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Abstract:The modern communication era has led to a proliferation of digital media contents. However, the large volume

of data poses difficulties because of increased bandwidth and limited storage space. Hence, this has led to the need for

compression techniques. Image compression with block processing allows the coder to adapt to local image statistics

and exploit the correlation present among neighboring image pixels. The main degradation factor of block transform

coding is blocking artifacts (visually undesirable patterns) at high compression ratios. The degradation occurs because of

coarse quantization of the transform coefficients and the independent processing of the blocks. In this paper, the novelty

of the algorithm is its ability to detect and reduce the blocking artifacts using nonseparable discrete fractional Fourier

transform (NSDFrFT) at high compression ratios. Three transform techniques, namely nearest neighbor interpolation,

bilinear interpolation, and bicubic interpolation, were implemented. The NSDFrFT-bicubic interpolation resulted in a

structurally similar high subjective quality reconstructed image with reduced blocking (for low frequency images) at

high compression ratios. Simulation results are calculated with many image quality metrics such as peak signal to noise

ratio, mean square error, structural similarity index, and gradient magnitude similarity measure. Evaluations, such as

comparisons between the proposed and existing algorithms (DFrFT, FFT), are presented with relevant tables, graphs,

and figures.

Key words: Image compression, interpolation methods, discrete fractional Fourier transform, nonseparable discrete

fractional Fourier transform, compression ratios

1. Introduction

Image processing has become an important area of research as nowadays a lot of data are represented in graphics.

Digitized images require a large number of coefficients to measure the energy in the frequency domain. Thus,

storage space availability, limited transmission bandwidth, and processing cost are some of the substantial issues

that need to be handled by image processing. As a result, compression of the image is required to counter these

problems [1–5] while preserving the visual quality of the image at reduced costs.

The image compression algorithms proposed in past decades [6] utilize spatial redundancy and irrelevant

information found in the image file for compressing a picture with preserved visual quality [7]. Image compression

is used in satellite processing, medical imaging, remote sensing, and the preservation of works of art, among

other things. When an obtained compressed image is identical to the original image, compression is defined

as lossless compression or reversible compression [8]. However, only a minimal amount of compression can be

achieved. Thus, lossy or irreversible compression is often used to achieve a greater extent of compression. Lossy

∗Correspondence: neeru.jindal@thapar.edu

1946



MITTAL et al./Turk J Elec Eng & Comp Sci

image compression or irreversible compression discards irrelevant information but causes significant artifacts

that hamper the quality of the image [9].

However, these artifacts, known as blocking artifacts [10], are quite prominent at higher compression

ratios. Blocking occurs when an image undergoes transform coding. Correlations among the neighboring block

boundaries in block-based transform techniques are not taken into consideration. As a result, the adjacent

blocks’ boundaries become visible, causing blocking artifacts while reconstructing the decoded image. Thus,

the visual quality of an image can be increased by reducing these blocking artifacts. As a result, detecting

and reducing blocking artifacts in reconstructed images during the compression process is important. Several

image compression algorithms based on transform coding are available in the literature including JPEG2000

compression coding [11], the discrete Fourier transform (DFT), the discrete cosine transform (DCT) [12], discrete

fractional Fourier transform (DFrFT) [13,14], discrete fractional cosine transform (DFrCT) [15], and many more.

Many postprocessing algorithms have been developed for the reduction of blocking artifacts, but these algorithms

are often computationally complex, include multiple iterations, or result in excessive smoothing of the image

textures. Thus, in this paper, the nonseparable discrete fractional Fourier transform technique (NSDFrFT) is

proposed as a way to detect and reduce blocking artifacts with less computational burden and better quality

metrics.

The remaining portions of the paper are organized as follows: Section 2 will describe the review and

mathematical analysis of the DFrFT, the NSDFrFT, interpolation, image quality metrics, and blocking artifacts.

Section 3 will introduce the implementation of the image compression algorithm. Simulation results will be given

in Section 4 in order to evaluate the performance of the proposed algorithm with quality metrics and to compare

the algorithm with existing techniques. Finally, conclusions are drawn in Section 5.

2. Preliminaries

The Fourier transform (FT) has applications in almost every domain: signal analysis, optics, image, physics,

statistics, acoustics, and antenna/array processing [12,16,17]. However, the FT proved to be inadequate for

nonstationary signals and this has led to the emergence of the fractional Fourier transform (FrFT). Namias

[18] introduced the definition of FrFT, which is the generalized definition for FT as a transform technique.

Ozaktus and Mendlovic [19] presented numerous definitions of FrFT equivalent to each other. For various types

of signals (one-dimensional, multidimensional, periodic, aperiodic, discrete, and continuous), Cariolario et al.

[20] assigned a definition for FrFT. Pei et al. and Pei and Yeh [21,22] studied FrFT in detail by considering

many of its different aspects. The expression for two-dimensional FrFT is given as [22]:

F a (g (x, v)) = F ax,av (f (x, v)) (1)

=

∫∫
kαx,αv (x.v; x

′
, v

′
)f(x

′
, v

′
)dx dv (2)

g (x, v) = xx∧ + vv∧ and a = axx
∧ + avv

∧ , where x∧ and v∧ are the unit vectors in the u and v directions,

respectively. Figure 1 depicts the time–frequency plane representation of FrFT. The era of computers led to the

development of DFT and its ability to digitally compute FT. Thus, working in the same direction, the digital

version of FrFT was needed to process signals in discrete form. The two-dimensional definition of FrFT can be

categorized into separable (DFrFT) and nonseparable (NSDFrFT) transform types. The separable transform is

a special form of the nonseparable transform.
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Figure 1. FrFT in the time–frequency plane.

2.1. Discrete fractional Fourier transform

The advent of the technological usage of computers and DSP processors increased and motivated Santhanam

et al. [23] to define DFrFT as the linear combination of the Lagrange interpolation polynomial of degree 3.

However, in time, many other definitions of DFrFT [24,25] were also created, but none of them was able to

satisfy all of the properties of continuous FrFT [21].

The definition of DFrFT can be categorized into a sampling-based method, a linear combination method,

an eigenvector-based method, and a weighted summation-based method [26]. The simplest way to achieve

DFrFT is to sample continuous FrFT, but it will lose many more properties of FrFT [27]. The eigenvalues and

eigenvectors of the DFT are computed for the eigen-based method. Subsequently, the Hermite function is used

to calculate the fractional power of the DFT matrix [28]. The transform kernel used to calculate DFrFT is given
as:

F 2α/π = U∧D2α/πU∧T (3)

where U∧ = [u∧
0 |u∧

1 | . . . u∧
N−1] for odd N and U∧ = [u∧

0 |u∧
1 | . . . u∧

N−2|u∧
N ] for even N. These are the normalized

eigenvectors of the k th order discrete Hermite function. D is defined for odd and even N as shown in Eq. (4).

D2α/π =


e−j0

e−jα

0

0

. . .

e−jα(N−1)

 ,

D2α/π =


e−j0

e−jα(N−2)

0

0

. . .

e−jαN

 (4)

Pei and Hsue [29] defined DFrFT using random DFT eigenvectors and eigenvalues. The weight-based method

computed the DFrFT from the weighted summation of DFrFT at special angles with an odd point length [30].
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DFrFT has applications in signal processing, image processing, tomography, cryptography, optical imaging, and

computer modeling for image propagation [31,32].

2.2. Nonseparable discrete fractional Fourier transform

NSFrFT, a generalized definition of FrFT, can be obtained by substituting a 2× 2 matrix (A, B, C, and D) in

the definition of nonseparable linear canonical transform (NSLCT) [33].

A =

[
cosα1 cosα2

cosα3 cosα4

]
B =

[
sinα1 sinα2

sinα3 cosα4

]
, (5)

C =

[
−sinα1 − sinα2

− sinα3 − sinα4

]
, D =

[
cosα1 cosα2

cosα3 cosα4

]
(6)

Consider that det (B) ̸= 0 and

K(A,B,C,D)(u, v) = (2π
√
− det(B))−1 ×

∞∫
−∞

∞∫
−∞

exp[j(k1u
2 + k2uv + k3v

2)/2 det(B)]× (7)

exp[
j((−b22u+ b12v) + (−b21u− b11u)y)

det(B)
]×

exp[
j(p1x

2 + p2xy + p3y
2)

2 det(B)
]g(x, y) dxdy

K(A,B,C,D) (u, v) is the output obtained and

k1 = d11b22 − d12b21 (8)

k2 = 2(−d11b12 + d12b11) (9)

k3 = −d21b12 + d22b11

p1 = a11b22 − a21b12

p2 = 2(a12b22 − a22b12),

p3 = −a12b21 + a22b11

Eq. (9) should satisfy the following constraints:

ATC = CTA , BTD = DTB andATD − CTB = 1 (10)

Sahin et al. [34] suggested a definition for nonseparable FrFT and nonseparable DFrFT. This definition utilizes

the concept of interpolation to obtain f
[
(cos∅1x+sin∅1y)

cos(∅1−∅2)
, (−sin∅2x+cos∅2y)

cos(∅1−∅2)

]
from f (x, y). The mapping is done

to attain the rotation of the x-axis and y-axis to arbitrary axis x′ and y
′
by ∅1 and ∅2 , respectively, with an

order of a1 and a2 . Nonseparable DFrFT has four deciding parameters: a1 , a2 , ∅1, and ∅2 . Sahin et al. also

suggested the use of bilinear interpolation to achieve the mapping. Thus, interpolation is an important aspect

in this definition of nonseparable DFrFT. Figure 2 shows the time–frequency plane rotation for NSFrFT.
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Figure 2. Time–frequency plane rotation for NSFrFT.

2.3. Interpolation

Interpolation is defined as the process of forming new intermediate data points within the range of known data

points. Interpolation increases the sampling rate of the sampled digital signal. The basic interpolation methods

are: bilinear interpolation (Bil Intr.), bicubic interpolation (Bic Intr.), and nearest neighbor interpolation (NN

Intr.).

To calculate the interpolated point in 2D, four immediate neighbor points are used in Bil Intr. utilizing

linear (1D) interpolation [35]. Suppose P(xy) is a point on the image to be interpolated, and f (r11), f (r12),

f (r21), and f (r22) are the pixel values at the immediate neighbor pixel of the pixel/point to be interpolated,

respectively. They are given as follows: r11(x1y1), r12(x1y2), r21(x2y1), and r22(x2y2).

The Bil Intr. pixel is given as:

f (x, y) =
f (r11)

(x2 − x1) (y2 − y1)
(x2 − x) (y2 − y) +

f (r12)

(x2 − x1) (y2 − y1)
(x2 − x) (y − y1)

+
f (r21)

(x2 − x1) (y2 − y1)
(x− x1) (y2 − y) +

f (r22)

(x2 − x1) (y2 − y1)
(x− x1) (y − y1) (11)

NN Intr. is the simplest interpolation requiring the least complex calculations. It considers only consecutive

neighboring points following a point shift algorithm [35] for calculation purposes. Mathematically, the point P

to be interpolated can be computed for both horizontal and vertical directions as:

P (x, y) = Q (x+ 0.5, y + 0.5) (12)

where Q(rj), Q(r + 1, j), Q(rj + 1), and Q (r + 1, j + 1) are the input pixels of the image.

Bic Intr. uses 16 points to interpolate a point/pixel, giving smoother images with fewer interpolation

artifacts [35]. Figure 3 shows f(i
′
j′) as the point to be interpolated and f(ij) as the point in the original

image. The point that needs to be interpolated by Bic Intr. is given as:
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Figure 3. Bicubic interpolation of an image [35].

f
[
i
′
, j′

]
=

2∑
l=−1

2∑
m=−1

f (i+ l, j +m)×K (l − dx)K (dy −m) (13)

where

K (x) =
1

6
[J (x+ 2)

3 − 4J (x+ 1)
3
+ 6J (x)

3 − 4J (x− 1)
3
]

and

J (x) =

{
x x > 0
0 x ≤ 0

2.4. Image quality metrics

Image quality measures (IQMs) are the parameters that determine the reconstructed image quality. IQMs can

be classified in two categories: subjective quality measurements (SQMs) and objective quality measurements

(OQMs). Visual scene perception, influenced by the viewing environment, spatial fidelity, the observer’s state

of mind, and the extent to which the observer interacts with the visual scene, is included in SQMs [36]. An

algorithm-based comparison of the original and reconstructed image is included in OQMs. Between the two,

OQMs are the more reliable and widely used IQMs to measure the quality of a reconstructed image. Various

OQMs utilized are peak signal to noise ratio (PSNR), mean square error (MSE) [36], structural similarity index

measure (SSIM), [37] and gradient magnitude similarity measure (GMSD) [38]. The formula for MSE is given
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as [36]:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I (i, j)−K (i, j)]
2

(14)

where I and K are the images to be compared. The formula for PSNR is given as [36]:

PSNR = 10.log10

(
MAX2

I

MSE

)
(15)

where MAXI is the maximum pixel value. The SSIM index compares the luminance, contrast, and structure

of the two images. However, these components are independent of each other. The mathematical representation

of the SSIM is as follows:

SSIM (x, y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (16)

where µx and µy are the mean intensity, σxand σy are the contrast, and C1and C2 are constants [37]. The

overall image quality is calculated using a mean SSIM given as:

MSSIM (x, y) =
1

M

M∑
j=1

SSIM(xj , yj) (17)

The GMS map at location i is given as:

GMS (i) =
2mr (i)md (i) + c

m2
r (i) +m2

d (i) + c
(18)

The average value GMSM is given as:

GMSM =
1

N

N∑
i=1

GMS(i) (19)

The standard deviation of this GMS map results in the final image quality score known as GMSD [38]. The

formula to compute GMSD is given as:

GMSD =

√√√√ 1

N

N∑
i=1

(GMS (i)−GMSM)
2

(20)

The higher the GMSD score, the more distorted is the image. The image gradients are sensitive to distortions

occurring at different degrees for various local structures.

2.5. Blocking artifacts

In accordance with transform coding, an image is divided into subimages known as blocks. If an image is of

N ×N size, then blocks will be of n×n size, where n can equal 4, 8, 16, 32, and so on. Each block is processed

independently [8]. To achieve the complete image again, these blocks are aggregated. This complete procedure

results in visual impairment in the image as discontinuity at the block edges or boundaries becomes visible, as

shown in Figure 4. This visual impairment is known as blocking artifacts.
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Figure 4. Horizontal and vertical boundaries.

The main cause of a blocking artifact is the loss in the accuracy of the transform coefficient resulting from

the independent quantization of each block. During the process of quantization, a large number of transform

coefficients are discarded. When an image is converted back to its spatial domain, a quantization error spreads

all over the image as quantization is done in the transform domain. Blocking artifacts are prominent when

coarse quantization is done. The visibility of blocking artifacts is high in plain areas or slowly varying portions

of the image.

In an image compression procedure, there is always a trade-off between the coding bit rate and coded

image quality. It is generally observed that with an increase in the coding bit rate, the quality of a reconstructed

image improves. However, this improvement is restricted by limited transmission bandwidth and the storage

space available. To improve the visual quality of an image, many blocking artifact removal algorithms have been

proposed such as DCT filtering, the spatial averaging method, wavelet filtering, and reconstruction techniques

for reconstructed images [39]. These algorithms can be classified into the preprocessed and postprocessed

methods. Preprocessed methods are applied in the spatial domain before encoding. While the postprocessing

technique can be applied in both the transform and the spatial domains, it is done on the reconstructed image

at the decoding end.

3. Implementation of the image compression algorithm

The image compression process begins with transform coding. The original image is rotated by ∅1 in the

x direction and ∅2 in the y direction to map f (x, y) via interpolation of
[
(cos∅1x+sin∅1y)

cos(∅1−∅2)
, (−sin∅2x+cos∅2y)

cos(∅1−∅2)

]
.

Mathematically, mapping via Bil Intr. is given in Eq. (18). Similarly, substituting the values i
′
= (xcos∅1 +

ysin∅1)/cos(∅1 −∅2) and j
′
= (−xsin∅2 + ycos∅2)/cos(∅1 −∅2) in Eq. (10), we are left with a Bic Intr. image.

f (xr) gives the nearest neighbor interpolated image.

f (xr) =
xr−1 + xr

2
< x ≤ xr + xr+1

2
(21)

The interpolated image of N ×N size is divided into subimages known as blocks of n× n size. The proposed

algorithm uses N = 512 and n = 8. Each block undergoes transformation independently. Mathematically,

F
a1,a2

∅1,∅2
= F a1,a2 (f [q, r])

where
q = (cos∅1x+ sin∅1y) / cos (∅1 − ∅2)
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and
r = (−sin∅2x+ cos∅2y) / cos (∅1 − ∅2) (22)

The resulting image is in the transform domain rather than the spatial domain. The next quantization of

obtained transform coefficients is done to remove the irrelevant information intact within an image. The

compression ratio plays an important role in determining the limit for quantization of transform coefficients.

The compression ratio is given as:

CR =
no. of compressed bits-no. of original bits

no. of original bits

To move the image back into the spatial domain, the complete procedure in the inverse direction is implemented.

Thus, the decompressed image is obtained. The quality of the obtained image is evaluated by means of different

IQMs such as PSNR, MSE, MSSIM, and GMSD, with the addition of the blocked MSE. Figures 5 and 6 show

the block diagram of the process. In block-based image compression, the algorithm-blocking artifacts are the

prominent visual impairment in the reconstructed and decoded image. Blocking can be detected by measuring

the MSE of the block boundaries in vertical and horizontal directions.

Figure 5. Encoding process of block-based image compression.

Figure 6. Decoding process of block-based image compression.

f

[
(cos∅1x+ sin∅1y)

cos (∅1 − ∅2)
,
(−sin∅2x+ cos∅2y)

cos (∅1 − ∅2)

]
=

1

(x2 − x1) (y2 − y1)
×

[
f (r11)

(
x2 −

(cos∅1x+ sin∅1y)
cos (∅1 − ∅2)

)(
y2 −

(−sin∅2x+ cos∅2y)
cos (∅1 − ∅2)

)
+

f (r12)

(
x2 −

(cos∅1x+ sin∅1y)
cos (∅1 − ∅2)

)(
(−sin∅2x+ cos∅2y)

cos (∅1 − ∅2)
− y1

)
+

f (r21)

(
(cos∅1x+ sin∅1y)

cos (∅1 − ∅2)
− x1

)(
y2 −

(−sin∅2x+ cos∅2y)
cos (∅1 − ∅2)

)
+

f (r22)

(
(cos∅1x+ sin∅1y)

cos (∅1 − ∅2)
− x1

)(
(−sin∅2x+ cos∅2y)

cos (∅1 − ∅2)
− y1

)]
(23)

Mathematically, the blocked MSE per pixel is given as:

MSEh +MSEv =

√√√√ 1

MN

9∑
i=8

9∑
j=8

[u (i, j)− v(i, j)]
2

(24)
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Table 1. Optimized parameters for NSDFrFT using different interpolation techniques, DFrFT, and FFT.

Compression % Method a1 a2 ∅1∅2 MSE PSNR MSSIM GMSD Blocked MSE

70

NSDFrFT-NN Intr. 0.93 –0.99 0.0524 21.4090 34.8248 0.9740 0.0952 0.1327
NSDFrFT-Bil Intr. 0.95 -0.98 0.0524 6.4165 40.0578 0.9815 0.0937 0.1295
NSDFrFT-Bic Intr. 0.99 –0.99 0.0524 4.7413 42.7402 0.9863 0.0306 0.1091
Jindal [40] 0.99 0.99 0 9.2335 38.4771 0.9824 0.0827 0.1867
Hu et al. [41] 1 1 0 4.8392 41.2831 0.9868 0.0090 0.2088

60

NSDFrFT-NN Intr. 0.95 –0.99 0.0524 19.3568 35.2625 0.9806 0.0859 0.1049
NSDFrFT-Bil Intr. 0.93 –0.99 0.0524 5.8370 40.4689 0.9870 0.0786 0.1024
NSDFrFT-Bic Intr. 0.95 –0.97 0.0524 3.2012 43.0777 0.9921 0.0292 0.0928
Jindal [40] 0.98 0.98 0 3.8224 42.3075 0.9894 0.0658 0.1640
Hu et al. [41] 1 1 0 2.1660 44.7741 0.9943 0.0054 0.1982

50

NSDFrFT-NN Intr. 0.98 –0.97 0.0524 12.5943 37.1291 0.9839 0.0767 0.1031
NSDFrFT-Bil Intr. 0.95 –0.99 0.0524 5.0572 41.0917 0.9907 0.0658 0.0929
NSDFrFT-Bic Intr. 0.93 –0.99 0.0524 1.7945 45.5913 0.9970 0.0168 0.0768
Jindal [40] 0.97 0.97 0 1.9608 45.2064 0.9964 0.0646 0.1367
Hu et al. [41] 1 1 0 1.0368 47.9740 0.9976 0.0034 0.1646

50

NSDFrFT-NN Intr. 0.97 –0.98 0.0175 11.8671 37.3874 0.9866 0.0759 0.0863
NSDFrFT-Bil Intr. 0.91 –0.99 0.0524 4.7800 41.3365 0.9947 0.0652 0.0830
NSDFrFT-Bic Intr. 0.98 –0.97 0.0524 1.0734 47.8230 0.9990 0.0117 0.0753
Jindal [40] 0.97 0.97 0 0.8604 48.7836 0.9975 0.0620 0.1304
Hu et al. [41] 1 1 0 0.3752 52.3879 0.9993 0.0031 0.1312

40

NSDFrFT-NN Intr. 0.97 –0.98 0.0175 11.8671 37.3874 0.9866 0.0759 0.0863
NSDFrFT-Bil Intr. 0.91 –0.99 0.0524 4.7800 41.3365 0.9947 0.0652 0.0830
NSDFrFT-Bic Intr. 0.98 –0.97 0.0524 1.0734 47.8230 0.9990 0.0117 0.0753
Jindal [40] 0.97 0.97 0 0.8604 48.7836 0.9975 0.0620 0.1304
Hu et al. [41] 1 1 0 0.3752 52.3879 0.9993 0.0031 0.1312

30

NSDFrFT-NN Intr. 0.93 –0.99 0.0175 11.3014 37.5995 0.9863 0.0710 0.0826
NSDFrFT-Bil Intr. 0.93 –0.99 0.0175 4.5991 41.5041 0.9955 0.0650 0.0705
NSDFrFT-Bic Intr. 0.95 –0.99 0.0175 0.9018 48.5798 0.9995 0.0109 0.0604
Jindal [40] 0.98 0.98 0 0.2653 53.8928 0.9978 0.0568 0.1284
Hu et al. [41] 1 1 0 0.1374 56.7501 0.9997 0.0025 0.1280

20

NSDFrFT-NN Intr. 0.94 –0.97 0.0175 11.1559 37.6558 0.9866 0.0666 0.0753
NSDFrFT-Bil Intr. 0.97 –0.99 0.0175 3.5342 42.6479 0.9957 0.0567 0.0645
NSDFrFT-Bic Intr. 0.95 –0.97 0.0175 0.6798 49.5615 0.9997 0.0106 0.0582
Jindal [40] 0.99 0.99 0 0.0832 58.9274 0.9988 0.0532 0.1190
Hu et al. [41] 1 1 0 0.0374 62.4069 0.9999 0.0029 0.1269

10

NSDFrFT-NN Intr. 0.92 –0.97 0.0175 4.2158 41.8820 0.9867 0.0647 0.0650
NSDFrFT-Bil Intr. 0.93 –0.96 0.0175 2.5424 44.0784 0.9960 0.0545 0.0568
NSDFrFT-Bic Intr. 0.95 –0.97 0.0175 0.2632 53.9284 0.9999 0.0023 0.0485
Jindal [40] 0.98 0.98 0 0.0305 63.2888 1.0000 0.0094 0.1052
Hu et al. [41] 1 1 0 0.0054 70.7679 1.0000 0.0039 0.1270

where MSEh is the MSE in the horizontal direction and MSEv is the MSE in the vertical direction. M and N

are the number of rows and columns in a block. However, the MSE of overlapping pixels has to be subtracted.

4. Simulation results

The algorithm of NSDFrFT, with Bil Intr., Bic Intr., and NN Intr., has been implemented on several test images.

The simulation results for Lena (as the test image) are given in Table 1 for compression ratios of 10%–70%.
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Table 1 compares the three interpolation methods with the DFrFT [40] and FFT [41]. The optimized

parameters a1, a2, ∅1, ∅2 , MSE, PSNR, MSSIM, GMSD, and blocked MSE are considered as parameters of

comparison. The values of ∅1, ∅2 in the case of NSDFrFT and a1a2 in the case of DFrFT are considered

similar for simplicity’s sake. From Table 1, the main observations are that NSDFrFT-Bic Intr. performs better

in comparison to NSDFrFT-Bil Intr. and NSDFrFT-NN Intr. The process of interpolation involved in the

NSDFrFT definition performs an additional operation as a low pass filter (LPF), i.e. the softening of edges or

sharp transitions, enabling NSDFrFT to perform better in terms of reduced blocking. NSDFrFT-Bic Intr. also

performs better in terms of higher compression than DFrFT in every respect. Blocking artifacts are significant

for higher compression ratios.

Table 2 shows the computational time of NSDFrFT-NN Intr., NSDFrFT-Bil Intr., NSDFrFT-Bic Intr.,

and DFrFT. The computational time includes both encoding and decoding time because the number of pa-

rameters in DFrFT is only two a1 and a2 in comparison to NSDFrFT, which has four parameters, namely

a1, a2, ∅1, ∅2 , for computation.

Table 2. CPU time for different definitions of NSDFrFT, DFrFT, and FFT.

Transform technique CPU time (s)
NSDFrFT-NN Intr. 20.7043
NSDFrFT-Bil Intr. 20.1349
NSDFrFT-Bic Intr. 20.0719
Jindal et al. [40] 18.6351
Hu et al. [41] 09.7235

Therefore, the required computational time for encoding and decoding has also decreased. NSDFrFT-Bic

Intr. takes less time as the number of calculations is reduced since it takes 16 points for interpolation. On the

other hand, NSDFrFT-Bil Intr. takes 4 points for interpolation and NSDFrFT-NN Intr. takes only 2 points,

resulting in an increment in the number of calculations. For further study, the images are categorized into

three classes: high frequency images (Baboon, Grass), medium frequency images (Barbara, House), and low

frequency images (Pepper, Boat) [42]. The required images are taken from http://sipi.usc.edu/database/ for

simulation. Tables 3 and 4 outline the optimized IQMs and blocked MSE at their respective rates of 70% and

50% compression for all classes. PSNR and MSE are better for images of all classes in the case of NSDFrFT-Bic

Intr. in comparison to DFrFT. The optimized values of MSSIM and GMSD show that the reconstructed image

has high structural similarity to the original image along with high subjective image quality for low frequency

images compressed via NSDFrFT-Bic Intr. However, reconstructed images of all classes have lower blocked

MSE for NSDFrFT-Bic Intr. than with DFrFT.

The compressed images of Lena are compared using NSDFrFT-NN Intr., Bil Intr., Bic Intr., DFrFT, and

FFT for compression ratios of 50% and are shown in Figure 7.

The plot of the GMSD score vs. compression ratio shown in Figure 8 suggests that subjective image

quality is high for NSDFrFT-Bic Intr., which considers the local image distortions caused by local structure

diversity. The plot of the MSSIM index vs. the compression ratio given in Figure 9 demonstrates that the

reconstructed image from NSDFrFT-Bic Intr. has a high structural similarity to the original image in comparison

to compared transform techniques. The plot of blocked MSE vs. compression ratio in Figure 10 suggests that

the NSDFrFT-Bic Intr. reconstructed image has a lower degree of blocking compared to transform techniques.
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Figure 7. The compressed Lena image at 10% compression (a–e).

5. Discussion and conclusion

The practical effectiveness of NSDFrFT in the image compression algorithm for reducing the blocking artifacts

was implemented. The summarized results of the analysis show that NSDFrFT with different interpolation

methods resulted in higher image quality parameters than DFrFT with a relatively high GMSD score. We can

observe that for an image divided into 8 × 8 blocks, the NSDFrFT definition utilizing Bic Intr. for mapping

purposes performed better with higher compression percentages. NSDFrFT was compared with the discrete

factional transform for Lena and Pepper of size 512 × 512 at 50% compression. An improvement of 0.39 dB

for Lena and 4.29 dB for Pepper in PSNR was achieved. However, computational lag in this case for Lena and

Pepper are 2.81 s and 2.70 s, respectively, from DFrFT. Among the different types of images used for analysis,
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Figure 8. Compression ratio vs. GMSD score for differ-

ent definitions of NSDFrFT, FrFT, and FFT.

Figure 9. Compression ratio vs. MSSIM index for differ-

ent definitions of NSDFrFT, DFrFT, and FFT.

Figure 10. Compression ratio vs. blocked MSE for different definitions of NSDFrFT, DFrFT, and FFT.

low frequency images responded better for NSDFrFT-Bic Intr. than for DFrFT. The collective results of all

image quality parameters suggest that NSDFrFT-Bic Intr. performs better for higher compression percentages.

The images compressed using NSDFrFT resulted in reduced blocking at the boundaries of the block. All

the variations of NSDFrFT, namely NSDFrFT-NN Intr., NSDFrFT-Bil Intr., and NSDFrFT-Bic Intr., resulted

in a reduced number of blocking artifacts in the compressed images in comparison to DFrFT. However, of

all of the variations of NSDFrFT implemented, NSDFrFT-Bic Intr. resulted in minimal blocked MSE. An

improvement in blocked MSE of about 53.34% for Lena and 74.71% for Pepper was achieved for NSDFrFT-Bic

Intr.

Interpolation is a key aspect in the definition of NSDFrFT. As a result, improving the interpolation

technique can be a way to achieve a highly improved performance. The computational time of the proposed

method is longer than that of DFrFT and thus improvement in this regard needs to be considered for future

work.
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