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Abstract: Recent evolutions in mobile networks have led to increased resource demands, especially from indoor users.

Although recent technologies such as LTE have an important role in providing higher capacity, indoor users are not

satisfied adequately. Femtocell networks are one of the proposed solutions that support high data rates as well as better

indoor coverage without imposing heavy costs to network providers. However, interference management is a challenging

issue in femtocell networks, mainly due to dense and random deployment of femto access points (FAPs). Therefore,

distinct radio resource management (RRM) methods are employed to ensure acceptable levels of call dropping/blocking

probability and spectral efficiency. However, the mobility of mobile users is an important issue in resource management

of femtocell networks that has not been considered adequately. In this paper, we propose an algorithm that predicts the

resource requirements of FAPs regarding mobility of their users and allocates the resources to the FAPs based on an

extended load-based RRM algorithm that prioritizes handoff calls to incoming calls. Simulation results illustrate that the

proposed method has shown lower call dropping probability and higher spectral efficiency compared to the benchmark

algorithms.
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1. Introduction

Femto access points (FAPs) are low-power and low-cost base stations in heterogeneous cellular networks that

provide higher coverage and quality of service (QoS) for indoor user equipment (UE) [1]. Radio resource

management (RRM) is an important issue in heterogeneous networks. Given that the FAPs share the same

resources with the macro base station (MBS) and also the other FAPs, RRM should mitigate the interference

level more carefully [2]. FAPs can be employed in different access modes, namely open, closed, and hybrid

access. In this paper, we assume an open access mode where all cellular users are allowed to use the FAP.

Several studies investigated the RRM problem in femtocell networks. The scheme named FERMI [3]

uses measurement-driven triggers to separate users that require just link adaptation from those that require

resource isolation, in a WiMAX network. The authors proposed a mechanism for joint scheduling of both types

of users in the same time frame. Afterwards, an efficient algorithm was employed to determine fair resource

allocation based on graph theory regarding utilization. The adaptive clustering heuristic algorithm (ACHA)

[4] uses clustering of femtocells to reduce co-tier interference by proper subchannel and power allocation. It is
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noteworthy that in all of the above works, users’ mobility was ignored while it may lead to mitigation of users’

QoS and reduction of resource utilization.

Mobility of users is one of the important parameters in femtocell networks that affects the users’ QoS and

resource utilization, especially in open access FAPs. Since the coverage of the FAPs is limited, UEs can likely

move out of the coverage of a FAP in a short time. Therefore, the number of handovers is higher compared to

macrocell networks [5]. The authors of [6] proposed an admission control method that avoids handoff overheads.

Accordingly, supposing the femtocell extended area around the typical femtocell area, fast users in this area are

connected to the MBS whereas slow users are associated with the FAP or the MBS that was already connected

to it. However, this method does not consider the load changes arising from mobility in resource allocation of

FAPs. The authors of [7] proposed joint resource allocation and power control considering the users locations

and demands. Their method maximizes the network throughput and minimizes the interference level by means

of linear programming.

Mobility prediction is an efficient technique that assists RRM. When the handoff procedure is initiated,

if the new FAP does not have enough resources to support the handoff call, the call will be dropped. However,

mobility prediction could be exploited to reserve the radio resources in target access networks towards reducing

the call dropping probability and improving resource utilization. There are recent studies such as [8–12] that

present predictive methods for femtocell networks. To improve the physical cell identity (PCI) collision problem,

[8] introduced a dynamic PCI allocation algorithm based on Markov chains to anticipate the high handover

requested FAPs and assign a specific number of PCIs to these FAPs while the other FAPs share the remaining

PCIs. The approach in [9] presents offiine association control algorithms for femtocell networks to improve

the association control problem using mobility prediction. Similarly, the authors of [10] proposed a predictive

approach to reduce the handoff delay. In their algorithm, the reference signal received power is anticipated

using time series analysis to activate layer 3 handoff prior to the layer 2 handoff procedure. In [11], the authors

introduced an algorithm that determines temporary FAP UEs by predicting the next locations of mobile UEs

to reduce the handoff overhead. On the other hand, the proposed solution in [12] presents an adaptive recursive

least square algorithm in order to predict the future received signal strength (RSS) samples of the target FAPs

and the current serving FAP. Thereafter, the list of candidate FAPs is attained based on the estimated signal

to interference plus noise ratio (SINR) and predicted RSS, and the FAP that results in the highest throughput

is selected.

Regarding the above approaches, mobility prediction has been exploited in order to improve handoff

performance. However, these methods have not benefited from mobility prediction to improve the resource

reservation and interference management among FAPs. The authors in [13] studied a new approach that

improves variable bit rate video traffic in downlink transmission. This scheme exploits a resource reservation

algorithm and a handover utility function that take the future video users’ connections into account. Similarly,

a resource reservation and call admission control mechanism was designed in [14] to specify whether a newly

arriving call or a handoff should be accepted and to preserve the resources for probable handoff connections

before those take place. In this respect, the disconnection probability of the handoffs is derived based on

instantaneous mobility characteristics such as location and speed. However, it must be noted that the method

tries to preserve the quality of a connection during mobility of the user without regarding the performance and

resource utilization of the overall network, considering long-term history and mobility patterns.

To this end, in this paper we propose a resource allocation mechanism for orthogonal frequency division

multiple access (OFDMA) femtocell networks in open access mode that predicts the future load of the FAPs
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and addresses a resource allocation algorithm to preserve the radio resources of all the FAPs regarding predicted

loads. In contrast to the existing algorithms, such a goal is achieved by utilizing mobility prediction based on

users’ movement histories, so the FAPs have enough resources for probable handoff calls.

The reminder of this paper is organized as follows: Section 2 introduces baseline methods. Section

3 presents system model and assumptions. Section 4 explains our mobility-aware algorithm and Section 5

presents simulation results. The paper is finally concluded in Section 6.

2. Background

In this section, two algorithms that are employed in the proposed method are introduced. Moreover, the ACHA

method that is used as the benchmark method is described in more detail.

2.1. FERMI method

FERMI [3] is a resource management algorithm that includes the following parts:

• Client categorization: The FERMI algorithm uses measurement-driven triggers to classify users that

require only link adaptation (LA) and reuse of the frequency resources (class LA) from those that require

resource isolation (class ISO). Users of class LA have weak interference from other FAPs. If the SINR level

of LA users is above a predefined threshold, changing to a lower level modulation and coding scheme (MCS)

could be adequate to mitigate the interference. However, users of class ISO have strong interference. As

a result, decreasing the MCS level is not adequate and resource isolation is considered for alleviating the

interference.

• Frequency domain isolation: According to the preceding step, for users that are in ISO, the resources are

isolated in each femtocell in the frequency domain. The power transmitted by a FAP is divided over its

OFDM subchannels. With a lower number of subchannels, the average power per subchannel increases

and so the FAP is permitted to apply a higher level MCS for interference compensation. If more FAPs

have interference in a domain, the subset of available subchannels per FAP is decreased, which leads to

an increase of the average power. Thus, the throughput per subchannel and subsequently the network

capacity increases.

• Zoning: The algorithm presents a frame structure for both types of users. The zoning method determines

the frame ratio (in symbols) for both types of users in each FAP.

• Resource allocation: The FERMI method proposes a graph-based resource allocation method. It applies

novel algorithms to allocate subchannels to interfering FAPs considering a weighted max-min fairness

model. The FERMI resource allocation method is not mobility-aware and only allocates the resources

based on current load of FAPs. As will be seen, an extension of the FERMI resource allocation method

will be proposed in this paper. In the proposed method, the resources are allocated to the FAPs based on

predicted loads and so the number of subchannels allocated to the FAPs is closer to the number of their

required subchannels in the near future.

2.2. Q-FCRA algorithm

QoS-based femtocell resource allocation (Q-FCRA) [15] is a cluster-based resource allocation algorithm that

takes user prioritization into account. In this paper, we employ the Q-FCRA clustering method in order to
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eliminate centralized resource management and improve scalability by devolving resource allocation task to

cluster heads (CHs). To indicate the CHs, each FAP sends its interference degree (number of interfering FAPs)

to its one-hop neighbors at first. The FAP with the highest interference degree among its neighbors is the CH.

Otherwise, the neighboring FAP that has the highest interference among its one-hop neighbors is adopted as

the CH. If the FAP has no CH between its one-hop neighbors, i.e. all of the neighboring FAPs are members

of other CHs, this FAP also becomes a member of the neighboring cluster that has the CH with maximum

interference degree. Hence, the Q-FCRA clustering algorithm tries to classify FAPs in clusters such that more

overlapping FAPs are in the same cluster. The CH is one of the FAPs in a cluster that has maximum aggregated

interference with other FAPs that have formed the cluster.

2.3. ACHA algorithm

The ACHA algorithm [4] classifies FAPs in distinct clusters such that those that have no mutual interference

are placed in the same cluster and so reuse the same subchannels. The number of subchannels assigned to the

FAPs of a cluster is determined with respect to the number of FAPs in that cluster. Like the FERMI method,

this scheme does not consider users’ mobility and only allocates the resources based on current load of FAPs.

Moreover, this method allocates the resources to the FAPs equally and does not attend to the resource demands

of the FAPs. This assumption results in reduction of users’ QoS and resource utilization.

3. System model and assumptions

The proposed algorithm is concentrated on downlink resource allocation for OFDMA-based femtocell networks.

The assumed network consists of a macrocell and M FAPs, F ={f1 , f2 . . . fM } . We employ an

orthogonal channel assignment that eliminates the cross-layer interference between femtocells and the macrocell.

Regarding the total number of subchannels as N , the number of subchannels dedicated for the FAPs and the

macrocell are Nf and Nm , respectively. The following relationship is thus established:

N = Nf +Nm (1)

The transmission power of each FAP is assumed to be PT .

We use the set U = {u1 , u2...uK } to denote the UEs in the network where K is the number of UEs.

Each user is only connected with one FAP or MBS. As shown in Eq. (2), Cmh indicates the attachment of the

hth UE (uh) to the mth FAP (fm).

Cmh=

{
1, uhis attached to fm

0, otherwise
(2)

The allocation matrix Amn illustrates the allocation of subchannel n to fm as shown below:

Amn =

{
1, if subchannel n assigned to fm

0, otherwise
(3)

Denoting the channel gain between fj and the UEs associated with fi as Li,j , the SINR value of the user of

fiassuming that it only receives interference from FAP j is given by SINRi,j , which is calculated as:

SINRi,j =
Li,i × PT

Li,j ×PT +σ2
(4)

In Eq. (4), σ2 is the power of the additive white Gaussian noise.
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Based on the given femtocell network, the interference graph G = (V,E) is constructed. The vertex

set is represented by V = {v1 ... vM } where each vertex denotes a FAP. E is the bidirectional edge set. The

interference relationships between the FAPs and the UEs can be simplified to interference relationships between

the FAPs. Hence, the nodes vi and vj ∈ V (i ̸= j , and i , j ∈ {1, 2...M } ) are connected by an edge if and

only if the minimum of SINRi,j and SINRj,i is lower than an SINR threshold, Γ, as shown in Eq. (5).

Eij = Eji =

{
1, if min(SINRi,j , SINRj,i) < Γ

0, otherwise
(5)

3.1. Proposed method

In this section, the proposed method is precisely described. The purpose of this method is providing a dynamic

load-based RRM for femtocell networks and it considers the mobility of users to predict the load and allocate

the resources based on prediction results. According to Figure 1, the proposed method consists of two modules:

the location prediction module, which is located in UEs, and the resource allocation module, which is located

in CH FAPs. We assume that each FAP executes the Q-FCRA clustering algorithm and so the clusters were

formed earlier.

  

  

 

 
  

 

 

Running clustering algorithm 
to determine the CH  

Mobility Prediction Modules  
  

: Femto Access Point  

: User Equipment (UE)  

 

Clusters  

Macro Base Station  
 

 

 

Cluster Head (RRM 
Module)  

Figure 1. The clustering, location prediction, and RRM modules in proposed method.

3.2. Location prediction module

In this section, we discuss the location prediction module, which is located in UEs. Therefore, each UE

periodically predicts its next place and reports it to the resource allocation module. In order to apply the

location prediction algorithm, we model the network environment as a grid where each UE is located in one

of the grid locations regarding GPS positioning information. The grid is shown by LOC = {loc1, . . . , locNg ,

where Ng is the number of grid locations. According to Figure 2, we model the mobility of a user as a sequence

of grid locations. In the location prediction module, we exploit the profile-based prediction algorithm that was

proposed in [16]. This algorithm tries to predict the next location(s) to be probably visited by the mobile
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user, using the list of local profiles. However, as the method of [16] does not always respond, first/second-order

Markov-based predictors are also exploited by the module (inspired by [17]).

         

         

         

         

    

MBS 

    

       

         

         

         

         

FAP 

Figure 2. The mobility of users considered as a sequence of grid locations.

For location prediction, each UE is responsible for preparing the mobility profile of its user. A profile is

determined as a set of possibly similar sequences of grid locations (from a source location to a destination one)

traveled to by the mobile user.

The main prediction mechanism is based on identifying the next local profile fu
i ∈ Fu , 1 ≤ i ≤ NPu , to

be possibly followed by the mobile user, based on its current location. For that, let locc ∈ LOC and Fu
c ∈ Fu

be the current location and the set of all local profiles of the mobile user containing locc , respectively. If

locc−1 ∈ LOC is the previous location visited by the user, the probability Pf that the mobile user follows the

local profile, fu
i ∈ Fu

c , is as follows [16]:

Pf=P (fu
i | locc−1)=

Sfi|locc−1

NPu
c∑

j=1

Sfj |locc−1

(6)

In Eq. (6), NPu
c is the number of profiles containing the current location locc , and Sfk |locc−1 is the number of

times that profile fu
k has been followed by the mobile user u when the previous visited location belongs to fu

i ,

i.e. locc−1 ∈ fu
i . Then, in every profile, the next locations are regarded and their corresponding probabilities

are considered to anticipate locc+1 [16].

In the mentioned procedure, if the profile list is empty, the model will not be able to perform predictions.

An empty list means that no profile has been pursued by the mobile user that contains the current location,

locc . In this case, [16] proposed to exploit Markov-based predictors such as the one in [17]. Each UE obtains

the probabilities of being in the next likely locations and reports them to its FAP. The above procedure reruns

whenever the UE changes its location in the assumed grid.
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4. Resource allocation module

In this section, the probabilistic load-based resource allocation scheme is presented. Centralized RRM ap-

proaches are not scalable and suffer from low performance whenever the number of FAPs increases. Therefore,

the clustering method of [15] that was mentioned in Section 2.2 is used to cluster the FAPs and then the pro-

posed resource allocation mechanism is performed in each of the CHs. The pseudocode of Table 1 describes the

proposed algorithm in detail. Moreover, Figure 3 and Table 2 show the proposed resource allocation method

by an example assuming a particular case that only considers one cluster.

A 

(1) 

 

F 

(3) 

 

G 
(2) 

 

D 

(1) 

 

E 

(1) 

 

C 

(2) 

 

B 

(2) 

 

Figure 3. An example of a constructed graph with triangulation edge and first selected maximal clique. The loads are

shown in parentheses and it is assumed that Nf is 20.

The algorithm is an extension of the FERMI resource allocation algorithm [3], a demand-based resource

allocation mechanism that aims at assigning appropriate numbers of subchannels to the FAPs regarding their

demands in such a way that resource utilization is maximized. However, in contrast to the baseline algorithm, the

effective demands of FAPs and also the MBS are determined based on mobility prediction results. Accordingly,

for any UE, uk in each epoch (T ), the next possible locations, and their arrival probabilities are gathered (output

of location prediction module, which is reported to the FAP). The effective demand of each grid location, locn ,

is determined using Eq. (7).

Deff (n) =
K∑

k=1

Pk,n × dk (7)

In Eq. (7), Pk,n and dk are the probability of arrival ofuk into the grid location, locn , and the resource demand

of uk , respectively.

Then, for each FAP i in cluster r (where the algorithm is executing in its cluster head), the load li,r is

calculated by collecting the effective demands of the underlying grid locations assuming a coverage distance (dth)

for FAPs (lines 5–13). The probable loads of the grid locations that are not covered by FAPs are considered as

the MBS load, Lmbs (line 17).
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Table 1. Proposed mobility and load aware resource management algorithm.
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Table 1. Continued.

Table 2. The number of assigned subchannels for vertices (FAPs) of A to F.

Vertices Number of assigned subchannels

A

B

C

D

E

F

G

Min(4,5,7) = 4

Min(8,11) = 8

Min(8,5) = 5

Min(8,11,7) = 7

15

8

13

In the mentioned example, the supposed probable future loads are shown in nodes of the interference

graph of Figure 3. It is assumed that the probable loads of FAPs have been calculated based on previously

given location prediction results.

By accomplishing a triangulation process (adding edges to triangulate a graph as shown by dotted lines

in Figure 3), the new graph G+
r = (VrE

+
r ) is generated from the interference graph of FAPs, G . Afterwards,

all maximal cliques,cj,r , are determined (for each j ∈ {1..mr} where mr indicates the number of maximal

cliques in cluster r). Then the method of [18] is used to determine the aggregate load of each maximal clique,

i.e. Lj,r , by adding the loads of all vertices in that maximal clique (lines 14 and 15 of the proposed algorithm).
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Now the fraction of resources used by MBS and FAPs (Nf and Nm) must be determined. The FERMI

algorithm determines these values proportional to the load of MBS and the maximum load of maximal cliques

(lines 18 and 19). Nf and Nm are calculated from the following equations:

Nm =

⌊
Lmbs

Lmbs + Lj,r
×N

⌋
(8)

Nf =N−Nm (9)

Then, in line 21, we place every vertex of cluster clr in Vr .

Focusing on our example, we have four maximal cliques (where one of the maximal cliques has been

indicated by a circle in Figure 3 and the load of this maximal clique is 5). In Figure 3, we assume that Nf is

equal to 20, which is equal to the number of available subchannels for each maximal clique.

Afterwards, the pairs (si , ti) are determined for each vertex (line 23) and the vertex (FAP) with the

highest value of si + ti is selected (line 26). Here, si refers to the highest load of the different maximal cliques

that this vertex (i) belongs to and ti is the number of cliques that this vertex belongs to. Accordingly, in

Figure 3, vertex A is selected (since sA = 5 and tA = 3).

A weighted max-min fair allocation is then adopted from FERMI [3] to indicate the number of subchannels

for the above selected vertex. The number of subchannels assigned to vertex i (AFi,r) is obtained from the

minimum value of the ratio of li,r (load of the FAP) to Lj,r (load of the j th maximal clique) between all

maximal cliques that i belongs to as shown in Eq. (10), where Rj is initially set to Nf .

AF i,r =minj: vi,r∈cj,r

⌊
li,r ×Rj

Lj,r
+0.5

⌋
(10)

As an example in Figure 3, vertex A is in 3 maximal cliques and the loads of these maximal cliques are 5, 4,

and 3, so the weighted max-min fair value for vertex A is calculated as below, recalling that Ri is 20:

AFA = min

(⌊
1 × 20

5
+0.5

⌋⌊
1 × 20

4
+0.5

⌋⌊
1 × 20

3
+0.5

⌋)
= 4. (11)

Therefore, 4 subchannels are allocated to FAP A at this step.

After that, the number of allocated subchannels is decreased from the number of available resources of

the maximal clique, i.e. Rj . The corresponding vertex is also emitted from its maximal clique. Finally, the

load of maximal cliques, pairs (si , ti), and AFi,r get updated for all remaining vertices (e.g., vertices B, C,

D, E, F, and G in Figure 3). This procedure is performed for each vertex of the cluster (line 20) subsequently.

Consequently, the number of subchannels assigned to the FAPs of Figure 3 is finally determined as shown in

Table 2.

It is noteworthy that as the proposed method gives higher priority to handoff calls, the subchannels that

are assigned to the base stations are first allocated to the handoff calls rather than new incoming calls (lines

36–50).

5. Performance evaluation

In this section, we evaluate the efficiency of our proposed method through a simulated network. The system

parameters and simulation assumptions are presented in Table 3. In each simulation scenario, the FAPs are
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located in the center of 10 m × 10 m apartments that are considered as grid locations. The number of FAPs

is considered between 10 and 70 (when the number of UEs is 50) and the number of UEs is considered between

10 and 70 depending on each scenario. The path loss is calculated using Eq. (12) at distance d meters from

the transmitter [19]. Also, each UE requests a random number of subchannels between 1 and 5 according to a

uniform distribution.
Pathloss = 37 + 30×log10(d) (12)

We use the NCSU human mobility trace [20], which is collected from various sites. Among them, we have used

a university campus (KAIST) mobility model as the training and test data to evaluate the performance of our

approach.

Table 3. Simulation parameters.

Values Parameters

13 dBm

43 dBm

5 MHz

37 + 30 × log10(d)

9 dB

25

[10, 60]

[10, 70]

Grid model

200 m × 200 m

10 m × 10 m

Center of the area

Center of the grid locations

Uniform distribution in [1,5]

FAP power

MBS power

Bandwidth

Path loss

Receiver noise figure

Number of subchannels

Number of FAPs

Number of users

FAP layout

Network area

Grid size

MBS location

FAP location

Number of subchannels demanded

It should be noted that according to [21], the call duration time has a log-normal distribution with a

mean of 1 min. The simulation results are obtained for 200 min and due to random places of FAPs, 30 random

scenarios with variable seeds are tested and the average of the simulation results is reported. In every scenario,

the possibility of deploying a FAP in each grid location (apartment) is determined according to a uniform

distribution.

5.1. Simulation results

The simulation results compare the demand-based resource allocation algorithm of FERMI [3] and the ACHA

method [4] to the proposed mobility-aware method.

In the location prediction module, for each user, a list of locations that the UE is likely to be at in the

future (and their presence probabilities) is generated at every time step. Given that we know the user’s next

location from the dataset, Figure 4 demonstrates the prediction accuracy versus the time steps. According

to Figure 4, by increasing the grid resolution, the number of location indices within the network increases,

which results in more precision in locating users. In the remaining evaluations, the resolution of 10 m × 10 m

apartments is considered.
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Figure 4. Mobility prediction accuracy.

Network capacity and subchannel utilization are plotted versus the number of FAPs and the number of

users for all mentioned methods as shown in Figures 5 and 6, respectively. Eqs. (13) and (14) show the definition

of network capacity [22] and subchannel utilization metrics, where BW sc is the bandwidth of a subchannel

(here, 180 kHz) and Aik illustrates the allocation of subchannel i to FAP fk .
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Figure 5. Network capacity comparison versus the number of FAPs (a) and the number of users (b).

Capacity =
K∑

k=1

N∑
i=1

Ai,kBW sclog2(1+SINRi,k) (13)

1987



ZAREI et al./Turk J Elec Eng & Comp Sci

Utilization =
The number of subchannels that are used by UEs

Total number of subchannels
(14)

As can be seen in Figures 5a and 5b and 6a and 6b, the network capacity and utilization of the proposed

algorithm are higher compared to the benchmark approaches. The reason is that, in the proposed method, the

resources are allocated to the FAPs based on the predicted status of the future load and therefore the number of

subchannels that are assigned to the FAPs is closer to the amount of their required channels in the near future.

However, in traditional methods that only consider the static load, the resources may be underutilized due to

the mobility of the load over time. Also, as ACHA is not a load-based algorithm, it cannot discriminate among

different loads and so inappropriate allocation of radio resources reduces the capacity and utilization more.
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Figure 6. Resource utilization comparison versus the number of FAPs (a) and the number of users (b).

As can be observed in Figures 5a and 6a, when the number of FAPs is low, users are less likely to be

connected to the FAPs. As a result, the resource reuse and thus the utilization is low. Also, as users have

fewer resources overall, network capacity is low, too. Increasing the number of FAPs, more UEs can connect to

the FAPs. Thus, resource reuse increases and UEs connect through nearby base stations with better channel

conditions, which will increase network capacity and utilization. Similarly, in Figures 5b and 6b, it is shown

that by increasing the number of UEs, the network capacity and resource utilization increase until they reach

steady points. This is due to the fact that increasing the number of users causes higher exploitation of network

resources, but finally due to the saturation of network resources, further increase in UEs does not increase the

utilization as further requests are blocked due to the lack of radio resources.

The call dropping probability (CDP) and call blocking probability (CBP) are other important metrics

that are used for evaluation of the proposed method. Call dropping and call blocking occur whenever a base

station has no free subchannel to allocate to a mobile user. Here, call blocking refers to blocking new incoming

calls due to the lack of available subchannels, and call dropping refers to the drop of ongoing calls due to the lack

of subchannels in target cells after handover of the UEs. The goal of almost all resource management methods

is to lower the CDP and CBP while maintaining higher bandwidth utilization. Figures 7 and 8 represent CDP

and CBP versus the number of FAPs and the number of UEs where CDP and CBP are calculated from Eqs.

(15) and (16), respectively.
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Figure 7. Call dropping probability comparison versus the number of FAPs (a) and the number of users (b).

(a)                      ( b )  

0.04

0.09

0.14

0.19

0.24

0.29

0.34

0.39

10 20 30 40 50 60 70

B
lo

ck
in

g 
P

ro
b

ab
il

it
y

 

Number of FAPs 

FERMI-with prdiction(Proposed Method)

FERMI-without prediction

ACHA-without prediction

0.04

0.09

0.14

0.19

0.24

0.29

0.34

0.39

0.44

10 20 30 40 50 60 70

B
lo

ck
in

g 
P

ro
b

ab
il

it
y

 

Number of UEs 

FERMI-with prdiction(Proposed Method)

FERMI-without prediction

ACHA-without prediction

Figure 8. Call blocking probability comparison versus the number of FAPs (a) and the number of users (b).

CDP =
Number of dropped calls

Total number of handoff calls
(15)

CDP =
Number of blocked calls

Total number of incoming calls
(16)

With respect to Figures 7a and 7b and 8a and 8b, we see that the proposed algorithm has lower CDP and

CBP compared to the FERMI resource allocation method. This is due to the fact that the location prediction

module predicts the resource requirements of FAPs. Hence, the target FAPs have possibly adequate resources

for handoff calls, which reduces the CDP. Consequently, there is more chance of even accepting new calls with

the remaining channels, which decreases CBP, too. ACHA does not consider users’ demands and so the CDP

and CBP of ACHA are higher than those of the other methods.

As shown in Figures 7a and 8a, by increasing the number of FAPs, the CDP and CBP decrease. The
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reason is that by increasing the number of FAPs, the amount of resources that are reused within the network

increases. In contrast, in Figures 7b and 8b, it is shown that by increasing the number of users, the CDP and

CBP are increased. According to the figures, when the network reaches the saturation state, this increase is

more gradual.

It should be noted that when comparing Figures 7a and 7b with Figures 8a and 8b, CDP is slightly lower

than CBP as we have prioritized handoff calls over new calls.

5.2. Complexity analysis

The proposed algorithm consists of three parts including FAP clustering, a location prediction module, and

a resource allocation module. As the clustering algorithm is selected independently of the proposed method,

we do not discuss the complexity of the exploited clustering algorithm. The resource allocation algorithm is

executed by each CH in every time step, T . According to [18] the algorithm has a triangulation process such

that its time complexity is of O ( |V ||E|) and a maximal cliques search, which is of O ( |V |).
As in [16], implementing the location prediction algorithm at the UEs allows the network to prevent any

scalability constraints. This part of complexity is imposed to UEs. The location prediction module uses one

of the local user profile-based or Markov-based mechanisms where the complexity of these methods depends

on the number of stored locations (due to training of the predictor). In the first scheme, if the total number

of stored sequences and path length are equal to N and L , respectively, then the total number of paths is as

below:

num paths = N − L+ 1 (17)

As the paths should be mutually compared in order to evaluate the similarity, and regarding the fact that N

is much larger than L , the time complexity of training will be O (N2). Also, for the second method, as any

location in the user movement history should be compared to the current location, the complexity is O (N).

Thus, depending on the number of user profiles, the time complexity of mobility prediction will be between O

(N) and O (N2). As noted, the prediction is executed every time step T similar to the resource allocation

algorithm. Therefore, the value of T must be determined in such a way that not only do the algorithms have

enough time, but also the prediction accuracy remains acceptable.

6. Conclusion

In this paper, we proposed a mobility- and load-aware resource allocation algorithm in OFDMA femtocell

networks that predicts the resource requirements of FAPs regarding mobility of UEs. Therefore, resources are

allocated to the FAPs more efficiently using a load-aware resource management algorithm, which is based on a

conventional graph-based method. Through simulation results, we show that our method can achieve significant

gain in terms of network capacity, subchannel utilization, CDP, and CBP compared to traditional benchmarks.

Furthermore, by prioritizing handoff calls to new calls, we have reduced the CDP.
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