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Abstract: The fundamental problem in high speed communication is that it suffers a lot of signal integrity issues due

to dispersion (caused by dielectric variation with angular frequency), reflection (S11) , and insertion losses (S12) of the

channel made of copper. When a pulse width τ with magnitude V0 is driven through a lossy channel, we observe a

reduction in magnitude (due to S12 and S11) and an increase in pulse width (due to dispersion). It causes different

values of skin effect and dielectric loss leading to different effective resistance at each segment as the pulse moves through

the channel. This impedance mismatch generates reflection noise, which makes the identification of the received signal

difficult at the receiver. Modeling of such a complex situation and reconstruction of a high speed signal driven through

a lossy channel remain an open problem for the research community. This work unveils a method of designing a system

that can renovate a square wave pulse of 40 ps or less (corresponding to a data rate of 25 Gbit/s or more) after sending the

same over a lossy channel from transmitter to receiver. The received noisy signal (Signal-A) is sent through a RC circuit

to obtain a different delayed signal (Signal-B). Both the signals are then applied to the two terminals of a comparator.

The difference, ∆(t), between Signal-A and Signal-B is measured and it is witnessed that the voltage difference (ϕ)

of two consecutive maximum peaks of ∆(t) actually provides us with a better way to determine the design criteria of

threshold voltage, VT , of the comparator for the reconstruction of the square pulse. It helps to eliminate the needless

oscillations at the output of the comparator. The design of a threshold voltage depends fully on the channel properties.

Key words: Driver, receiver, printed circuit board, inter symbol interference, delay line, reconstruction, decision

feedback equalizer, feed forward equalizer

1. Introduction

With the advancement of IC technology, the data rate between two communicating central processing units

(CPUs) inside a server has not increased drastically, because the performance of high speed digital circuits

is affected by the characteristics of channels (made of copper interconnects), including printed circuit boards

(PCBs), plastic packages, sockets, and edge connectors [1]. The bandwidth limited channels caused by channel

distortion and insertion loss are the curbing factor in the overall performance of electronic systems with high data

sampling rates. As the switching frequency and the interconnect density in packages and PCBs are increasing

day by day, the wiring cross sections of interconnects get reduced, which makes them lossy as compared to

previous generation designs [2]. In real life, the modeling of lumped resistance, capacitance, and inductance

per unit distance in a simulation tool offers an artificial simulation error that effectively makes the intersymbol
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interference (ISI) worse. ISI is generally observed when the second signal is steered before the first signal decays

completely at the receiver. This fallacy, being an additive term, leads to a substantial ISI. It allows some extra

circuit components to be added to a system to eliminate that error, which is purely due to circuit simulation.

Eventually, the cost of the product increases to compensate for the simulation error, which does not even exist

in reality. Hence, efficient and accurate modeling and simulation of on-chip channel are the need of an hour for

modern high speed digital design [3]. The modeling methodology and the effect of ISI are described in [4]. The

basic block diagram of a communication link is shown in Figure 1.

Figure 1. Basic communication link between two chips.

Two chips communicate via a channel, which is divided into N different segments such that Tr ≥ 2Tpd (Tr

= Propagation delay and Tpd = Rise time of driven pulse) for every segment of that channel. This assumption

of the conventional lumped circuit is no more valid when it comes to the analysis of high speed VLSI circuits.

The work done in [5] has shown that the traditional lumped circuit is not an ideal one, when it is driven by

a pulse of less than 100 ps width over a certain length of interconnect. As the propagation time of an ideal

TEM mode over 1 mm length is typically about 8 ps on silicon substrate or in PCBs (almost similar dielectric

constant), a lumped model is improper for a high speed IC [6]. Recent developments in video applications along

with the expansion of the volume of data traffic have raised the insistence of high data rates in computer servers.

This demand requires data transmissions from one CPU to another over the backplane of the server using point

to point interconnects as established by Madrid et al. [7] from Intel. In 2007, Hollis et al. [8] designed a new

point to point interconnect using MUX and DEMUX trees (separated by distributed wire) in the driver and

receiver chip, respectively. They obtained a data rate of around 763 Mbit/s with 1-mm wire length, dropping

slowly to 639 Mbit/s for a 10-mm wire. In mid 2008, Intel developed the advanced version of the point to point

interconnect, which is called the quick path interconnect (QPI) [9].The QPI is used to connect a CPU to another

CPU or an I/O hub and is suitable for different system configurations. It operates at a clock rate of 2.4 GHz,

2.93 GHz, 3.2 GHz, 4.0 GHz, and 4.8 GHz. The 4.8 GHz frequency provides approximately about 10 Gbit/s

data rate between two CPUs. Although it has increased the data rate, the problem of ISI still exists as the

signal received by the receiver does not decay in less than one half of the clock period. Thus, the detection of

the digital output from the distorted signal received at the receiver has become impossible at higher frequency.

Even today, CPUs inside the server barely work beyond 7–8 Gbit/s speed. This bottleneck is caused by the

properties of the transmission line (channel) that connects the receiver to the transmitter. This can be solved

by designing a system with special sockets and edge connectors where the impedance is matched throughout

the whole interconnect. Another problem arises due to the variation in lengths from one CPU to another or

from one chip to another because of their geometrical locations. Thus, wires connecting two chips on a PCB

can have various lengths. For example, let us say the length of the copper wire (channel) connecting Chip-1 to

Chip-2 for Address Bus-1 is X. However, if the same two chips are to be connected for Address Bus-2, it may

have a length of Y (different than X). Thus, if there is a total of 200 I/Os, all the interconnect lengths from

Chip-1 to Chip-2 will be different and this causes an additional problem for high speed interconnects. This

results in all different kinds of signal integrity problems in the channel and thus the design methodologies may
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lead to a complex solution, because the difference in length forces one to lay out the board first and then to

design the output drivers of the transmitter and the receiver’s port differently for every I/O in a given CPU.

It also depends on the channel characteristics of each I/O layout in the PCB. What we mean is that all I/O

drivers on each address and data will have different designs. When a square pulse of 40 ps width (corresponding

to 25 Gbit/s data rate) is sent from the driving end through the channel, the receiver experiences a voltage

that is very different than the original signal due to various reasons such as impedance mismatch at various

points in the channel, cross talk, and all forms of losses due to radiation, skin effect, and dielectric loss. This

has made server design a challenging task when the data rate is more than 10 Gbit/s (<100 ps pulse width).

Agilent Technologies [10] has developed equipment on the basis of decision feedback equalization (DFE) and

feed-forward equalization (FFE) to understand and to reconstruct the original signals by generating a better

eye diagram. However, that process also has the best eye for data rate less than 10 Gbit/s. In 2010, Seo [11]

proposed a new low-swing signaling technique for high bandwidth and low energy consumption. Pre-emphasized

bipolar signals were generated at the driver through series capacitors, whereas the receiver chip reconstructs

NRZ data from fast RZ pulses at single data rate (SDR) signaling. Double data rate (DDR) signaling, which

was found at DRAM PCB (made by Micron Technology Inc.), was also employed to further improve the data

rate of the on-chip bus system. However, they achieved 2.5 Gbit/s and 4.9 Gbit/s data rate for SDR and DDR,

respectively. Bhattacharyya et al. [12] showed in 2004 that it is indeed possible to achieve a 25–100 Gbit/s

data rate in a point to point signaling scheme for a 24-inch channel made out of a PCB, two packages, two

sockets, and two backplane connectors. It was observed that an mV solution (given 1 mV is the expected signal

magnitude at the receiver for a pulse of 1000 mV having 40 ps width driven by the transmitter) exists for a 25

Gbit/s signaling scheme while using the interconnect technology that existed during that time at Intel. This 1

mV is obtained after subtracting all noises including white noise and ISI. Here, we have analyzed a method by

which we can regenerate a signal of 40 ps width or less after passing through a lossy channel in any point to

point interconnect.

2. Design methodology and the channel performance

In Figure 2, we have shown interconnect (a lossy and mismatched channel) between two chips. The left side of

the dotted line (unmatched channel) is Chip-1 and the right side is Chip-2. Chip-1 is the driver/transmitter

and Chip-2 is the receiver. A square wave signal of pulse width τ and amplitude of about 1 V is driven by

the transmitter. The noisy signal (Signal-A) received by the receiver right after the bond pad (see Figure 3)

at time t = t1 is sent to feed the noninverting terminal of the comparator inside Chip-2. However, a RC

delay (τ) circuit is used to generate a delayed version of the received signal, called Signal-B at time t = t2 ≈
(t1 + τ), and is fed to the inverting terminal of the same comparator. The termination resistance, the driver’s

output impedance, and the input ESD capacitance at the bond pad or at C4 bumps are RT , RD , and CI ,

respectively. Different kinds of connections such as bond pads, package traces, pins of the package, sockets,

and PCBs have different characteristic impedance, which leads to impedance mismatch at various locations

along with the channel shown in Figure 1. This makes the interconnection noisy. Moreover, multiple reflections

at various interfaces lead to oscillations in those interconnections. The state-of-the-art is always to make the

characteristic impedance (Z0) of the channel matched with the termination resistances (RT ), connected at

either end of the channel as shown in Figure 3. This channel (which we have used) offers various mismatches

due to the discretization of the transmission line. The transmission line has 30 RLC segments with R = 100
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mΩ, L = 250 pH, and C = 100 fF. The values of RT , RD , CI are kept at 50 Ω, 50 Ω, and 2 pF, respectively.

As the real-life package pins have about 1–2 nH inductances, we have inserted inductance of 1 nH somewhere

after the 15th segment of the transmission line to create an inductive reflection due to impedance mismatch.

As the pins are mostly inductive, they exhibit higher impedance. The rise time (Tr) and fall time (Tf ) of the

driving pulse are assumed to be 10 ps, whereas the ON time is assumed to be TON = 30 ps, which eventually

gives us a pulse width of 40 ps at 50% rise and fall time of the signal. Thus, 40 ps is the half width of driven

pulse. Each segment of the transmission line is assumed to have a time delay of (LC)1/2 , which is 5 ps for

our design. As this time delay is smaller than the rise time of the signal, each segment of the channel can

be considered as a lumped circuit. The values of Rτ and Cτ are chosen such that the product of these two

elements is also close to 40 ps and that is one of the key ideas of our reconstruction model. In our model, we

have used Rτ = 4 kΩ and Cτ = 10 fF. Such resistors and capacitors can be built using the poly-Si and NMOS

gate on p-substrate silicon, respectively.

Figure 2. Block diagram of proposed design methodology.

Figure 3. Schematic diagram to reconstruct driven signal by designing a comparator.

3. Results and discussion

In Figure 4, we have shown the driving pulse at the bond pad near Chip-1. We have also shown Signal-A and

Signal-B at the noninverting and inverting terminals of the comparator, right after the bond pad at Chip-2.

The right side scale of Figure 4 is for the pulse driven by the transmitter from Chip-1 and the left side scale

is for the voltages received at the two inputs of the comparator at Chip-2. The signal VI (t), right before the
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driver’s impedance (RD), is a square wave pulse with full voltage swing of 1 V and half-width of 40 ps (See

Figure 3). The voltage measured at the bond pad at Chip-1 is around 0.32 V. This is due to the channel

resistance (which is about 3 Ω), two termination resistances RT , and driver’s resistance RD . Figure 4 shows

that Signal-A has arrived at the receiver after some time, which is the time delay of the channel. It is the

time a signal takes to reach Chip-2 from Chip-1. It is also seen that the peak amplitude of Signal-B is shifted

from the peak amplitude of Signal-A due to Rτ and Cτ . The time difference between these two highest peak

voltages is approximately Rτ Cτ ≈ τ , which is 40 ps. If the comparator can sense a few mV differences between

the noninverting terminal (Signal-A) and inverting terminal (Signal-B), then the output of the comparator will

switch back and forth from 1 V to 0 V depending on whether Signal-A is greater or less than Signal-B. It is

seen from Figure 4 that there are many occasions when Signal-A is greater than Signal-B and therefore one will

have multiple square wave signals of different time widths (τ) at the output of the comparator inside Chip-2.

Under that condition, the output waveform of the comparator at Chip-2 will not be same as the pulse driven,

VI (t), at Chip-1. In order to fix this problem, a value of the threshold voltage (VT ) is to be determined that

will generate only one square wave pulse, the same as VI (t). In order to determine that VT , we have plotted

the difference in voltages between Signal-A and Signal-B in Figure 5. We denote this voltage by ∆(t), such that

∆(t) = (voltage of Signal-A – voltage of Signal-B). Figure 5 shows that at around 100 ps we have the highest

peak, which is approximately 60 mV (Vmax 1) and at around 500 ps we have the 2nd highest peak, which is

about 20 mV (Vmax 2). If the value of VT is chosen somewhere between these two maximum voltage points,

then we will be able to see a single square wave pulse at the comparator output. The average of these two

maximum values is around 40 mV, which is the right threshold value for our case, as this gives the maximum

voltage margin. This threshold voltage will also prevent the back and forth switching of the voltage caused

by signal oscillations. It is interesting to note that this average value (VT ) intersects the ∆(t) vs. time (t)

curve at two points and the time difference between these two points is 40 ps. This is also shown in Figure

5. For the solution to exist, any line drawn parallel to the time axis in Figure 5 needs to intersect the curve

∆(t) at two points such that the time difference between those two points is 40 ps, which is the desired pulse

width. If the second voltage spike is greater than 40 mV, then we cannot reconstruct the single square wave

pulse at the output of the comparator. The difference in voltages (ϕ) between the first maximum peak and the

second maximum peak will be the actual signal strength we have to work with and it depends on the channel

characteristics. In this case, the difference (ϕ) is also 40 mV. In order to prevent multiple switching, one can

also use the conventional comparator hysteresis [13] loop. The feedback path present in the loop will control

the generation of the RC delayed signal (Signal-B) based on the comparator output. This may require a clock

circuit to match the 40 ps timing and makes the design a bit complex. Figure 6 shows that the comparator

output is also a square wave pulse that looks exactly same as the pulse driven by the transmitter, VI (t). It is

also seen that the reconstruction occurred at that time slot when VT is exactly equal to (Vmax 1 + Vmax 2)/2.

The reconstructed pulse intersects the ∆(t) curve at two points, which is also close to 40 ps and that is the

pulse width we wanted. Figure 7 shows the final result of our methodology in a more detailed way. The dark

solid line is the square pulse we have reconstructed at the output of the comparator and the dark dotted line is

the pulse that we have sent from the driver. Each tick mark in the time axis is about 2.5 ps. We can see some

skews of the rise and fall time, which may produce the high frequency jitter effect. We have not investigated the

minimization of this jitter in this paper. In summary, the filter we have designed is unique and makes the final

output look almost identical to the driven pulse. In Figure 8, we have presented the summary of our process

flow to reconstruct the square pulse having a pulse width close to 40 ps.
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Figure 4. Plot of driven square pulse, Signal-A, and

Signal-B.

Figure 5. Plot of ∆(t), the difference in voltage between

Signal-A and delayed Signal-B.

Figure 6. Reconstruction of square wave by the new

methodology.

Figure 7. Final reconstruction of the square wave pulse

inside the Chip-2. The edge jitter between the two signals

is in the range of 2.5 ps.

It may be worth mentioning that if we send square wave pulses of period T, then after a certain time

Signal-A will creep up to some average voltage VAVG and Signal-B will also creep up to almost the same

average voltage due to the filtering effect of the channel. Under these circumstances, ∆(t) will fluctuate around

0 V after some time and the value of ∆(t) will never be more than 40 mV. Thus, keeping VT equal to 40

mV, as done for a single square wave pulse, will still generate one square wave pulse at the receiver with the

pulse width close to 40 ps . Therefore, even though the signal at the receiver (Signal-A) looks bad, the process

proposed here can reconstruct the square wave signal that was originally sent from the drivers. The proposed

method requires generation of Signal-B with some time delay τ = RτCτ , and then feeding both received and

delayed signal into the comparator, which in turn is designed for a given VT , to produce a square wave pulse

inside Chip-2.

4. Effect of variation in VT for various channel lengths and pulse width τ

As discussed in the previous section, we have defined VT by the following equation for the value of α = 1

(where, 0 < α < 2):

VT =
α(Vmax 1 − Vmax 2)

2
+ Vmax 2, (1)
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where Vmax 1 and Vmax 2 are the highest voltage peak and the second highest voltage peak of the ∆(t) curve as

shown in Figure 5. In the detailed description of the previous section, we have presumed αto be close to 1, and

that generates the value of VT as the average of Vmax 1 and Vmax 2 . The range of α is 0 < α < 2. In reality,

α can be taken very small to get VT close to the value of Vmax 2 . If the value of α equals 2, then the value of

VT will be close to Vmax 1 . Thus, the minimum VT can be taken close to Vmax 2 and the maximum VT can

be close to Vmax 1 . We have taken total 30 RLC segments of a channel with R = 100 mΩ, L = 250 pH, and C

=100 fF, which is mentioned earlier. There is also a lumped inductor of 1 nH somewhere between the 15th and

16th segments of this channel (30 RLC elements) for the generation of reflection noise, which in reality causes

reflection noise. This inductance of 1 nH can be originated from the socket, package pin, edge connectors, etc.

Keeping the number of channel segments fixed at 30, we have varied the half-width of the input pulse from

15 ps to 60 ps to see how it affects the value of threshold (VT ) of the receiver chip, for reconstruction of the

pulse. While varying the driven pulse width, we have also changed the value of the delay Rτ Cτ inside Chip-2,

so that it remains the same as the driven pulse width. In Figure 9, we have plotted Vmax 1 , Vmax 2 , and VT

of the comparator as a function of pulse width (τ) using α = 1. As per the principle, VT can have a range of

Vmax 1 < VT < Vmax 2 . When α equals 1, the VT is in the middle of Vmax 1 and Vmax 2 . It is interesting

to see that VT goes on increasing as the value of τ is increased from 15 ps to 60 ps. It means that the signal

strength is increasing, as both the voltage margins (Vmax 1 – VT ) and (VT – Vmax 2) are increasing. Thus,

when τ increases, the design margin gets better and better. In each attempt, the comparator inside the Chip-2

generates the same pulse width τ , which was originally sent by the transmitter from Chip-1. In Table 1, we

have summarized all the data for 30 channel segments and it is seen that when the pulse width is 60 ps the

voltage margin is about 35 mV, but when the pulse width is reduced to as small as 15 ps the voltage margin

is only about 5 mV. It is seen that VT of the receiver is different in each case. However, changing VT of the

receiver chip may not be a good option. Therefore, if we keep the VT of the receiver chip fixed at 40 mV, then

with the increase in τ the design methodology will work, provided the second maximum of curve ∆(t) is always

less than 40 mV. However, since the value of τ is increasing the data rate is getting reduced, even though the

voltage margins are getting better. This VT gives us sufficient margins (Vmax 1 – VT = 2.2 mV and VT –

Vmax 2 = 25.8 mV) to make the design work for the pulse width τ close to 30 ps, which corresponds to a data

rate of about 33.33 Gbit/s as shown in Table 1.

It is seen that for τ = 15 ps, which translates to a data rate of about 66.67 Gbit/s, the receiver VT has

to be 10 mV. As it gives only 5 mV margin for the logic to swing from logic 0 to logic 1 and vice versa, the

white random noise has to be much less than 5 mV. The common mode noise, if generated, may be eliminated

since we are splitting the original signal into Signal-A and Signal-B for the generation of the ∆(t).

The above discussion is based on the variation in driving pulse width (τ), where the time delay Rτ Cτ

at the receiver is kept equal to τ , keeping the number of RLC segments of the channel fixed at 30. However,

in reality, it is not possible to always vary Rτ Cτ at the receiver along with the driven pulse width. Hence,

we also have studied the performance of the proposed system when the driven pulse width is varied, where the

channel segments and time delay Rτ Cτ at the receiver are kept fixed. It is important to mention that when

the driven pulse width is 30 ps and the value of the product Rτ Cτ is kept at 40 ps the values of Vmax 1 and

Vmax 2 are 48.5 mV and 15.7 mV. For α = 1, the value of VT will be 32.1 mV. This new VT will generate

an output of pulse width the same as 40 ps in Chip-2, even though the pulse width generated by the driver is

30 ps. However, if we keep VT equal to 40 mV, then the pulse width of the output of the comparator inside

Chip-2 will be 26 ps only and not 30 ps. Thus, if we choose the value of VT to be the mid-point of Vmax 1 and
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Figure 8. Proposed process flow to reconstruct square pulse sent by the transmitter.

Figure 9. Plot of threshold voltage VT as a function of pulse width for α = 1, which is the midpoint of Vmax 1 and

Vmax 2 .

Table 1. Threshold voltage (VT ) variation with respect to pulse width variation (number of RLC segments of the
channel is fixed at 30).

Pulse width Rτ Cτ RτCτ Vmax 1 Vmax 2 Φ = Vmax 1 VT = Vmax 2

(ps) (kΩ) (fF) (ps) (mV) (mV) −Vmax 2(mV) +Φ/2 (mV)
15 1.5 10 15 15.6 5.7 10.0 10.7
20 2.0 10 20 24.2 8.7 15.5 16.5
25 2.5 10 25 33.2 11.6 21.6 22.4
30 3.0 10 30 42.2 14.2 28.0 28.2
35 3.5 10 35 51.1 16.7 34.3 33.9
40 4.0 10 40 60.0 20.0 40.0 40.0
45 4.5 10 45 68.1 19.9 48.3 44.0
50 5.0 10 50 76.1 20.9 55.2 48.5
55 5.5 10 55 83.6 21.0 62.6 52.3
60 6.0 10 60 90.8 20.5 70.3 55.6
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Vmax 2 the pulse width inside Chip-2 will only depend on the RτCτ and not on the pulse width of the driver.

In Table 2, we have summarized the different widths of received pulse under various conditions.

Table 2. The received pulse width will be independent of the pulse width sent by the transmitter if the value of VT is

dynamically changed.

Pulse width Pulse width (ps) at
(ps) driven by Rτ Cτ RτCτ Vmax 1 Vmax 2 Rτ comparator output
Chip-1 (kΩ) (fF) (ps) (mV) (mV) (kΩ) inside Chip-2
30 4.0 10 40 48.5 15.7 32.1 40
40 4.0 10 40 60 20 40 40
30 3.0 10 30 48.5 15.7 32.1 30
30 3.0 10 30 48.5 15.7 40 26

The methodology is also checked to determine the effect of number of RLC segments keeping the driven

pulse width and Rτ Cτ fixed at 40 ps. A higher number of RLC elements translates to an increase in channel

length. In this study, we have varied the channel length from 30 to 70 segments, which means that the channel

length is increased more than double. This study is important because when someone connects two chips (which

are in packages) on the PCB, the channel length may vary between two different I/O ports for these two chips.

In Figure 10, we have shown the plot of VT as a function of channel length for a given pulse width τ , which

is 40 ps. It is interesting to see that, even though we have doubled the channel length, the threshold voltage

has not changed significantly. It has only changed from 40 mV to 34.5 mV as shown in Table 3. Thus for the

regeneration of the 40 ps pulse width, if the length of the channel connecting two chips gets increased by a

factor of two, the voltage margin will be reduced by about 5.5 mV if VT is kept at 40 mV. The margin for logic

1 will change from 20 mV to 14.4 mV (= 54.4 mV – 40 mV) and the voltage margin for logic 0 will change

Figure 10. Plot of threshold voltage as a function of number of segments in channel.

Table 3. Number of RLC segments vs. VT for the fixed pulse width, which is 40 ps in our case.

No. of RLC Rτ Cτ RτCτ Vmax 1 Vmax 2 Φ = Vmax 1 VT = Vmax 2

elements (kΩ) (fF) (ps) (mV) (mV) – Vmax 2 (mV) + Φ/2 (mV)
30 4.0 10 40 60.0 20.0 40.0 40.0
40 4.0 10 40 58.4 18.4 40.0 38.4
50 4.0 10 40 56.8 16.9 40.0 36.9
60 4.0 10 40 55.5 15.5 40.1 36.5
70 4.0 10 40 54.5 14.5 40.0 34.5
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to 25.5 mV (= 40 mV – 14.5 mV). These margins are calculated from Table 3. Therefore, length variation of

the channel has very little effect on the value of VT and the signal reconstruction is not affected drastically

by a higher number of channel segments. Table 3 summarizes the data of threshold voltage, VT , for various

segments of the channel.

5. Conclusion

In this work, we have shown a unique method to send a high frequency square wave pulse having pulse width

τ and to reconstruct the same pulse inside the receiver by generating a delayed signal using an Rτ Cτ delay

circuit, which is exactly same as the driven pulse width (τ). It is also shown that there is a considerable margin

in this reconstruction process given that both pulse width and channel length vary. The pulse width has been

varied from 15 ps to 60 ps, whereas the number of channel segments has been varied by a factor of two, from 30

to 70 segments. It is shown that keeping VT fixed at 40 mV, if the driven pulse width changes from 40 ps to 30

ps, the present receiver is capable of reproducing a pulse of 30 ps width, corresponding to a data rate of 33.33

Gbit/s, at the comparator output with voltage margin very small and close to 2 mV, given the white noise is

less than that. However, in reality, it may be harder to achieve. If one changes VT dynamically from 40 mV to

28 mV, when pulse width changes from 40 ps to 30 ps, then the voltage margin for the pulse width 30 ps will

be a bit higher and it is about 14 mV for both logic 1 and logic 0, as shown in Table 1. It is also shown that

keeping Rτ Cτ equal to 40 ps and changing the threshold voltage (VT ) dynamically from 40 mV to 32 mV, if

a pulse width of 30 ps is driven from the transmitter, then our methodology produces a pulse width of 40 ps

inside Chip-2.
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