properties of transient signals at lower frequencies. Moreover, the FFT suffers from vulnerability to background

noise [11]. The short-time Fourier transform (STFT) was introduced as an alternative to the FFT in order

to overcome its aforementioned drawbacks. The STFT uses a window function to divide the signal into small

segments and then calculates the FFT of each segment to evaluate its frequency and phase content. Since the

width of the window function is fixed for the entire duration of the signal, the STFT has a fixed time-frequency

resolution. Recently, the wavelet transform (WT) has attracted many researchers due to its promising solutions

for signal processing in time-frequency domains. The continuous wavelet transform (CWT) is used in the field

of fault diagnosis [12,13]. The discrete wavelet transform (DWT) is noteworthy since it takes longer to calculate

the CWT coefficients related to different resolutions of a signal [14,15]. The main advantage of the WT is that it

uses a resizable window that becomes dilated for lower frequencies and sharpened for higher frequencies. This is

due to the fact that higher frequencies of a signal require more detailed analysis in the frequency domain while

lower frequencies of the signal require more detailed analysis in the time domain. Nevertheless, the conventional

WT lacks precise analysis of the higher frequencies of signals. The WPT is a generalization of the traditional

WT; that is, unlike the DWT, which only decomposes the approximation version of the signals, the WPT

decomposes both approximation and detail versions. The WPT provides more valuable information about the

signal.

Constructed datasets might contain irrelevant features, and irrelevant features may increase the complex-

ity of the classification process and reduce classification accuracy. Hence, adopting a feature-reduction technique

seems essential. Various feature-reduction techniques have been used by many researchers. For instance, inde-

pendent component analysis (ICA) [16,17], the decision tree (DT) [14,18], the self-organizing map (SOM) [19],

principal component analysis (PCA) [20], and the genetic algorithm (GA) with artificial neural network (ANN)

[21–23] are a few of the feature-reduction techniques that have been used in the field of fault diagnosis.

In this study, it was decided to distinguish the faulty engine from a healthy one using sound signals

generated from the engines under both healthy and faulty conditions. The investigated fault is within the

ignition system of the engines, meaning that the engines are operating with one misfiring cylinder. Apart from

the investigated fault, the engines might also suffer from other possible problems that may affect the generated

sound signals. For example, one of the most common faults besides the investigated fault is the combustion-
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timing process fault. There are 2 reasons for using a WPT for feature extraction. The first reason is to have a

good signature for accurate representation of the sound signals generated under either of the 2 engine conditions.

The second reason is because sound signals emitted from automobile engines are nonstationary [24]. Attaining

the highest capability for the extracted features is basically dependent on the selection of the wavelet bases.

Different alternatives are proposed to find the most appropriate wavelet bases. For example, a GA is used to

find the scale parameter and some wavelet family-related parameters [25]. Nevertheless, the GA’s outcome is

not necessarily the best wavelet base. Another heuristic approach is to define the wavelet bases with respect

to their similarity with the desired signals. In this approach, a large number of wavelet bases are investigated,

and the classification results obtained by using them with a WPT are then reported. Using correlation-based

feature selection (CFS) with the best-first algorithm (BF) as a feature subset search strategy, irrelevant features

are ignored, and the most informative features are selected. The reduced datasets are used for classification.

Classification results are validated and reported using 10-fold cross validation, where 10% of randomly selected

samples are used for training and 90% for testing. Results show the efficiency of the wavelet-based feature

extraction for the case study in this paper.

2. Materials and methods

2.1. Wavelet transform

A wavelet transform (WT) is used to analyze signals at different frequency resolutions. The WT does this using

its multiresolution analysis (MRA) framework. The MRA provides good time resolution and poor frequency

resolution at high frequencies and good frequency resolution and poor time resolution at low frequencies. To

do so, the WT uses a window function with various widths. The window function is either called a mother

wavelet or a wavelet base. This function is a small wave with a finite-length (compactly supported) oscillatory

and acts like a prototype for generating other window functions that are used in the transform with different

regions of support. Known as time-frequency or time-scale analysis, the WT is a function of 2 independent

variables called scale and translation. The translation parameter refers to the location of the mother wavelet

as it is shifted through the entire duration of the signal. This parameter corresponds to the time information

of the signal. The scale parameter refers to the stretch (or compression) of the mother wavelet. Low scales

correspond to compressed mother wavelets and vice versa. In the frequency domain, the compressed mother

wavelet better shows the high frequency information of the signal, and the dilated mother wavelet shows the

low frequency information of the signal, as well. The WT is divided into a continuous and a discrete transform.

In the continuous version, i.e. the CWT, the 2 aforementioned parameters are continuously changing. However,

in the discrete version, i.e. the DWT, a subset of every possible scale and translation values is selected. In other

words, the dyadic scales and translations are selected, which means that the scales and translations are in the

power of 2. This makes the discrete version resemble a filter bank through which the original signal is passed.

Eq. (1) is a representation of any orthogonal function f . Eq. (2) is yet another form representing the original

signal construction.

f =
∑
x

⟨f, x⟩ x (1)

y =
∑
k

αkxk

αk = ⟨xk , y⟩
, (2)
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where ⟨f, x⟩ is the inner product of function f and of basis functionx . In Eq. (1) or Eq. (2), function f can

be represented by a wavelet basis function such as Eq. (3).

f(t) =
∑
J, k

⟨
f(t), ψ

(
2J t − k

)⟩
ψ
(
2J t − k

)
= b0φ (t) +

∑
J , k

b2J+ k . ψ
(
2J t − k

) , (3)

where ψ are the dilated and translated basis functions, and ϕ is the scaling function.

A DWT is performed using high-pass and low-pass filters. The high-pass filter generates the high

frequency (low-scale) information of the signal called detailed coefficients, and the low-pass filter generates the

low frequency (high-scale) information of the signal called approximation coefficients. The DWT decomposes

the signal into different decomposition levels. The decomposition level represents the number of times the

original signal passes through the transforming filters. Each new decomposition level is calculated by passing

only the approximation coefficients computed from the previous decomposition level. The detailed coefficients

are left out. To involve the detailed coefficients in the transform, a WPT is used as described in the following

section.

2.1.1. Wavelet packet transform (WPT)

Recently, a WPT was used by researchers in areas of fault diagnosis such as automotive engine ignition systems

[26,27], rolling element bearings [28,29] and gearboxes [30]. A WPT is a generalization of a conventional DWT

that provides more detailed signal-processing capabilities. Both WPTs and DWTs contain multiresolution

analysis (MRA) frameworks. Unlike the DWT, which only decomposes the approximation version of the

signals, the WPT decomposes both approximation and detail versions. Therefore, the WPT has the same

frequency bandwidths in each resolution while the DWT does not have this characteristic. The WPT iteratively

decomposes the signal via 2 digital filters, and then the outputs are down-sampled by a factor of 2. The filters

used are low-pass and high-pass filters known as scaling function and discrete mother wavelet, respectively.

The low-pass filter extracts the high-frequency components, and the high-pass filter extracts the low-frequency

components of the original signal. Both mother wavelet and scaling function must be determined before the

transformation is performed. Wavelet packet function can be described using Eq. (4) [4]:

wn
j, k(x) = 2j / 2w(2jx − k), j, k ∈ Z, (4)

where j and k are integers indicating the index scaling and translation operations. The index n denotes the

oscillation parameter.

The first 2 wavelet-packet functions are mother wavelet and scaling function [4]:

w0
0, 0(x) = φ(x) (5)

w1
0, 0(x) = ψ(x), (6)

where n= 2, 3, Eq. (4) can be rewritten as Eq. (7) and Eq. (8) [4]:

w2n
0, 0(x) =

√
2
∑
k∈Z

h(k) wn
1, k(2x − k) (7)
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w2n + 1
0, 0 (x) =

√
2
∑
k∈Z

g(k) wn
1, k(2x − k), (8)

where h(k) and g(k) are low-pass and high-pass filters, respectively. These 2 filters are associated with the

predefined scaling function and mother wavelet function, respectively. They are known as quadratic mirror

filters (QMFs).

The wavelet-packet coefficients wn
j, k are calculated through the inner product

⟨
f(x), wn

j, k

⟩
defined by

Eq. (9) [4]:

wn
j, k =

⟨
f(x), wn

j, k

⟩
=

∫
f(x) wn

j, k(x) dx (9)

The full wavelet-packet tree with 3-level decomposition in filter-bank ordering [31] is depicted in Figure 1.

Figure 1. The 3-level WPT decomposition in filter-bank ordering.

The letters A and D stand for approximation and detail coefficients, respectively, and H and G stand for

low-pass and high-pass filters, respectively.

The frequency range of each node is calculated using Eq. (10) [32].

(
(n − 1) × 2−j− 1 × Fs, n × 2−j− 1 × Fs

]
, n = 1, 2, ..., 2j , (10)

where Fs is the sampling frequency and j is the decomposition level. In the reported work, the sampling

frequency used to record and analyze the engine sound signals is Fs = 44100 Hz , which indicates that

the covered frequency range is [0–22050] Hz. For a better understanding of the frequency ranges during the

decomposition, filter-bank ordering [31] is used in Figure 1, natural frequency ordering [31] is used in Figure 2,

and Table 1 shows the frequency range of each wavelet packet.

2.2. Feature extraction

In the reported work, sound signals are decomposed by a WPT into 3 levels. Therefore, the last level of the

wavelet packet tree will have 23 = 8 nodes. In order to find signatures for the analyzed sound signals, the
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Figure 2. The 3-level WPT decomposition in natural frequency ordering.

Table 1. Frequency range of each wavelet packet for each decomposition level.

Wavelet Packet Lower frequency (Hz) Upper frequency (Hz) Center frequency (Hz)
A 0 11025 5512.5
D 11025 22050 16537.5
AA 0 5512.5 2756.25
AD 5512.5 11025 8268.75
DA 11025 16537.5 13781.25
DD 16537.5 22050 19293.75
AAA 0 2756.25 1378.125
AAD 2756.25 5512.5 4134.375
ADA 5512.5 8268.75 6890.625
ADD 8268.75 11025 9646.875
DAA 11025 13781.25 12403.125
DAD 13781.25 16537.5 15159.375
DDA 16537.5 19293.75 17915.625
DDD 19293.75 22050 20671.875

following features are extracted from each wavelet packet decomposition tree node:

Energyj, n =
∑
k

∣∣wn
j, k

∣∣2 (11)

Kurtosisj, n =

∑
k

(
wn

j, k − wn
j, k

)4

(K − 1)σ4
− 3 (12)

Maxj, n = max
k

(wn
j, k) (13)

Minj, n = min
k

(wn
j, k) (14)

Calculating the aforementioned features from each node within the last level of decomposition tree, a dataset

with 32 features is constructed. While the constructed dataset may contain irrelevant features that adversely
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affect classification accuracy, finding the most informative features is of great importance. The most informative

features in the reported work were found using a CFS algorithm. The reason why energy, kurtosis, minimum,

and maximum features are selected is because of the better experimental results in signal decomposition using

wavelet transformation. The energy feature provided good results with the highest frequency resolution. This

algorithm is explained in detail in the next section.

2.3. Utilized wavelets

In the reported work, Daubechies, Symlet, and Coiflet wavelets were used. From a smoothness and noise

cancellation point of view, the selection of the appropriate type of wavelet can improve results, considering that

an increase in the order of the mother wavelet will result in extraction of more complex information. Experiments

show that low-order mother wavelets produce more error in fault detection. Therefore, the intension was to

increase the frequency resolution at higher frequencies. Increasing this order to a much higher order may not

be helpful either. Experiments show that the type of mother wavelet is a more effective parameter than the

order of the mother wavelet. In this work, only 3 types of wavelets were considered. This was due to the short

time period available to do the work.

Using a dilation equation for a wavelet of order N, the mother wavelet can be produced by Eq. (15), and

the scaling function is derived from Eq. (16).

φ (t) =
N − 1∑
k = 0

ckφ (2t − k) (15)

ψ (t) =
N − 1∑
k = 0

(−1)
k
ckφ (2t + k − N + 1), (16)

where ck are filter coefficients and both the φ (t) and ψ (t) functions should satisfy certain normalization and

orthogonalization constraints.

2.3.1. Daubechies wavelets

These wavelets were first introduced by Ingrid Daubechies in 1988 [33]. The names of Daubechies family wavelets

are constructed by substituting N in dbN, where N is the order of the wavelet. This family of wavelets does not

have explicit expressions except db1 (or Haar). The support length of wavelet function and its corresponding

scaling function is 2N-1. These wavelets are not symmetrical to N and have N vanishing moments for the mother

wavelet (when the mother wavelet is equal to 0) but not for the scaling function (also called the father wavelet).

If vanishing moments (points) exist for the father wavelet, calculating the values of function f at discrete

points, the wavelet coefficients are approximated with Eq. (17) [34]:

αjk = 2−
j/2 f(

k

2j
) + rjk, (17)

where rjk is small enough.

The Daubechies mother wavelet function is presented in Eq. (18), and the scaling function is φ (y), at

which point its Fourier transform ϕ̂ (y) satisfies Eq. (19) [35].

ψ (x) =
∑
k

gkφ (2x − k) (18)
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φ̂ (y) =
(
1
/√

2π
) ∏

k ≥ 1

m0

(
2− ky

)
, (19)

where m0 (y) is called a low-pass filter and a trigonometric polynomial defined by Eq. (20).

m0 (y) =
√
2
∑
k

hke
iky (20)

A finite sequence h0, h1, . . . , h2N − 1 should be constructed to satisfy Eqs. (21)–(23).

∑
k

hkhk + 2n = δn0 for ∀n ∈ Z (21)

∑
k

hk =
√
2 (22)

∑
k

gkk
n = 0, (23)

whenever 0 ≤ n ≤ N − 1, where gk = (−1)
k
h1− k . The Kronecker symbol δnm is equal to 1 for n = m

and is 0 otherwise.

2.3.2. Symlet wavelets

These wavelets are called SymN, where N indicates the order. Symlets are modifications of Daubechies wavelets

that are introduced to have more symmetry than Daubechies wavelets. Symlets are only near symmetric. The

support length of the wavelet function and its corresponding scaling function is 2N − 1. These wavelets have

N moments equal to 0.

No system of φ, ψ , other than the Haar system, can be compactly supported and at the same time also

symmetric [36]. Nonetheless, from a practical point of view, one can try to make the system as close as possible

to a symmetric system in the following way: minimizing the phase of m0(ξ) among all the m0(ξ) moments

with the same |m0(ξ)| value [34]. Coefficients {hk} for the sampled symlets are presented in Table 2 [36].

2.3.3. Coiflet wavelets

Coiflets were originally designed by Ingrid Daubechies per Ronald Coifman’s request. These new types of

wavelet, i.e. coiflets, are reported on in a work by Beylkin et al. [37]. Coiflets have scaling functions (N/3-1)

with vanishing moments (N/3) and are near symmetric. These wavelets are named CoifN, with N indicating

the order. More symmetric than Daubechies wavelets, these wavelets have a support length equal to 6N − −
1. Moreover, they have the highest number of moments equal to 0, i.e. 2N. Coiflets are orthonormal wavelet

systems.

While constructing coifiets m0(ξ), Eq. (24) should be calculated as

m0(ξ) = (
1 + e−iξ

2
)Nℑ(ξ), (24)
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Table 2. Symlet coefficients for N = 4 and N = 8.

N cN ,n

N = 4

0 –0.107148901418
1 –0.041910965125
2 0.703739068656
3 1.136658243408
4 0.421234534204
5 –0.140317624179
6 –0.017824701442
7 0.045570345896

N = 8

0 0.002672793393
1 –0000428394300
2 –0.021145686528
3 0.005386388754
4 0.069490465911
5 –0.038493521263
6 –0.073462508761
7 0.515398670374
8 1.099106630537
9 0.680745347190
10 –0.086653615406
11 –0.202648655286
12 0.010758611751
13 0.044823623042
14 –0.000766690896
15 –0.004783458512

where ℑ(ξ) is a trigonometric polynomial. The following conditions should be satisfied:∫
φ(x) dx = 1,

∫
xlφ(x) dx = 0 l = 1, ..., N − 1 (25)

∫
ψ(x)xldx = 1 , l = 0 , ... , N − 1 (26)

For a wavelet ψ with scaling function ϕ , Monzón et al. [38] define coiflets in the following way:

“If Let {hj}L − 1
j = 0 be the coefficients of a real QMF H . We say that H is a coiflet of shift α and moments

M , N if the following three conditions are satisfied:

L − 1∑
j = 0

(− 1)jjkhj = 0 for 0 ≤ k < M, (27)

L − 1∑
j = 0

jkhj = αk for 0 ≤ k < N, (28)

3M > L − 1 and 3N ≥ L − 1 . (29)
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They described the coiflet system in terms of ak and bk (Eq. (30)) [38]:

ak =
1

k!

∑
j

(
j − α0

2

)k

h2j and bk =
1

k!

∑
j

(
j − α0 − 1

2

)k

h2j + 1, (30)

where 0 ≤ k ≤ l and l = 1
2 (L − 2) [38]. For k > l , ak and bk can be expressed in terms of variables

with V = {a0, . . . , al, b0, . . . , bl} [38].

2.4. Correlation-based feature selection (CFS)

Finding the most important set of features is considered to be a major issue in machine-learning algorithms.

CFS partly overcomes the aforementioned problem using a correlation-based approach. A heuristic in a CFS

algorithm is used to evaluate how worthy a subset of features is. This is called the merit of that feature subset.

The heuristic is based on a hypothesis that a good subset of features consists of those that are uncorrelated

with each other while being highly correlated with the class. The hypothesis is formulized in Eq. (27) [32]:

MeritS =
krc, f√

k + k(k − 1)rf, f
, (31)

where MeritS indicates the merit of the feature subset S containing k features. Parameters rc, f and rf, f

indicate mean feature-class and mean feature-feature correlation, respectively, where f ∈ S . In Eq. (27), the

numerator indicates how predictive the feature subset S is in predicting the class. The denominator indicates

how much redundancy there is among the features in feature subset S . The more the features are correlated

with each other, the more redundant they are. This heuristic discards irrelevant features that are poor class

predictors.

It should be mentioned that the numerical features should be discretized before CFS is applied. Dis-

cretization is the process of transforming continuous-valued attributes to nominal ones. There are different

discretization techniques by which the variation range of a specific feature is divided into a number of parti-

tions. In the reported work, the discretization technique proposed by Fayyad et al. [39] was used. The applied

discretization algorithm is based on a minimal entropy heuristic. This supervised algorithm uses class informa-

tion entropy of candidate partitions to select the best partition boundary (known as cut point) for discretization.

For a given set of instances such as S , a feature A , and a partition boundary T , the class information entropy

of the partitions induced by T (E(A, T ; S)) is calculated with Eq. (32) [39]:

E(A, T ; S) =
|S1|
|S|

Ent(S1) +
|S2|
|S|

Ent(S2), (32)

where S1 and S2 are 2 intervals of S bounded by T , and Ent(S) is the class entropy of the set S calculated

by Eq. (33) [39]:

Ent(S) = −
C∑

i = 1

p(Ci, S) log2(p(Ci, S)), (33)

where p(Ci, S) is the probability of class Ci represented in set S .

The partition boundary that minimizes the class entropy function (Eq. (33)) over all of the possible

partition boundaries is then selected. The selected partition boundary is called Tmin . This method can be
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recursively applied to both partitions induced by Tmin until a termination condition is met. The termination

condition used by Fayyad et al. [39] is known as the Minimal Description Length Principle. This criterion

indicates that a partition induced by a partition boundary T is accepted if and only if Eq. (34) [39] is true.

Gain(A, T ; S) >
log2(N − 1)

N
+

∆(A, T ; S)

N
, (34)

where N is the number of instances in S and Gain(A, T ; S) and ∆(A, T ; S) are calculated using Eqs. (35)

and (36) [39], respectively.

Gain(A, T ; S) = Ent(S) − E(A, T ; S) (35)

∆(A, T ; S) = log2(3
k − 2) − [kEnt(S) − k1Ent(S1) − k2Ent(S2)] , (36)

where, in Eq. (36), ki is the number of class labels represented in set Si .

After discretization, a set of nominal values is assigned to each partition. Correlation between the 2

features X and Y is measured by symmetric uncertainty (Eq. (37)) [40]:

Symmetric uncertainty =
2 × gain

H(Y ) + H(X)
, (37)

where H (.) is the entropy of the feature and the nominator is the information gain that is a symmetric measure

that equals the amount of information gained about Y after observing X . Entropy is considered to be a

measure of uncertainty or unpredictability in a system. The entropy of feature X is calculated with Eq. (38).

H(X) = −
∑
x∈X

p(x) log2(p(x)), (38)

where p(x) is the probability of the nominal values for feature X (x ∈ X). The information gain or mutual

information is calculated using Eq. (39) [41]:

gain = H(Y ) + H(X) − H(X, Y ) (39)

If n possible features exist in the initial dataset, there can be 2n possible subsets of features. There is only

one way to find the best subset and this is to evaluate all of them. This approach is clearly not feasible for

high dimensional datasets. Thus, a certain search strategy is needed to explore all the possible feature subset

space. In this paper, a BF search strategy is used. Starting from an empty subset of features, a BF search tries

to explore the feature space by making the local changes to the current feature subset. In a BF search, unlike

greedy hill climbing, backtracking is allowed. That is, while exploring the feature space, if local changes to the

current feature subset begin to look less promising, a BF search can backtrack to a more promising previous

subset of features and continues the search from there. In other words, without any termination criterion, a

BF search explores the entire feature space. Avoiding an endless loop in the reported work, the number of

fully expanded subsets that lead to no improvement is limited to 5. The BF search algorithm is presented in

Figure 3.
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1. Begin with the OPEN list containing the start 
state, the CLOSED list empty, BEST ← start state. 

2. Let s = arg max e(x) (get the state from OPEN 
with the highest evaluation). 

3. Remove s from OPEN and add it to CLOSED. 

4. If e(s) ≥ e(BEST), then BEST ← s. 

5. For each child t of s that is not in the OPEN or 
CLOSED list, evaluate and add to OPEN. 

6. If BEST changed in the last set of expansions, go 
to 2. 

7. Return BEST. 

Figure 3. The best-first (BF) search algorithm.

2.5. Experimental setup

In the reported work, the investigated engine defect is in the ignition system, i.e. the engines are operating with

only the first cylinder missing firing. The engine sound signals are recorded in the workshop using a microphone

located 20 cm above the engine. The investigated engines are from 4 different automobiles, including the Pride

(Kia motors), the Peugeot 405, the Peugeot Pars, and Iran Khodro’s national automobile, the Samand. For each

automobile, the sound signals of 60 sampled automobiles in both healthy and faulty conditions with engines

operating at 1000 rpm are recorded. There is only one faulty and one healthy state in the experimental dataset

(Figure 4).

The sampling frequency used for the data acquisition was 44100 Hz. The whole process is depicted in

Figure 5.

Figure 4. a) sample signal for the sound of normal operation of engine, b) sample signal for the sound of engine when

it is ripping.

The recorded sound signals are transferred to the preprocessing unit where the recorded signals are

manually denoised. Denoising is performed by listening to the recorded sound signals and separating parts of

signals free from manmade inferred noise. Because the signals are recorded in the workshop, the sounds of other
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Figure 5. The whole process for acoustic sample collection, feature extraction, feature selection, and classification.

equipment in operation near the test subject and human voices are considered environmental noise. The signal

level of the noise is so high that it reduces the signal to noise ratio to an unacceptably low level. As automobiles

are being examined by repairmen in the workshop, the automobiles may or may not experience other additional

faults. For example, the combustion-timing defect causes the engine to not operate properly, and this results

in considerable sound abnormality. The analyzed signals include both healthy and faulty operating conditions

at a recording time of 5 s.

In earlier reported works, the authors used the above-mentioned data using FFT [42] and DWT [43]

approaches to distinguish faulty engines from healthy ones. Using the aforementioned data in the current work,

the extracted signals are transferred to the feature extraction unit where each sound signal is decomposed by a

WPT into a 3-level wavelet packet tree. Each node at the last level of the decomposition tree is used to calculate

the aforementioned features in Section 2.1, and a dataset with 32 features is then constructed. Experiments

show that moving from level 2 to level 3 did not make significant change in the selected features. Hence, we

did not go any further. In the next step, the constructed dataset is transferred to the feature selection unit.

In the feature selection unit, a CFS algorithm is used to select the most informative features while other,

less informative ones are discarded. The reduced dataset is then transferred to the classification unit where
10% of the sample population is randomly selected for the training and 90% for the test. The classification

techniques used in the reported work are the K-nearest neighbor (KNN) technique with a parameter of K =

5, the support vector machine (SVM) technique with a radial-basis function (RBF) kernel function, and the

multilayer perceptron (MLP) technique. In the reported paper, the parameter (σ) for the RBF kernel function

is 1 and the MLP used a back propagation (BP) training algorithm, a learning rate equal to 0.3, and momentum

equal to 0.2. Experiments show that the engine problem is mostly in a [8268.75–19293.75] Hz frequency range,

and we noted that other frequencies are less important and could be filtered. However, in different operation

conditions, the frequency boundary could be adjusted for different categories of signal sources to gain better

results.

3. Results and discussion

As the first step, the datasets made by a large number of wavelet bases using the aforementioned features are

used for classification. Later on, using the CFS algorithm, the dimensionality of the sampled datasets is reduced

(the most informative features are selected), and then each reduced dataset is used for classification. Table 3

introduces the final feature set and their feature numbers. Table 4 presents features selected for each constructed

dataset from the wavelet bases. The reason why Energy, Kurtosis, Min, and Max features are selected is due

to the better experimental results in signal decomposition using wavelet transformation. In other words, the
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frequency of the appearance in the list of the selected features after feature selection is higher than the rest of

the features. The energy feature provided good results with the highest frequency resolution. Results show that

as the selected features are mostly from higher frequencies (signal details), it can be said that higher frequencies

can be used to better separate different operation conditions of the engine. Figures 6 to 11 show the true positive

rate (TPR) vs. the false positive rate (FPR) and the accuracy of each classification technique before and after

dimensionality reduction on the dataset. It should be mentioned that the class of signals emitted from faulty

engines are considered positive. Furthermore, the TPR, FPR, and accuracy are calculated using Eqs. (39–41),

respectively.

Table 3. Features and their numbers in the dataset.

Feature numbers Features
1 (AAA), 5 (AAD), 9 (ADD), 13 (ADA), 17 (DDD), 21 (DDA), 25 (DAA), 29 (DAD) Max
2 (AAA), 6 (AAD), 10 (ADD), 14 (ADA), 18 (DDD), 22 (DDA), 26 (DAA), 30 (DAD) Min
3 (AAA), 7 (AAD), 11 (ADD), 15 (ADA), 19 (DDD), 23 (DDA), 27 (DAA), 31 (DAD) Kurtosis
4 (AAA), 8 (AAD), 12 (ADD), 16 (ADA), 20 (DDD), 24 (DDA), 28 (DAA), 32 (DAD) Mean

Table 4. Selected features of each dataset after applying a CFS algorithm.

Wavelet No. of Selected Wavelet
No. of

Selected
base features features base features
coif 1 4 27,28,30,31 db 19 4 12,14,17,21

coif 2 12
3,10-12,14,17,19,

db 20 4 12,14,17,21
22,27,28,30,31

coif 3 2 14,17 sym 1 5 26-28,30,32
coif 4 3 14,17,19 sym 2 5 26-28,30,31

coif 5 3 14,17,25 sym 3 8
4,12,22,26-
28,30,31

db 1 5 26–28,30,32 sym 4 11
3,10-12,14,15,
17,22,25,28,30

db 2 5 26–28,30,31 sym 5 3 12,14,17
db 3 8 4,12,22,26–28,30,31 sym 6 2 14,17

db 4 8
11,17,22,26-

sym 7 3 14,17,25
28,30,32

db 5 4 11,14,17,27 sym 8 3 14,17,25
db 6 3 11,14,17 sym 9 3 14,17,32
db 7 3 12,17,22 sym 10 3 9,14,17
db 8 3 14,17,25 sym 11 3 14,17,32
db 9 3 14,17,25 sym 12 4 14,17,21,28
db 10 3 8,14,17 sym 13 4 14,17,21,32
db 11 3 14,17,25 sym 14 4 12,14,17,21
db 12 4 10,14,17,21 sym 15 5 10,14,17,21,31
db 13 4 12,14,17,21 sym 16 4 14,17,21,27
db 14 4 11,14,17,21 sym 17 4 11,14,17,21
db 15 4 12,14,17,21 sym 18 4 12,14,17,21
db 16 4 14,17,21,28 sym 19 5 14,17,20,21,27
db 17 4 12,14,17,21 sym 20 4 12,14,17,21
db 18 4 14,17,21,28
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TruePositiveRate (TPR) =
TP

TP + FN
(40)

False PositiveRate (FPR) =
FP

FP + TN
(41)

Accuracy =
TP + TN

TP + TN + FP + FN
, (42)

where TP, TN, FP, and FN are described as follows:

TP: The number of true instances that are correctly classified.

TN: The number of negative instances that are correctly classified.

FP: The number of negative instances that are incorrectly classified.

FN: The number of positive instances that are incorrectly classified.

First, it should be mentioned that the abbreviations BR and AR stand for before and after reduction,

respectively. Looking at Figures 6 to 11, it is obvious that for all the constructed datasets, the classification

results improve once the CFS feature selection algorithm is used. According to Figures 6 to 11, the Coiflet

wavelet base with orders of 1 and 2, the Daubechies wavelet base with order 1–5, and Symlet wavelet base with

an order of 1–4 does not lead to good classification results. For the other datasets in Table 4, it is clear that the

smallest number of dataset dimensions resulted from sym6 and coif3, i.e. the corresponding datasets contain

only 2 features: features 14 and 17. The highest ACC for dataset constructed from coif3 is 96.53%, a result of the

KNN classification method, and the highest ACC for the dataset constructed from sym6 is 95.37%, which is a

result of the KNN classification method. There are other datasets with 3 features, i.e. datasets constructed from

coif4, coif5, db6–db11, sym5, and sym7–sym11. Among those datasets, the dataset constructed from coif4 has

the highest ACC at 96.99% with KNN. Datasets with 4 features are also constructed by other wavelet bases, i.e.

db5, db12–db20, sym12–sym14, sym16-sym18, and sym20. Among them, the dataset constructed from sym17

has the highest ACC at 96.99% with KNN. Considering the results in terms of classification accuracy, the best

result is obtained using coif4. The corresponding features were 14, 17, and 19, corresponding to the kurtosis of

packet 4 (ADA), the energy of packet 5 (DDD), and the maximum of packet 5 (DDD), respectively.

Figure 6. Comparing TRP vs. FPR before and after

CFS for KNN.

Figure 7. Comparing TRP vs. FPR before and after

CFS for SVM.

Table 5 shows the confusion matrices for classification of datasets of coif3, coif4, sym6, and sym17 for all

classification methods. Searching Table 4 for the features selected by CFS from the datasets of coif3, coif4, sym6,

and sym17, one can see that the kurtosis of packet 4 and the energy of packet 5 are the most important features.

Packets 4 and 5 correspond to the frequencies in the range of [8268.75–11025] Hz and [16537.5–19293.75] Hz,
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Figure 8. Comparing TRP vs. FPR before and after

CFS for MLP.

Figure 9. Accuracy before and after CFS for KNN.

Figure 10. Accuracy before and after CFS for SVM. Figure 11. Accuracy before and after CFS for MLP.

respectively. Therefore, it can be claimed that the investigated fault affects the information of sound signals at

a frequency range of [8268.75–19293.75] Hz more noticeably than the other frequencies (Figure 12).

Figure 12. Feature frequency distribution.

In the previous works mentioned, the authors used both FFTs [42] and DWTs [43] to distinguish faulty

engines from healthy ones. Using an FFT, the authors segmented the frequency spectrum to 9 different segments.

Using the energy of the absolute value of FFT coefficients for each segment as signal signatures and PCA for

feature reduction, they reached their best result with a 1500 Hz frequency segmentation with 83.45% accuracy.

For the DWT approach, the authors decomposed signals to 3 decomposition levels. Using the energy,

kurtosis, variance, mean, minimum, and maximum of the wavelet coefficients for both approximation and
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Table 5. Confusion matrix for classification of dataset of coif3, coif4, sym6, and sym17.

coif3

KNN SVM MLP

Classified As Classified As Classified As

True Class Faulty Healthy True Class Faulty Healthy True Class Faulty Healthy

Faulty 210 5 Faulty 197 18 Faulty 178 37

Healthy 10 207 Healthy 17 200 Healthy 44 173

Classification Results Classification Results Classification Results

ACC (%) TPR (%) FPR (%) ACC (%) TPR (%) FPR (%) ACC (%) TPR (%) FPR (%)

96.53 97.67 4.61 91.9 91.63 7.83 81.37 75.83 13.02

coif4

KNN SVM MLP

Classified As Classified As Classified As

True Class Faulty Healthy True Class Faulty Healthy True Class Faulty Healthy

Faulty 211 4 Faulty 191 24 Faulty 140 76

Healthy 9 208 Healthy 7 210 Healthy 11 205

Classification Results Classification Results Classification Results

ACC (%) TPR (%) FPR (%) ACC (%) TPR (%) FPR (%) ACC (%) TPR (%) FPR (%)

96.99 98.14 4.15 92.82 88.84 3.23 83.77 72.57 4.92

sym6

KNN SVM MLP

Classified As Classified As Classified As

True Class Faulty Healthy True Class Faulty Healthy True Class Faulty Healthy

Faulty 206 9 Faulty 197 18 Faulty 169 47

Healthy 11 206 Healthy 17 200 Healthy 45 171

Classification Results Classification Results Classification Results

ACC (%) TPR (%) FPR (%) ACC (%) TPR (%) FPR (%) ACC (%) TPR (%) FPR (%)

95.73 95.81 5.07 92.04 86.3 2.17 78.66 78.28 20.78

sym17

KNN SVM MLP

Classified As Classified As Classified As

True Class Faulty Healthy True Class Faulty Healthy True Class Faulty Healthy

Faulty 209 6 Faulty 197 18 Faulty 168 48

Healthy 7 210 Healthy 17 200 Healthy 8 208

Classification Results Classification Results Classification Results

ACC (%) TPR (%) FPR (%) ACC (%) TPR (%) FPR (%) ACC (%) TPR (%) FPR (%)

96.99 97.21 3.23 94.4 92.19 3.37 86.81 77.77 3.7

detailed versions for each decomposition level as the signal signature and CFS features selection algorithm,

they reached their best result for the first decomposition level with 80.67% accuracy. Analyzing the results, the

authors reached the conclusion that the reason for the FFT outperforming the DWT approach is the fact that

in the FFT approach features are extracted from high-frequency harmonics. However, in the DWT approach,

features are extracted from low-frequency components. Consequently, the decision was made to choose between

low- and high-frequency components of the signal. Thus, the WPT was selected as the alternative solution.

Applying the selected approach, the results show that the WPT outperforms the aforementioned methods.

1823



GHADERI and KABIRI/Turk J Elec Eng & Comp Sci

4. Conclusion

This paper reported on a study in which sound signals are analyzed using a WPT to identify faulty combustion

of an automobile engine, regardless of the type of automobile. The proposed method is capable of dealing

with the signals that contain environmental noises and are static during the recording time, e.g., the sound of

a fan in operation. The proposed method is also applicable for other types of automobile engines. This was

proven by the use of different types of automobiles as test subjects. Therefore, the proposed method proves

to be automobile independent in its fault detection. Thus, among different signal analysis techniques in both

frequency and time-frequency domains, the WPT has proven to be more successful. In the frequency domain

signal processing, there is no time information. Hence, in some way, time information should be included in the

calculations. The traditional WT does not represent high frequency information in detail. Therefore, because

the WPT treats both high and low frequency in the same way, the information extracted from WPT coefficients

can represent a more accurate signature. In conclusion, the best classification method is considered to be KNN.

5. Future work

In terms of future work, detecting a specific automobile or categorized detection of similar automobiles could be

considered. Adding more faults to the list of the faults and their successful classification will also be included

in future plans for the reported work. Automated denoising of the sound signals is a necessary process that will

help with the automation of the system as a whole and can also be considered something to look at in the future.

Since the preparation of the current text, the research has already improved. The use of PCA dimensionality

of the input features to the classifier has been reduced, and the performance of the method has improved. This

recent information is included in the MSc thesis of one of the authors and may be used in future publications.
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