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Abstract: Although building-integrated photovoltaic (BIPV) systems have great potential, investment in this field is
not at the desired level. There are two main reasons for this: the lack of technical analysis and economic reasons.
Manufacturers and investors utilize datasheets of modules to determine the systems performance, which is determined
at standard test conditions (STCs). However, there are apparent differences between STCs and outdoor measurements.
Most studies in the field of BIPV system analysis have only focused on long-term outdoor measurements. Besides
that, uncertainty of measurements is necessary to achieve scientific results. The aim of this study is to emphasize the
importance of measurement uncertainty, to describe how measurement uncertainties are calculated, and to find out the
uncertainty of an outdoor BIPV measuring system. In this study, different roof-integrated photovoltaic systems with 15°,
30°, and 45° inclination angles were tested in the Fraunhofer Institute for Wind Energy and Energy System Technology
measurement field. Maximum power point current, voltage, power, and temperature of each system were measured. The

uncertainty of current, voltage, and temperature was calculated as 0.29%, 0.05%, and 1.15%, respectively.
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1. Introduction

A building-integrated photovoltaic (BIPV) system consists of integrating photovoltaic (PV) modules into the
building roof or facade. The PV modules do not only produce electricity; they also have many different features
such as weather protection, thermal insulation, noise protection, and electromagnetic protection, depending on
the design and implementation. If the PV modules have one or a few additional features, the PV modules are
called BIPV modules [1]. Despite these additional properties, BIPV systems still remain small-scale compared
to building-adopted photovoltaic systems (BAPV: rooftop installation). Technical barriers such as electrical,
thermal, and mechanical characteristics of BIPV systems are the most effective factors on the market share
growth. Besides that, the legal and administrative processes pose a problem [2]. The BIPV modules are
produced as different types, such as glass-glass, glass-glass isolation, roof-tile, and metal-sheet. Even though
the characteristics of the BIPV modules appear to be similar to those of PV modules, the most important
difference is the operation temperature. The operating temperature of a BIPV system can reach 90 °C at a
solar irradiation of 1000 W/m? when the ambient temperature is 30 ° C, ventilation rate is 0 m/s, and backside
temperature is 20 °C on the backside of the PV tiles [3]. However, the operating temperature of PV modules
can only reach 50-60 °C when the ambient temperature is 30 °C due to the backside ventilation. This leads

to different electrical, thermal, and mechanical properties of BIPV modules compared to standard modules or
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conventional building products [4]. Due to these reasons, accurate and confident measurements of thermal and
electrical values such as current and voltage of the BIPV modules are very important.

No matter how carefully and scientifically measured, there is no measurement without errors. Therefore,
the exact measurement results are never known, but the errors can be approximately calculated or may be
estimated. It is important to define how large the measurement errors are to say something about scientific

measurement results. There are two words that are confused with each other. These words are error and
uncertainty. Error is the difference between the measured value and the true value that is not known. As for

uncertainty, it is an estimate of the limit of the error. Thus, if the uncertainty is used for measurement, it
means doubt about the validity of the result of the measurement [5]. Correctly, completely, and scientifically
measured results need to be expressed with uncertainty, so estimating uncertainty is an important step in data
reduction and expression of results.

Generally, errors of measurement consist of random (statistical) and systematic components [6]. Random
errors are caused by unknown changes within the measuring instrument or by environmental conditions. Random
errors vary in magnitude in each measurement under the same conditions. The magnitude of errors can be
determined by performing multiple measurements. Systematic error is constant in each measurement of the
same observation. Systematic errors may occur due to load accuracy of the measuring instrument or missing/old
calibration [7].

Measurement uncertainties are generally defined using the GUM approach. GUM is commonly known
as the “Guide to the Expression of Uncertainty in Measurement”. This guide was published by the Joint
Committee for Guides in Metrology (JCGM). The JCGM consists of seven international organizations and they
prepared the GUM. There are two types of evaluations to determine the measurement uncertainty according
to the GUM [8]. If the measurement instruments and accuracy of other equipment are not known clearly
and different values are determined in repeated measurements, a statistical method called Type A can be
used. When the complete accuracy of equipment is known, a systematic method called Type B is used. The
aim of this study is to emphasize the importance of measurement uncertainty, to describe how measurement
uncertainties are calculated, and to find out the uncertainty of an outdoor PV measuring system that uses an
analog maximum power point tracker (MPPT) card. Error sources of measurement devices and the equipment
have been determined, some error sources have been neglected and some assumptions have been taken into
account, and the purpose of the neglect or assumption has been explained. In order to calculate measurement
uncertainty both statistic (Type A) and systematic (Type B) methods have been used. Type A is used to
determine the uncertainty of the MPPT card. The calculation of uncertainty for an analog MPPT card is very
difficult so it takes a long time. If it has been calculated approximately the same value determined according

to Type A will be found. Type B is used to calculate the uncertainty of temperature, voltage, and current
measurements.

2. Fraunhofer IWES outdoor test field
In the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) field, three test roofs
with 15°, 30°, and 45° inclination angles were installed to determine the performance of BIPV systems. The
BIPV systems on three rooftops are seen in Figure 1. Each roof is mounted with a PV panel that has different
technology [9].

The temperature, current, voltage, and the other environmental conditions such as solar radiation and
wind speed are recorded to evaluate the operating characteristics, yield, and electrical characteristics of the
system. FEach module is operated by an analog MPP card developed at the Fraunhofer IWES. These MPP
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Figure 1. Three BIPV systems on rooftops with different tilt angles.

cards determine the MPP voltage and current of the PV modules [10]. The surface temperature of these
modules is measured at the back of the module simultaneously. Pt 100 (Class B) platinum-foil is used as a
temperature sensor. The two different temperature sensors are installed at the back side of the module. One
of them measures the operation temperature of the PV panel under loading and the other one measures the
temperature of the PV panel with no electricity generated [11]. In addition, room temperature is detected in
the test center. Each roof is equipped with a pyranometer, which determines the irradiation for each inclination.
A wind sensor is installed on the central roof, which determines the wind speed and direction. Measurement
data recording is performed using a data logger system at an interval of 15 s. An Agilent data logger is used
in order to store measured data [12]. Current cannot be measured directly, so in order to measure current it
is necessary to use a shunt resistor. A Manganin resistor bar as a shunt resistor, which has 0.2 error class, is
utilized.

In this study, internationally accepted test methods, which are the Sandia National Laboratory (SNL)
model [13] and the nominal operating cell temperature model [14], were used to evaluate to temperature,
current, and voltage for BIPV modules. The measurement uncertainty was evaluated using GUM, which is an

International Organization for Standardization (ISO) standard.

3. Measurement uncertainty

Measurement is a process of observing and recording the experimental studies that are collected as a part of a
research effort. The aim of a measurement is to obtain the true value of the thing being measured. However,

there is no measurement without errors. Error is the difference between the measured value and the true value.
Errors fall into two categories: random error and systematic error. Like the true value, the error is not known

for sure. Therefore, the quality of the measured result is characterized by uncertainty and the confidence level.
Uncertainty is the parameter related to the measured thing that characterizes the dispersion of the values that
could be referred to the measured thing. All measurements have a degree of uncertainty regardless of precision
and accuracy. In order to compare two measured things, it is necessary to know the uncertainties [15].

The procedure for measurement uncertainty was created by the ISO/BIPM commonly referred to as
GUM. According to GUM, measurement uncertainty can be classified as Type A and Type B. A Type A
evaluation of uncertainty is based on statistical methods and it should be used in repetition measurement,
whereas a Type B evaluation of uncertainty is based on scientific conclusion and it should be used when the
measured value and assigned measurement uncertainty is known. A Type B evaluation includes measured data,
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information of calibration, uncertainties assigned to reference data, and experience with previous measurements
[16].

Due to the many error sources in most measurement process, it is necessary to express all uncertain-
ties at the same confidence level by converting them into standard uncertainties [17]. Standard uncertainty
characterizes how well parallel measurements agree among themselves and it is denoted by u.

All the input quantities must be in the same units before they are combined. Therefore, it is necessary
to convert an uncertainty component to the same units as the measurand. This conversion process is realized
by using a sensitivity coefficient. The sensitivity coefficient shows the relationship of the individual uncertainty
component and it is referred to as ¢;.

In many cases the measurement results can be calculated from different input parameters. Therefore,
the uncertainties need to be combined to calculate an overall uncertainty for the measurement. The combined
standard uncertainty is the uncertainty of the output quantity, which takes into account the uncertainties of all
the input quantities, and it is referred to as wu..

The standard uncertainty provides a probability of 68.3% but this probability is too low for the researcher
or customer. Thus, uncertainty results are presented with the expanded uncertainties. Expanded uncertainty
is calculated by multiplying the standard uncertainty by the coverage factor (k). The coverage factor can have
any value, but according to international acceptance the coverage factor is either 2 or 3. Coverage factors of 2
and 3 give a level of confidence approximately of 95% and 99.7%, respectively. Expanded uncertainty is referred
to as U[18].

3.1. Calculation of Type A uncertainty

A Type A uncertainty is used when input quantities are repeatedly observed and where different values are

determined under the same conditions for each measurement. Statistical methods are then used to calculate
the results. First, the arithmetic mean (average) is calculated using an observed value and a number of

measurements. Eq. (1) shows how to calculate the mean of measurement values.

1 n

Here, p is a mean of measurement values, n is a number of measurements, and x; is an individual observed

value. Experimental standard deviation is calculated using Eq. (2).

Here, o, is a standard deviation. Especially if the value of measurements is low (n < 10), an alternative
definition can be used for standard deviation. In this case, the value of n is replaced by n — 1. This gives more

conservative results of o, [19].
If there is more than one measurement the standard deviation is divided by /n. [20], so the standard

deviation of the mean is calculated by Eq. (3).

Op = ﬁ (3)

This result can also be used as standard uncertainty of measurement (uq; = 0,).
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3.2. Calculation of Type B uncertainty

A Type B method should be used when all uncertainty estimates are obtained without the use of repeated
measurements. The first step in the Type B method is to specify measurement uncertainty from the manufac-
turer’s specification, calibration datasheet, and uncertainties assigned to reference data taken from handbooks,
previous measurement data, or other certificates [19]. The measurement uncertainty can be given directly in
the certificate. The standard measurement uncertainty is calculated by dividing the expanded measurement
uncertainty by the coverage factor. In broad-range instruments, it is necessary to calculate the uncertainty for
the reading or instrument range. There are three very important functions for the probability of occurrence.
These are the rectangular, triangular, and normal distributions. The standard uncertainty for a rectangular

distribution is calculated from Eq. (4).

(4)

()

If three or more measured values are available, a normal distribution can be assumed as a good approximation.
The standard uncertainty is found by dividing the expanded uncertainty by the coverage factor, k, appropriate
to the stated level of confidence in the normal distribution. The standard uncertainty for a normal distribution
is calculated from Eq. (6) [19].

expanded uncertainty

Here, k= 2 if the reported level of confidence is 95%.

4. Method and material
4.1. Uncertainty of Fraunhofer ISET MPP meter

In this study, an analog MPPT card was utilized. The power of a PV cell increases depending upon increases of
cell voltage up to the maximum power point (MPP). After this point the MPP decreases until the open circuit
voltage is opened. Both voltage and current have same direction while the power increases. Nevertheless,
voltage and current have different directions while the power decreases. Due to the deflection of current, the
calculation of error value in the analog MPPT card is very hard and it takes a lot of time. For this reason, the
uncertainty of the analog MPPT card has been determined using a solar simulator and statistic method. The
output values of the MPPT card are known under defined conditions (irradiation, temperature, pressure, etc.).

The difference between the real value and measured value is called the mismatch ratio. The mismatch ratio is
obtained by dividing the actual power consumed by the load into the real MPP power of the module at the

same moment. The PV simulator measures the I and V of the load and at the same moment it uses the values
for Ipp and V,p, from the simulated PV-curve. The block diagram of the solar simulator is seen in Figure 2.
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Figure 2. Blog diagram of solar simulator.

One hundred measurements have been carried out to determine the mismatch ratio. Measurements have

been performed using different values of irradiation between 10 W/m? and 1000 W/m?. It was found that

the measurement results are close to each other at 50 W/m

2 and upper values. The measurement results are

different and not stable under the value of 50 W/m?2. The measurement results are shown in Figure 3.
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Figure 3. Mismatch ratio of MPP card: a) irradiation at 50 W/m?, b) irradiation at 10 W/m?.

Due to the big fluctuation in the measurement results at the above value of 50 W/m?, the uncertainty

has been calculated using a minimum of 50 W/m?. The histogram of the measurement results at 50 W/m? is

shown in Figure 4.
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Figure 4. Histogram of the measurement results.
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Axis x in Figure 4 shows the amount of deviation in percentage between the actual value and measured
value. Axis y shows frequency, which is the realization frequency of the mismatch ratio. It can be seen from
this figure that the accuracy rates of MPPT cards vary most between 99.06% and 99.6%. According to the
histogram of the mismatch value it is convenient to use Gaussian distribution. The first step is to calculate
the mean and determine if the data are scattered relatively evenly above and below the mean. The mean is
calculated from Eq. (7).

p=3 (7)
=1

= 99.2618

The standard uncertainty (u) for a Gaussian probability density function is represented by Eq. (8), where (o)

is the standard deviation of the sample readings and n is the number of readings.

n—1

Umpp = 0 = 0.2286

4.2. Uncertainty of DC voltage measurement

The DC voltage is measured directly with the data logger, so it is necessary to use the specifications of the data
logger in order to calculate the uncertainty of voltage measurement. Table 1 shows the accuracy of each voltage
measuring range.

Table 1. Accuracy of voltage measuring range.

Function Range 24 Hours 90 Days 1 Year Temperature
23°C+1°C | 23°C+£5°C |23°C+5°C | coefficient/°C
100 mV | 0.0030+0.0035 | 0.0040+0.0040 | 0.0050+0.0040 | 0.0005+0.0005
1V 0.002040.0006 | 0.00304-0.0007 | 0.00404-0.0007 | 0.000540.0001
DC voltage | 10V 0.0015+0.0004 | 0.00204-0.0005 | 0.00354-0.0005 | 0.00054-0.0001
100 V 0.0020+0.0006 | 0.003540.0006 | 0.00454-0.0006 | 0.00054-0.0001
300 V 0.0020+0.0020 | 0.0035+0.0030 | 0.0045+4-0.0030 | 0.00054-0.0003
+(% of reading + % of range)

There are two accuracy values that are influenced by the uncertainty of the measurement value. One of
them is the percentage of reading, where reading is the actual measured value, and the other one is percentage
of range, where range is the name of the voltage scale. These accuracies include all measurement, switching,
and transducer conversion errors [21].

The PV panel’s voltage used in this study is a maximum of 40 V. Therefore, the range of 100 V is
suitable. For this range, the 1-year accuracy is 0.0045% + 0.0006%. The data logger is utilized indoors. Hence,

temperature drift is neglected. Accuracy of DC voltage measurement can be calculated be Eq. (9).

40) + (0'000610()) =24mV (9)

100

(00045
V= 100
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This value can expressed in percentage form.

_ 24mV

uy =

40V

= 0.006%

The accuracy describes the maximum error when using the data logger at ambient temperatures between 18 °C

and 28 °C. If the data logger temperature is higher than the temperature drifts, errors should be considered.

In this study the maximum temperature of the data logger was measured as 40 °C. It is seen in Table 1 that
the drift error is 0.0005% reading + 0.0001% range. The contribution of drift error is calculated with Eq. (10).

wy, = (0.0005%reading + 0.0001%7"ange)/O «(40° — 28°) (10)
wy, = (0.0005%reading + O.OOOl%v"cmge)/O %12
uy¢ = 0.0060%reading + 0.0012% range
0.0060 0.0012
Uyt = 40V 100V
VI 100 BT
uy¢ = 0.0024 + 0.0012 = 3.6 mV
This value can expressed in percentage form.
Uyt = 0015%
Table 2 shows the results of uncertainty of voltage measurement.
Table 2. Uncertainty of voltage measurement.
Square
Symbol Uncertainty | Unit | Distribution | Factor | Standard | Sensitivity | Uncertainty uncertainty
MU contribution contribution
Data logger err. | 6.0E-3 \% Rectangular | 1.7321 | 3.5E-3 1.0E+0 3.5E-3 12.0E-6
Tem. drift err. | 15.0E-3 \Y Rectangular | 1.7321 | 8.7E-3 1.0E+0 8.7TE-3 75.0E-6
MU /V 0.0093
40.0E+0 Erw. factor | 2 Erw. MU / V | 0.0187
Erw. MU /% | 0.05%

4.3. Uncertainty of DC current measurement

The current is not measured directly with the data logger. In order to measure current it is necessary to utilize

the shunt resistor. Indeed, the data logger measures voltage, which drops across the shunt resistor. The data

logger verifies the current according to Ohm’s law. There are four main error sources in measuring the current

system. These are connection error, temperature error, accuracy of the resistor, and measurement instrument

error.

e Connection error: The value of the resistor changes according to distances between measurement points

and the resistance terminal. The best way to determine this error is getting different measurements from

different points. However, if there is no measurement, the connection error can be assumed as 0.01% [22].

e Temperature error: The shunt resistor bar used in this study is made of Manganin. The resistance of the

shunt rises 0.002% per each 1 °C, so the accuracy of temperature is 0.002%.
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e Resistance accuracy: The biggest error across the shunt is resistance accuracy. This uncertainty is defined

also from datasheet of the shunt resistor. According to the datasheet, resistance uncertainty is 0.2%.

e Data logger’s error: The voltage drop is a nominal 60 mV on the shunt resistor. Therefore, the range of
100 mV is suitable. For this range, the 1-year accuracy is 0.0050% + 0.0005%. The data logger is utilized
indoors. Hence, temperature drift for data logger is neglected. Accuracy of DC voltage measurement can
be calculated by Eq. (11).

0.0050 0.0040
uy = 60mV | + 100mV ) = 0.007TmV 11
v ( 100 ) ( 100 ) (11)
This value can expressed in percentage form.
0.007TmV
uy = ———— = 0.0116%
VT T60my !
Table 3 shows results of uncertainty of current measurement.
Table 3. Uncertainty of current measurement.
Square
Symbol Uncertainty | Unit | Distribution | Factor | Symbol | Sensitivity | Uncertainty uncertainty
contribution contribution
Connection 10.0E-3 °C Normal 2.0000 | 5.0E-3 1.0E+40 5.0E-3 25.0E-6
Temperature 2.0E-3 °C Rectangular | 1.7321 | 1.2E-3 1.0E+0 1.2E-3 1.3E-6
Resistor‘s error | 200.0E-3 °C Rectangular | 1.7321 | 115.5E-3 | 1.0E+0 115.5E-3 13.3E-3
Data logger err. | 11.6E-3 °C Rectangular | 1.7321 | 6.7E-3 1.0E+40 6.7E-3 44.9E-6
MU /V 0.1158
80.0E+0 Erw. factor | 2 Erw. MU / V | 0.2316
Erw. MU / % | 0.29%

4.4. Uncertainty of temperature measurement

The temperature cannot be measured directly. In order to measure the value of temperature, all the components
and uncertainty of components must be considered. In this study, the Pt 100 resistance thermometer (tolerance
class DIN B) was used. Eq. (12) shows the relationship between input quantities and measurement results for

temperature measurements with Pt 100 resistance [23].

ty =tm +uMp +uMp +ubMrp +uV +utpy +utw +up + uMg +uMy +ubMpr + uRRgy (12)

In the equation, ¢, is obtained temperature, t,, is temperature at the measurement point, uM z is measurement
signal deviation caused by the heat-conduction error of the thermometer, and uM p is measurement signal
deviation caused by the deviation of the sensor as per the EN 60 751 standard [24]. The permissible tolerance
for a platinum sensor of class B is calculated by +0.3 °C + 0.005 T [25]. T is a measured temperature. In this
study, the maximum temperature is 80 °C. Therefore, the uncertainty (uM p) is calculated as +0.7 °C, and
uM rp is the measurement signal deviation caused by thermoelectric emfs. According to EN 60 751 specifics, if
the measured temperature is 100 ° C, the measurement error (uM ) can be accepted as 0.05 °, and uV is the

indication of deviation of the evaluation electronics caused by supply variations. According to the datasheets of
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the transmitter, the thermometer, and the sensitivity of component, this uncertainty can be considered as 0.05
°C. ut p is the indication of deviation caused by fluctuating ambient temperature. The differences between the
ambient temperature and the operating temperature are found and then this uncertainty is calculated using the
datasheet. In this study this uncertainty is assumed as 0.1 °C. uty represents the processing and linearization
errors in the evaluation electronics. According to the datasheet, this uncertainty is 0.4 °C. up is the indication
of deviation caused by the influence of the input resistance, and uM g is measurement signal deviation caused
by insufficient stabilization. The sensors are at the same level for this measurement so this uncertainty can be
neglected. uM g is error caused by the self-heating error of the sensor. The error range of self-heating is about
0.1 mW at 0 ° C so this error can be accepted as 0. uM gy is measurement signal deviation caused by inadequate
insulation resistance. The Pt 100 is utilized in this study. This signal deviation can be neglected according to
tolerance class DIN B. uR gy, is variation in the lead resistance. The lead resistance effect can occur if 2 core or
3 core cables are used between the thermometer and data logger. In this study, this uncertainty is not efficient
because we used 4 core cables in our study.

Measurement uncertainty can be calculated using the information mentioned above. Whole error sources

and their uncertainty, factor, distribution type, and sensitivity are shown in Table 4.

Table 4. Overall measurement uncertainty of temperature.

Square
Symbol | Uncertainty | Unit | Distribution | Factor | Standard MU | Sensitivity | Uncertainty uncertainty
contribution contribution
uMp 50.0E-3 °C Normal 2.0000 | 25.0E-3 1.0E+0 25.0E-3 625.0E-6
uMp 700.0E-3 °C Rectangular | 1.7321 | 404.1E-3 1.0E40 404.1E-3 163.3E-3
uMr g 50.0E-3 °C Rectangular | 1.7321 | 28.9E-3 1.0E+0 28.9E-3 833.3E-6
uV 50.0E-3 °C Rectangular | 1.7321 | 28.9E-3 1.0E+40 28.9E-3 833.3E-6
Ut 100.0E-3 °C Rectangular | 1.7321 | 57.7E-3 1.0E+0 57.7E-3 3.3E-3
Utw 400.0E-3 °C Normal 2.0000 | 200.0E-3 1.0E+0 200.0E-3 40.0E-3
uB 100.0E-3 °C Rectangular | 1.7321 | 57.7E-3 1.0E4-0 57.7E-3 3.3E-3
MU /V 0.4608
80.0E+40 Erw. factor | 2 Erw. MU / V | 0.9215
Erw. MU / % | 1.15%

5. Conclusion and comments

The photovoltaic industry is improving quickly but BIPV systems are not improving like BAPV. Technical
barriers such as electrical, thermal, and mechanical behaviors of BIPV modules are the most important factors
for improvement. In this study, three types of roof systems were utilized. All PV panels are from the market
so the study provides a real experience of current roof products’ development. The PV modules that were
utilized have c-Si technology with different configurations and different installation methods and PV panels
were installed on three inclined roofs (15°, 30°, and 45°) without insulation layers. The module current,
voltage, and module temperature were measured.

Measurement devices that have all the scientific qualifications were used in this study. However, there is no
measurement without errors. For this reason, the analysis of measurement uncertainty was carried out. By this
means, it was possible to say something about measurement results scientifically. The uncertainty of the MPP
meter, current, voltage, and temperature were calculated as 0.2286%, 0.29%, 0.05%, and 1.15%, respectively.
The study of uncertainty showed that the uncertainties of the MPP meter, DC voltage measurement, and
DC current measurement are lower than the uncertainty of temperature measurement. The reason is that the

temperature measurement needs additional elements such as sensors, cables, etc.

1849



BASARAN/Turk J Elec Eng & Comp Sci

Acknowledgment

This

work was supported by the Scientific and Technological Research Council of Turkey (TUBiTAK) under

Contract No: B.14.2. TBT.0.06.01-219-6040 and the Fraunhofer Institute for Wind Energy and Energy System
Technology.

1]

2]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

1850

References

Din VDE. Photovoltaic in Building. Berlin, Germany: Deutsche Kommission Elektrotechnik Elektronik Informa-
tionstechnik im DIN und VDE 0126-21, 2007.

EU Sunrise Project. Barriers for the Introduction of Photovoltaics in the Building Sector. Brussels, Belgium: EU
Sunrise Project, 2008.

Misara S. Thermal impacts on building integrated photovoltaic (BIPV) electrical, thermal and mechanical charac-
teristics. PhD, Fraunhofer IWES, Kassel, Germany, 2014.

Mei L, Infield DG, Gottschalg R, Loveday DL, Davies D, Berry M. Equilibrium thermal characteristics of a building
integrated photovoltaic tiled roof. Sol Energy 2009; 83: 1893-1901.

UKAS. The Expression of Uncertainty in EMC Testing. London, UK: United Kingdom Accreditation Service, 2002.

Wells C. Measurement Uncertainty Analysis Techniques Applied to PV Performance Measurement. Golden, CO,
USA: National Energy Laboratory, 1992.

Hibbert DB. Systematic errors in analytical measurement results. J Chromatogr A 2007; 1158: 25-32.

JCGM. Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement. Paris, France:
Joint Committee for Guides in Metrology, 2008.

Henze N, Funtan P, Misara S, Roos M. PV-Indach-Systeme im outdoor-test elektrische, mechaniche und termische
vermessungen. In: 5. Forum Bauwerkintegrierte Photovoltaik Forum; 5 March 2013; Bad Staffelstein, Germany. pp.
1-5.

Glotzbach T, Kirchhof J. Novel measuring system for long term evaluation of photovoltaic modules. In: 24th
FEuropean Photovoltaic Solar Energy Conference; 21-25 September 2009, Hamburg, Germany. pp. 3660-3663.

Chien YJ. Evaluation of building integrated of photovoltaic (BIPV) panels on electrical and thermal characteristics
for in-roof systems. MSc, Fraunhofer IWES, Kassel, Germany, 2013.

Firges J, Funtan P, Henze N, Roos M, Misara S. PV roof integrated systems vs. best and worst cases: novel
measurement for long term outdoor measurement of PV roof integrated systems (electrical, thermal and mechanical
behaviors). In: 28th European Photovoltaic Solar Energy Conference and Exhibition; 30 September—4 October
2013; Paris, France. pp. 3445-3451.

King DL, Boyson WE, Kratochvil JA. Photovoltaic Array Performance Model. Albuquerque, NM, USA: Sandia
National Laboratories, 2004.
D’Orazio M, Perna CD, Giuseppe ED. Experimental operating cell temperature assessment of BIPV with different

installation configurations on roof under Mediterranean climate. Renew Energ 2014; 68: 378-396.

Atmaram GH. Uncertainty estimate of photovoltaic module power rating for outdoor testing. In: IEEE 4th World
Photovoltaic Energy Conversion Conference; 7-12 May 2006; Waikoloa, HI, USA. pp. 2124-2128.

Taylor BN, Kuyatt CE. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results.
Gaithersburg, MD, USA: United States Department of Commerce National Institute of Standards and Technology,
1994.

Bell S. A Beginner’s Guide to Uncertainty of Measurement. London, UK: National Physical Laboratory, 2001.

Miillejans H, Zaaiman W, Galleano R. Analysis and mitigation of measurement uncertainties in the traceability
chain for the calibration of photovoltaic devices. Meas Sci Technol 2009; 20: 1-12.


http://dx.doi.org/10.1016/j.solener.2009.07.002
http://dx.doi.org/10.1016/j.solener.2009.07.002
http://dx.doi.org/10.1016/j.chroma.2007.03.021
http://dx.doi.org/10.1016/j.renene.2014.02.009
http://dx.doi.org/10.1016/j.renene.2014.02.009
http://dx.doi.org/10.1109/WCPEC.2006.279924
http://dx.doi.org/10.1109/WCPEC.2006.279924

[19]

[20]

21]

[22]

23]

[24]

[25]

BASARAN/Turk J Elec Eng & Comp Sci

EA. Evaluation of the Uncertainty of Measurement in Calibration. Brussels, Belgium: European Cooperation for
Accreditation, 2013.

Taylor JR. An Introduction to Error Analysis-The Study of Uncertainties in Physical Measurements. Sausalito, CA,
USA: University Sciences Books, 1997.

Whitfield K, Osterwald CR. Procedure for determining the uncertainty of photovoltaic module outdoor electrical
performance. Prog Photovoltaics 2001; 9: 87-102.

Liu H. Power rating uncertainty analysis of electrical performance of photovoltaic modules. In: IEEE 2012 Innovative
Smart Grid Technologies; 21-24 May 2012; Tianjin, China. pp. 1-4.

Klevens J. Calibrating DC Current Shunts: Techniques and Uncertainties. Pittsburgh, PA, USA: LABS Excellence
in Resistance, Ohm-Labs Inc., 2011.

Scheller G. Error Analysis of a Temperature Measurement System with Worked Examples. Fulda, Germany: JUMO
GmbH & Co. KG, 2003.

Tavener JP. Changes to the international standard for industrial PRT’s. In: Test and Measurement Conference;
7—10 November 2010; Drakensberg, South Africa.

1851


http://dx.doi.org/10.1002/pip.356
http://dx.doi.org/10.1002/pip.356

	Introduction
	Fraunhofer IWES outdoor test field
	Measurement uncertainty
	Calculation of Type A uncertainty
	Calculation of Type B uncertainty

	Method and material
	Uncertainty of Fraunhofer ISET MPP meter
	Uncertainty of DC voltage measurement
	Uncertainty of DC current measurement
	Uncertainty of temperature measurement

	Conclusion and comments

