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Abstract: Mobile robot navigation and obstacle avoidance in dynamic and unknown environments is one of the most

challenging problems in the field of robotics. Considering that a robot must be able to interact with the surrounding

environment and respond to it in real time, and given the limited sensing range, inaccurate data, and noisy sensor

readings, this problem becomes even more acute. In this paper, we attempt to develop a neural network approach

equipped with statistical dimension reduction techniques to perform exact and fast robot navigation, as well as obstacle

avoidance in such a manner. In order to increase the speed and precision of the network learning and reduce the noise,

kernel principal component analysis is applied to the training patterns of the network. The proposed method uses two

feedforward neural networks based on function approximation with a backpropagation learning algorithm. Two different

data sets are used for training the networks. In order to visualize the robot environment, 180◦ laser range sensor (SICK)

readings are employed. The method is tested on real-world data and experimental results are included to verify the

effectiveness of the proposed method.

Key words: Obstacle avoidance, robot navigation, artificial neural networks, dimensionality reduction, function ap-

proximation

1. Introduction

Mobile robots are increasingly used in industry, agriculture, space exploration, military applications, etc. One

of the most important research topics in the field of robotics is mobile robot navigation. Intelligent navigation

of a mobile robot is autonomous behavior to generate a collision-free trajectory from an initial to a target

position without human intervention. Sensor noise, stochastic actions, real-time response, online learning,

limited training time, and situated representations are among the critical factors that make robot learning

an extremely challenging problem [1]. Furthermore, the intelligent navigation of a mobile robot in dynamic

environments, considering the kinematic constraints of the robot, is an especially difficult optimization problem.

In order to generate a trajectory from the initial to the desired location in obstacle avoidance conditions, the

robot must also possess perception, reasoning, and recognition characteristics, as well as the ability to learn

and approximate any function with an appropriate generalization performance. For decades, various types of

navigation methods have been developed to deal with the motion planning problem of mobile robots, such as the

artificial potential field method [2,3], genetic algorithm (GA) method [4–6], particle swarm optimization (PSO)

[7,8], and so on. However, these methods suffer from some inherent drawbacks. For example, the path planning
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approaches based on the artificial potential field method often get stuck in local minima, which renders the

methods unsuitable for use in dynamic environments. GA methods belong to the class of random optimization

processes, in which the convergence speed is low due to the high number of evolutionary process iterations to

find an optimal solution. However, it should be noted that robot motion planning is not simply about avoiding

collision and reaching the target point; stability in robot movements is a key property that is ignored in most

related works. Stability is the result of a rational behavior, which means that the robot must not suddenly

deviate from its path in any motion. It requires the steering angle of the robot to be of a reasonable value to

the largest possible extent, so as not to change suddenly during navigation, which would cause the generated

path to remain smooth and optimal from the start point to the target point. An appropriate use of machine

learning and pattern recognition methods that results in a properly trained structure would be an excellent

choice for developing such rational behavior. One of the most important machine learning approaches, which

is widely and successfully used in a broad range of robotic problems, is the artificial neural network approach.

Neural network robot controllers try to behave like humans and other living creatures in a navigation task.

As all living creatures choose a steering angle with a continuous value in a navigation task [9], the motion

planning problem can be regarded as a function approximation problem. This interesting feature motivated us

to propose a method by this means. Hence, the first and main contribution of this paper is to provide an exact

and fast method for intelligent control of a mobile robot in static and dynamic environments, using a neural

network with a backpropagation learning algorithm based on function approximation. There are various types of

neural networks [10,11]: Hopfield neural networks, recurrent neural networks, feedforward neural networks, and

RBF neural networks, as well as different types of optimization techniques (such as the Levenberg–Marquardt

and conjugate gradient methods), which can be used in many robotic applications. Different neural network

approaches have been proposed to control mobile robots [12–18]. A biologically inspired neural network approach

has been used in mobile robot path planning [19]. However, kinematic constraints of the mobile robot were not

considered in this work, and the proposed method simplifies the problem of motion planning to a high extent.

A pattern recognition method with a backpropagation learning algorithm for mobile robot navigation, based

on computer vision, was proposed [20], where selecting the motion direction of the robot is limited to four

strategies, resulting in poor navigation ability. A recurrent neural network for the control of a nonholonomic

mobile robot that can learn the dynamic model of the robot was proposed [21], where the learning algorithm

of the controller is computationally expensive, causing a slow convergence. A reinforcement learning method

uses a neural network with Q-learning to navigate an industrial vehicle in unknown environments by avoiding

collisions [22]. This approach converges faster and gives more accurate results in comparison to the traditional

Q-learning method. Approximating Q-learning with a neural network has provided a better way of storing

Q values compared to a look-up table . A bioinspired neural network controller for autonomous control of a

vision-based land vehicle, equipped with video cameras, was learned [23].

The data obtained from the robot’s sensors predominantly have high dimensions, and working with high-

dimensional data sets requires applying an appropriate dimensionality reduction technique to them. On the

other hand, the learning process can be affected by another major factor, namely noise. Here the term “noise”

refers to a phenomenon that may be caused by inaccurate data in the training data set or by the electrical

noise of the system (white noise). Training data sets are generated by collecting data from different robot

observations and selecting a suitable value for the steering angle of the robot in each observation. However,

because the value selection is performed by a human, the selected values are often not very precise. This is an

inevitable phenomenon that leads to inaccurate data. Hence, the second contribution of this paper is to reduce
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the noise and dimensions of data using an appropriate statistical dimension reduction technique. One of the

most effective methods to reduce the dimensionality of a large data set is kernel principal component analysis

(PCA). In this work, kernel PCA is used to compute the most meaningful features of the data set. Previously,

PCA and other dimensionality reduction techniques were successfully applied in a similar manner to different

fields of robotics. An approach is presented to reduce the dimension of range-based sensor data and obtain an

accurate model of the environment using principal components of range data in a robot localization problem

[24]. A dimension-reduction method using PCA reduced the dimensions of sonar sensor data through linear

projections that preserved the multiple structures of the data [25]. A generalized neural network approach to

mobile robot navigation was proposed, which can be used for various types of range sensors and robot platforms

[26]. Even though dimensionality reduction techniques were applied to this work, the dimensions of the inputs

were too large, which led to relatively low performance. Moreover, the kinematic constraints were not considered

in that work. The remainder of this paper is organized as follows: in Section 2, we define the problem statement,

including the mobile robot configuration and kinematic model. The motion planning algorithm consists of 3

parts: visualization, dimensionality reduction, and neural network structure, as described in Section 3. In

Section 4, the simulated results are presented, and, finally, our conclusions are given in Section 5.

2. Problem statement

2.1. Mobile robot configuration

Figure 1a shows the configuration of a mobile robot in a two-dimensional Cartesian space. The robot consists of

two independently driven wheels in the rear with a servo motor, which allows for precise position and velocity

control for motion planning; one unpowered free wheel for support in the front; a SICK laser scanner (LMS

200-30106) for detecting the obstacles; and encoders for measuring the wheel velocity. The initial position of

the robot is denoted by (x0 , y0). The angle between the positive x-axis and the line passing through the center

of the robot is called the target angle (θt).

 

b

 

a

 

Figure 1. (a) Configuration of the mobile robot, (b) the kinematic model.
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2.2. Kinematic model

The kinematic model of the mobile robot is depicted in Figure 1b. In order to specify the position of the robot,

we select a point P on the rigid body of the robot as the position reference point. This point is located at the

center of the line that passes through the middle of the wheels. Both wheels have the same diameter r, and h

is the distance between P and the wheel. Let ϕ·1 and ϕ·2 be the angular velocity of the two driving wheels,

where ϕ1 and ϕ2 are the positions of the left and right wheels, respectively. If we assume that there is no slip

between the robot wheels and the surface, the linear velocity and angular velocity can be obtained as:

[
v

ω

]
=

 r
2

r
2

r
2h − r

2h




•
ϕ1

•
ϕ2

 (1)

The linear velocity of each wheel must not exceed the maximum speed.∣∣∣∣ •
ϕ1

∣∣∣∣ ≤ •
ϕ1,max (2)

∣∣∣∣ •
ϕ2

∣∣∣∣ ≤ •
ϕ2,max (3)

θp is a target angle with respect to the current position of the mobile robot. The position of the robot can be

described in an inertial Cartesian frame {O, x, y} by ξ = [x y θr ]. Let (x, y, θr) be the position and orientation

of the mobile robot regarding the inertial frame, where (x, y) are the coordinates of the reference point P,

and θr is the robot angle that indicates the orientation of the mobile robot. For simplicity, let us ignore the

center-of-gravity (COG) shifts. We denote the distance between the position of the COG on the rigid body of

the robot and P by d. The kinematics of a differential-drive mobile robot, described in the inertial frame, can

be specified by the following Jacobian matrix of transformation [27]:
•
x
•
y
•
θ

 =

 cos(θ) −d cos θ

sin(θ) d sin θ

0 1

[
v

ω

]
(4)

Let us assume that the position of the robot at any time depends only on its odometry measurement and can

be estimated by integrating the robot movements during a time interval (∆t).

3. Motion planning algorithm

3.1. Perception

The first section of any mobile robot navigation method is to acquire information about the robot’s environment.

Various types of sensors have been used for this purpose. In this study, the laser range sensor SICK LMS 200-

30106 was used to obtain a description of the robot’s surroundings. Although these sensors suffer from poor

calibration, they are very fast (seventy-five 180◦ scans per second); hence, they are much better than ultrasonic

sensors in cases of speed of wave propagation, angular resolution, and distance traveled [27]. The laser range

finder scans the environment around the robot with a range from 10 cm to 80 m. It provides a sequence of 181
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values at every sensor scan, indicating the distance between the robot and the obstacles around it. Figure 2a

shows a simulation of the SICK sensor, performed in the MATLAB environment. The intersection points of the

laser beams with the obstacles are marked with small circles in the figure.

 

a b 

Figure 2. (a) Simulation of SICK in MATLAB, (b) the initial training pattern.

3.2. Visualization

Information obtained from the raw sensory data should be interpreted as a pattern for training the network.

The visualization method in this study differs from the methods of several previous related works, in which the

data received from the laser sensors were visualized onto bitmap images. Such a visualization method is not

technically sound and will result in a much higher dimensional data set, which leads to slow convergence and

low performance of the network. Therefore, in our proposed method, only the length and the angle of 181 laser

beams, which are reachable by laser, are modeled as the training pattern. Training pattern matrix Z is an R ×
α binary matrix, where α is the number of laser beams of the sensor and R is an indicator of the sensor range,

which can be scaled with respect to a desired value in order to determine the size of P. Hence, in our experiment,

after visualization every pattern will consist of 181 distances between the robot and the surrounding obstacles.

One of the patterns used in this study is depicted in Figure 2b.

3.3. Dimensionality reduction

The initial training pattern shown in Figure 2b is a complicated pattern. The more complicated patterns are, the

better understood robot environments become. However, complicated patterns cause high-dimension data sets;

additionally, applying them as the network input will lead to a slow convergence and learning process due to the

large number of features of the training patterns. Hence, regarding the contributions of this study—accuracy,

speed, and noise reduction—it is necessary to apply an appropriate dimensionality reduction method to the

data set and extract the most meaningful principal features of the data that cover a reasonable percentage of

the explained variance of the data set. In this work, we applied kernel PCA to the data set. PCA is a useful

statistical technique that computes the most meaningful features to reexpress data in a lower dimension. If the
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data set is noisy, then we can anticipate that the new features will remove the noise and represent the hidden

structure. Hence, it can be said that applying PCA to the data set does not remove the noise completely, but

it certainly reduces it. The standard steps of PCA can be summarized as follows:

Step 1: Subtract the mean (mean centering of the covariance matrix).

Step 2: Calculate the covariance matrix C with the following equation:

CX =
1

n− 1
XXT (5)

where X is the data set.

Step 3: Calculate the eigenvectors (P ) and eigenvalues of the covariance matrix.

Step 4: Choose PCs from (P ) and transform data on PCs with the following equation:

Pk×m = Xm×n = Yk×n (6)

Choose k according to the proportion of explained variance:
∑k

i=1 Λi∑m
i=1 Λi

> Threshold

Standard PCA only performs a linear mapping of the data, which does not perfectly represent the hidden

structure of the data set in complicated high-dimensional feature spaces. It is anticipated that kernel PCA will

allow us to efficiently compute the principal components of the data set when it has more complicated structures

[28].

3.3.1. Kernel PCA

Kernel PCA is to perform PCA in a kernel Hilbert space by a nonlinear mapping. The term “kernel” refers to

a nonlinear mapping function ϕ that maps the original N-dimensional features space into a higher dimensional

space. This mapping can be written as x → φ(x), which is called the kernel function. Therefore, given two

points x i and x j , the inner product (kernel) is:

K(xi, xj) = φ(xj)φ(xi)
T (7)

Instead of performing increasingly expensive computations of the dot product, a kernel can be used to map

observations from an original space x into a higher dimensional space ϕ . This is called the kernel trick [29].

There are various types of kernels, e.g., the polynomial kernel, Gaussian kernel, sigmoid kernel, or Laplacian

kernel. However, there is no rule for choosing the right kernel; instead, doing a grid search over the values

of kernel parameters and performing cross-validation for each choice can be helpful. In this study, we use the

Euclidean distance kernel [30]:

∥φ(x)− φ(y)∥2 = K(x, x) +K(y, y)− 2K(x, y) (8)

As illustrated in Table 1, the Euclidean distance kernel function has covered a higher proportion of variance

explained than other types of kernels. Using this kernel function has dramatically improved the performance of

both neural networks used in this work (FFNN A and FFNN B). Additionally, we used this method to reduce

the dimension of the initial training pattern, shown in Figure 2b, from 993 features to 30 features.
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Table 1. The results of applying PCA and different types of kernels to the data set.

Type of kernel

Proportion Best validation Best validation
of variance performance obtained performance obtained
explained by 30 PCs for FFNN A for FFNN B

Standard PCA (no kernel) 88.412% 34.7523 19.3030
Polynomial kernel 90.213% 29.3794 17.8632
Gaussian kernel 91.011% 26.6285 14.7108
Laplace kernel 89.423% 32.8661 15.2316
Euclidean distances kernel 96.001% 14.9539 9.7456

The standard steps of kernel PCA can be summarized as follows:

Step 1: Construction of kernel matrix using Eq. (8).

Step 2: Centering kernel matrix.

Step 3: Normalizing kernel matrix with the following equation:

C = XXT −XXTJ− JXXT + JXXTJ (9)

where J = 1
n1n×n .

Step 4: Compute the PCs by solving the eigenvalue problem.

There has always been a trade-off between performance and convergence speed in training neural networks

when selecting the number of features. Decreasing the number of features achieves better performance but

reduces accuracy in detecting obstacles. Increasing the number of features leads to weak convergence and lower

performance of the network. By applying kernel PCA to the data set, the best possible trade-off between the

two factors is achieved. It can be seen from the scree plot shown in Figure 3 that by using the Euclidean

distances kernel, the data set can be described perfectly by only 30 features.

Figure 3. Optimum number of PCs.

3.4. Structure of the feed-forward neural network

In order to achieve intelligent navigation for a mobile robot in a static/dynamic environment, the multilayer

feedforward neural network is used to approximate an appropriate trajectory between the initial position and
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target position. To achieve better performance, we used two neural networks (FFNN A and FFNN B) with

different training data sets. The two neural networks were trained by being presented with 3000 patterns for

each network. These patterns represented typical scenarios that a robot may encounter in real environments. An

appropriate architecture is selected for the feedforward neural networks. FFNN A has an input layer consisting

of 31 nodes in the input layer, 17 nodes in the first hidden layer, 9 nodes in the second hidden layer, and an

output layer that indicates the corresponding steering angle. FFNN B has an input layer consisting of 31 nodes

in the input layer, 6 nodes in the first hidden layer, 3 nodes in the second hidden layer, and the output layer.

The numbers of hidden neurons are empirically found to be convergent of error to a minimum threshold error.

The numbers of hidden layers are also found empirically, as with one hidden layer it is difficult to learn the

network within a specified error limit. The network architecture for the two neural networks is depicted in

Figure 4a.

       

a  
b  

θ  

 θS  θS

  

Figure 4. (a) The neural network architecture, (b) the system flowchart.

There are two path-planning strategies in our approach: normal action and wall-following action. While

θp is less than π (the target is in front of the robot), the robot takes normal action. However, when it

encounters a wide or U-shaped obstacle while moving forward (i.e. when the target is located behind the

robot), it is required to keep only one direction (the nearest side of the obstacle) and follow the wall in order to

get past the obstacle and avoid getting stuck in an infinite loop. Because these two actions are quite different

behaviors, learning their behavioral function by only one neural network is quite challenging and significantly

reduces the performance of the network. In order to gain better results, we used two different neural networks

with two different data sets to approximate two different functions. While θp is less than π , FFNN A will be

employed for approximate θs (steering angle); otherwise, FFNN B is used. There is an appropriate steering

angle for each pattern. The purpose of the paper is to find the most precise value for θs so that the robot

does not collide with obstacles in its path during the navigation. It is assumed that the exact position of the

target (x t , y t) is given at any time during the navigation. Due to the different positions of the obstacles and
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the targets in different situations, the target angle θT has a crucial role to play. Our proposed algorithm is

illustrated in Figure 4b.

3.4.1. An appropriate algorithm for training the feedforward neural network

In this study, we use the backpropagation algorithm, which employs the conjugate-gradient technique to train

the network. Through experiments using the conjugate-gradient technique, we succeeded in acquiring a much

better performance. As can be seen from Figure 4a, each neuron j in layer n receives signals from the previous

layer of neurons and sends signals to the next layer. Therefore, the output of neurons in layer n can be calculated

from the outputs of neurons in layer n− 1 with the following equation:

Out
(n)
i = f(

∑
i

Out
(n−1)
i W

(n)
ij ) (10)

where f is a logistic function and W is the weight matrix consisting of connections between the nodes of the

network. The training of a neural network refers to a method that repeatedly modifies the weight of the

connections between the nodes in t epochs so that the network output has maximum similarity to the target of

the corresponding samples in the training set. This similarity is measured by the mean squared error function

E:

E(W
(n)
ij ) =

1

2

∑
p

∑
k

(ypk −Out
(N)

k(xp
i )
)2 (11)

Since our method is a function approximation method, then Out13 will be the only network output and will

refer to Actual θS . The target of a training sample y refers to Expected θS . Therefore, in each epoch, the

backpropagation learning algorithm attempts to change the weight in a way that the difference between the

expected θS and the real θS is minimized.

The network weights at epoch t are W ij (t). Then, by amount ∆W ij (t), we compute weights at epoch

t + 1:

Whl(t+ 1) = Whl(t) + ∆Whl(t) (12)

Hence, the weight rule updates recursively by Eqs. (10), (12), and the following equations:

∆w
(n)
hl = −η

∂E(w
(n)
ij )

∂w
(n)
hl

= η
∑
P

(yl −Out
(n)
l ).Out

(n)
l .(1−Out

(n)
l )(t).Out

(n−1)
h (t) + α∆w

(n)
hl (t− 1) (13)

Here η and α are the learning rate and momentum, respectively. Through experimentation, it is found that η

= 0.006 and α = 0.0021 give better convergence.

4. Simulation results

It would be ideal to test the performance of the proposed method on real-world data. The data set is the

domestic rooms (DR) data set, which contains various robot observations of several domestic environments

in the form of SICK sensor readings, which are collected from 24 different homes and consist of houses and

flats from 4 different cities. The data set was originally used in [31]. All data sets were collected when the

Pioneer P3-DX robot, equipped with laser range-finder Hokuyo URG with a 5.6-m sensor range and 240◦ field

of view, was guided through each environment. The complete implementation of our algorithm was carried

out in a MATLAB environment. By putting the robot and the goal in various environments and testing the
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robot motion behavior in different situations, we demonstrated the good performance of the proposed method.

Performance plots for FFNN A and FFNN B are depicted in Figures 5a and 5b, respectively. As can be seen

from the figures, performance plots for training, validation, and test sets show similar characteristics, which

means that the networks are very well trained and have a good generalization performance.

b a 

Figure 5. (a) The performance plot for FFNN A, (b) the performance plot for FFNN B.

As we discussed earlier, the focus of the study is mainly on fast and robust navigation. Thus, it would be

better to use a long-range distance sensor that is faster than the Hokuyo URG. In order to make the data set

applicable for SICK, it is necessary to perform data preprocessing before going into the navigation simulation

of the robot. After preprocessing, the sensor field of view is limited to 180◦ and the sensor range equals 20 m.

The simulation results of the motion planning, based on obstacle avoidance for a mobile robot equipped with a

SICK sensor, are illustrated in Figures 6 and 7. The dimensions of the map are 200 × 200 m. The obstacles can

be static or dynamic, and the robot has no prior knowledge of the environment. The traces in the figures show

robot movements. Table 2 demonstrates the total number of time steps and the total elapsed time in robot

navigations for different scenarios in Figures 6 and 7. The control time step is 0.5 s, and the robot moves with

a maximum speed of 0.5 m/s towards the target. As can be seen from the speed time graphs, the robot has a

minimum moving speed of 0.0012 m/s and a maximum moving speed of 0.49033 m/s during the navigations.

Because of the smoothness of the generated trajectories, the average speed for each scenario is larger than 0.4

m/s. Taking the most accurate values of steering angles of the robot at any time increases the average moving

speed during the navigation. The robot does not decelerate its velocity even when it encounters a wide or

U-shaped obstacle while moving towards it, or when it moves along corners. Moving at high speed along the

corner of an object is not an easy task and is virtually impossible, even if the robot is very well trained. As

can be seen from the following simulation result, achieving the right steering angle leads to the generation of a

smooth and safe path from the start point to the target position.

Table 2. Average moving speeds and total elapsed time for all four simulations in Figures 6 and 7.

Simulation Figure 6a Figure 6b Figure 7a Figure 7b
Average speed (m/s) 0.4288 0.4119 0.4006 0.4290
Total time steps 278 280 345 354
Time (s) 124.2 129.34 160.4 158.02
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b  

Start 

Target 

Start 

Target 

a  

Figure 6. Velocity and trajectory of the Pioneer P3-DX robot for two different simulations in a static environment.

5. Conclusion

In this paper, a feedforward neural network, based on function approximation that uses a backpropagation

algorithm with a conjugate-gradient method, was utilized for the intelligent navigation of a mobile robot and

for obstacle avoidance in dynamic and unknown environments. Using kernel PCA equipped with the Euclidean

distances kernel function, we have effectively reduced the dimension of the data set to 30. Our proposed

method has been successfully applied to real-world data. Due to the low number of input features, and using

an appropriate algorithm for training the feedforward neural network, a good generalization performance for

training, validation, and test data sets was achieved. The average validation performance of both neural networks

is 12.34975, which proves the efficiency of the proposed method. Our algorithm, considering the kinematic

constraint of the robot, developed a rational behavior for a mobile robot. Navigation time experiments show

that achieving highly accurate values for the steering angle leads the robot to have stable movements, even
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when it encounters corners, and, in this way, minimizes both the length of the path and the time of navigation

in the presence of an unknown environment.

Moving  

obstacles 

Start 

Target 

Start 

Moving  

obstacle 

Target 
b  

a  

Figure 7. Velocity and trajectory of the Pioneer P3-DX robot for two different simulations in a dynamic environment.
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