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Abstract:In the areas of biomedical and healthcare, electrocardiogram (ECG) signal analysis is one of the major aspects

of research. The accuracy in the detection of subtle characteristic features in ECG is of great significance. This paper

deals with an algorithm based on hybrid linearization and principal component analysis for ECG signal denoising and

R-peak detection. The ECG data have been taken from the MIT-BIH Arrhythmia Database for performance evaluation.

The signal is denoised by applying the hybrid linearization method, which is an arrangement of the extended Kalman

filter along with discrete wavelet transform, and then principal component analysis is employed to detect R waves and

the QRS complex. The reported work has been implemented in the MATLAB environment for 25 different ECG records

yielding 99.90% sensitivity, 99.97% positive predictivity, and a detection error rate of 0.120%. The achieved performance

outperforms the recent research done in the area of interest.
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1. Introduction

The contraction and relaxation of the cardiac muscles in the heart drives blood throughout the body and

occurs throughout the lifespan of a person [1]. The systole and diastole of the cardiovascular muscle tissues are

coordinated by an association of nerve cells to a wavelike activity. This may be imaged with echocardiography,

which uses the heart imaging principle. Another reliable noninvasive diagnostic tool that monitors the electrical

activity of the heart is electrocardiography. In electrocardiography, the recorded graphical trace is known as

an electrocardiogram (ECG), which corresponds to the magnitude and direction of the electrical activity of the

heart. The long-term recording of an ECG provides an effectual way for the detection of cardiac diseases [2,3].

Additionally, it can reveal the identity of a person [4]. One cardiac cycle consists of three major constituent

waves: the P component wave, QRS complex, and T component wave [5]. The QRS complex is the most

significant event in the ECG waveform [6]. A typical ECG wave with these components is shown in Figure 1

[7].

In the ECG signal, clinically significant information is found in the amplitude of different peaks and

intervals of constituent waves. Consequently, the development of procedures for quick and precise ECG denoising

and QRS complex detection, and particularly for the R-peak, is required for automatic ECG analysis [8]. Several

attempts have been reported in the literature, including adaptive Kalman filters [9] and adaptive wavelets with

Wiener filtering [10]. Due to the nonstationary characteristics of ECG signals and the noise present in them,
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Figure 1. A typical ECG waveform [7].

Wiener filters cannot provide good results [11]. Pan and Tompkins implemented a real-time algorithm in

assembly language to detect the QRS complex [12]. This QRS detector failed to detect 0.675% of beats. Studies

revealed that ECG features can be extracted using empirical mode decomposition (EMD), discrete wavelet

transform (DWT), and adaptive thresholding with wavelet bases in [13–15], respectively. Other methods for

QRS complex detection include the zero crossing detector [16] and Hilbert transform [17]. Researchers have

also applied a singularity method on EMD filtered ECG signals for detection of the QRS complex [18]. In [19],

a model based on finding locations, widths, and magnitudes from ECG waves was proposed to extract features.

A wavelet ECG detector based on a combination of a multiscaled product algorithm with a soft-thresholding

function for effective detection of the QRS complex was demonstrated in [20]. For QRS complex detection, the

use of the Hilbert transform with an adaptive threshold was explored in [8]. However, investigators applied band

pass filtering on ECG signals before applying the Hilbert transform since it does not improve the signal-to-noise

ratio [8].

Over the past several years, a number of ECG denoising and beat detection methods have been reported

by researchers. In spite of this, a universally accepted solution has not been found yet. The presented work

focuses on principal component analysis (PCA) along with thresholding for the detection of the QRS complex

and the R-peak. The concept of PCA involves projection of data along the direction of the highest variance

[21]. As it is complex to investigate and extract accurate features from ECG signals due to the presence of

noise, a hybrid linearization method (HLM) involving two influential tools, the extended Kalman filter (EKF)

with discrete wavelet transform (DWT), is presented for denoising. Thereafter, PCA is applied to noise-free

ECG signals for extraction of the R-peak and QRS complex. The novelty of the proposed work is the approach

of adopting three different prevailing tools, i.e. EKF, DWT, and PCA, for denoising, detection of constituent

components and important peaks of the ECG signal, and achieving superior results in comparison to other

techniques.

This paper is organized in five sections. After the introduction of the topic of interest and work done

in the relevant field in Section 1, materials and methods for the current approach are summarized in Section

2. Section 3 explores the methodology for the current work and Section 4 provides results and a discussion.

Finally, the paper is concluded in Section 5.

2. Materials and methods

2.1. Arrhythmia Database and Matrix Laboratory (MATLAB)

The MIT-BIH arrhythmia database has been utilized for the evaluation of the proposed work [22]. The

database consists of 48 half-hour ECG recordings with a sampling frequency of 360 Hz. The ECG signals

from this database include irregular heart rhythms, wider and low amplitude QRS complex, paced rhythms,

2164



KAUR and RAJNI/Turk J Elec Eng & Comp Sci

ventricular tachycardia, atrial and ventricular flutter, atrial and ventricular fibrillation, premature ventricular

contraction, sinus bradycardia including baseline wanders, and muscle artifacts [23]. The presented work has

been implemented with MATLAB software. The MATLAB environment provides a simpler platform with

various built-in functions and a toolbox that leads to a convenient way for ECG signal processing with great

accuracy [24].

2.2. Extended Kalman filter

The conventional Kalman filters are applicable for linear models only, but in practice most of the applications

and realistic systems of interest are nonlinear in nature [25]. For extending the functionality of the Kalman

filter to nonlinear dynamic structures, a modified variant of it, the EKF, has been developed [26,27]. For a

discrete, nonlinear system xk+1 = f(xk, wk) and its observation yk = g(xk, vk), linear approximation close to

a reference point (x̂k, ŵk, v̂k) can be formulated [28] as in Eq. (1): xk+1 ≈ f (x̂k , ŵk) + Ak (xk − x̂k) + Fk (wk − ŵk)

yk ≈ g (x̂k , v̂k) + Ck (xk − x̂k) + Gk (vk − v̂k)
(1)

where xk and yk are the state and observation vectors, respectively. The function f (.) represents state

evolution and g (.) defines the relation between observations and state. The parameters vk andwk represent

measurement and state noise with Rk = E
{
vkv

T
k

}
and Qk = E

{
wkw

T
k

}
covariance matrices, respectively.

Ak , Ck , Fk and Gk are the Jacobian matrices as shown in Eq. (2):


Ak = ∂f(x,ŵk)

∂x

∣∣∣
xk= x̂k

Fk = ∂f(x̂k,wk)
∂w

∣∣∣
w= ŵk

Ck = ∂g(x,v̂k)
∂x

∣∣∣
x=x̂k

Gk = ∂g(x̂k,v)
∂v

∣∣∣
v= v̂k

(2)

Hence, for implementing the EKF algorithm, the measurement and time propagation equations are expressed

below in Eqs. (3) and (4), respectively:{
x̂k/k−1 = f(x̂k−1/k−1 , 0)

Pk/k−1 = AkPk−1/k−1A
T
k + FkQkF

T
k

(3)


x̂k/k = x̂k/k−1 + Kk[ yk − g(x̂k/k−1, 0)]

Kk = Pk/k−1C
T
k

[
CkPk/k−1C

T
k + GT

k

]−1

Pk/k = Pk/k−1 − KkCkPk/k−1

(4)

where x̂k/k−1 = E xk| yk−1, yk−2, . . . , y1 is the estimate of the state vector at instant k using y1 to yk−1

observations. x̂k/k = E xk| yk, yk−1, ..., y1 is the estimate of the state vector at instant k using y1 to yk

observations and Kk is the filter gain. Pk/k−1 and Pk/k are described in a similar manner. The EKF facilitates

linearization and denoising of ECG signals [29].

2.3. Wavelet transform

Wavelet transform (WT) is a powerful tool to study nonstationary signals like ECGs. The WT provides a

description of a signal in the time–frequency domain [30,31] and works on a multiscale basis [32]. WT is
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appropriate for all frequencies since it has a variable size window, i.e. being narrow in high frequency ranges

and broad in low frequency ranges [33]. The WT of signal y(t) is expressed [15] as in Eq. (5):

Wa y (b)=
1√
a

∞∫
−∞

y (t) ψ

(
t− b

a

)
dt (5)

where a is the dilation parameter, b is the translation parameter, and ψ (t) is the wavelet function.

WT is categorized into DWTs and continuous wavelet transforms (CWTs).

2.4. Discrete wavelet transform

In recent years, DWT has been established as a convincing tool in signal processing as it provides good frequency

resolution at low frequencies and good time resolution at high frequencies. The two-level wavelet decomposition

of a signal y (n) is depicted in Figure 2. The low-pass h (n) and high-pass g (n) filters are used during

decomposition of the input signal. At the first level, decomposition results in detail (D1) and approximation

(A1) coefficients as the ECG signal is passed through the arrangement of complementary filters. The process

continues as the coefficient A1 is further decomposed at the second level using the same procedure.

Figure 2. Two-level wavelet decomposition.

2.5. Hybrid linearization method

The EKF makes the ECG signal noise-free to some extent. The HLM, which involves application of the EKF

in combination with the DWT, is implemented to improve the quality of ECG signals available at the EKF

output [29]. The Bior3.1 wavelet is preferred over other wavelet functions due to its lower mean square error

(MSE) and higher signal-to-noise ratio (SNR) values [34]. Additionally, it provides lower percentage root mean

square difference and higher peak SNR values. The performance of the hybrid linearization (HL) algorithm is

evaluated by two parameters, SNR (in dB) and MSE, as described in Eqs. (6) and (7), respectively [28]:

SNR [dB] =

(
Σi |x (i)|2

Σi |x (i)− x̂ (i)|2

)
(6)

MSE =
Σi (x (i)− x̂ (i))

2

N
(7)

where x(t) is the actual ECG signal, x̂(t) is the smooth reconstructed version of the signal, and N is the

number of samples.

2166



KAUR and RAJNI/Turk J Elec Eng & Comp Sci

2.6. Principal component analysis

PCA is a linear dimensionality reduction technique [21]. It is a statistical method interested in delineating

the covariance configuration of data sets. The PCA technique includes the calculation and decomposition of a

covariance matrix (obtained from data) into eigenvectors and eigenvalues [21,23]. The eigenvectors are organized

in descending order of eigenvalues and finally the data are projected in the directions of sorted eigenvectors

[23,35]. The general steps involved in PCA are described below [8]:

1. Calculation of the mean of the original ECG signal xi from Eq. (8):

x̄ =
1

M

M∑
i=1

xi (8)

where xi is represented by an M×N data matrix and x̄ is the mean of signal. M and N are the number

of samples of a beat and observations of beats, respectively.

2. Subtraction of the mean from the original ECG signal as shown in Eq. (9):

xadj = xi − x̄ (9)

3. Calculation of the covariance matrix from the data as in Eq. (10). The measurement of covariance between

a dimension and itself will give the variance of that dimension.

C =
1

M − 1

∑M

i=1
(xi − x̄)

T
(xi − x̄) (10)

4. Computation of the eigenvectors ei and the diagonal matrix of eigenvalues λi as calculated below in Eq.

(11):

Cei = λiei , i = 1, . . . ..N (11)

5. Formation of a feature vector by selecting components. The eigenvectors are arranged in descending order

of their eigenvalues and dimensions are reduced by selecting the K components. In practice, K is selected

to retain the physiological information so that the performance is acceptable in clinical aspects [36]. For

each eigenvalue, the percentage of variation rK is achieved by applying Eq. (12):

rK =

∑K
i=1 λi∑N
i=1 λi

(12)

Furthermore, we may select the components with percentage of variation more than the threshold per-

centage (th), which is 0.95 or 0.9 [8], as expressed in Eq. (13):

r̂K = (rK ≥ th) (13)

6. Finally, a new data set is derived as shown in Eq. (14):

New data set = (r̂K)T (xadj)
T

(14)
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3. Proposed methodology

The ECG signal is processed for denoising and detection of the R-peak and QRS complex. The different stages

involved in processing are explained as follows:

1. The preprocessing stage includes acquisition of real ECG records into the MATLAB environment from

the MIT-BIH Arrhythmia Database (mitdb) [22].

2. The next step in the ECG processing is denoising, i.e. elimination of baseline wander and high frequency

noise. For this, the HL algorithm is implemented to remove noises.

3. After preprocessing, the noise-free ECG signal is decomposed using PCA. During detection, eigenvalues

are squared for minimizing smaller values and maximizing larger values. Then thresholding is done to

retain R-peaks (larger eigenvalues).

4. With reference to the detected R-peaks, Q and S peaks are extracted. The denoised signal is scanned for

50 ms on the left as well as on the right of the R-peak to obtain the minimum value. The minimum values

on the left and right correspond to the Q-peak and S-peak, respectively, hence forming a complete QRS

complex.

The performance of the detection algorithm is evaluated in terms of sensitivity (Se), positive predictivity (P+),

and detection error rate (DER), which are described in Eqs. (15), (16), and (17), respectively:

Se =
True positive

True positive + False negative
× 100% (15)

P+ =
True positive

True positive + False positive
× 100% (16)

DER =
False positve + False negative

True positive
× 100% (17)

where the true positive (TP) rate is correctly detected R-peaks, false negative (FN) is undetected R-peaks, and

false positive (FP) refers to misdetections. The different phases involved in the proposed algorithm for ECG

signal processing with the HLM and PCA are illustrated in Figure 3.

4. Results and discussion

The ECG analysis begins with the preprocessing stage. The extraction of accurate cardiologic information from

the signal becomes difficult due to the presence of various noises [37]. In an ECG signal, muscle artifacts occur

due to electrode skin impedance and baseline drift is caused by patient movement, breathing, or coughing.

The morphological characteristics of an ECG wave may vary drastically due to artifacts and severe baseline

wandering. These undesirable noise contaminants are required to be removed prior to any additional signal

processing to provide an accurate signal analysis. Difficulties also arise during detection of the QRS complex

due to the low SNR of ECG signals, i.e. noisy signals. Therefore, the proposed approach has been applied to

exploit the potentials of both the EKF and DWT to extract noise-free signals from noisy ECG indices. The HL

algorithm is applied to the ECG signal to remove low frequency baseline wander and high frequency artifacts.

In the HLM, the ECG signal is first filtered with the EKF. It denoises the ECG to some extent. Furthermore,
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Figure 3. Flow of general stages in proposed methodology.

WT is applied to the filtered signal to enhance the signal quality. During wavelet decomposition, detail and

approximation coefficients are extracted and global thresholding is used. The performance of the denoising

technique is computed in terms of two important measures, i.e. SNR (in dB) and MSE. The original noisy

ECG signal of record mitdb/103 is depicted in Figure 4a and its denoised waveform with removed low and high

frequency noises is shown in Figure 4b.

Figure 4. (a) Original ECG signal (record mitdb/103), (b) denoised ECG signal with hybrid linearization method.

From Figure 4a, it is clearly apparent that the signal undergoes a considerable drift and distortion due to

the presence of noise, whereas Figure 4b shows an improved ECG signal waveform free from drift after applying

the HLM. Although the ECG sample is of 30 min in duration, for simplification it is shown for only 10 s. In

Table 1, results of EKF, WT, and HLM filtering are tabulated for comparative study. From the results obtained

and depicted in Table 1, it is evident that the SNR has been sufficiently improved with the HL algorithm.
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Table 1. Performance evaluation of denoising algorithm.

ECG record
EKF DWT HLM

cm SNR (dB) MSE SNR (dB) MSE SNR (dB) MSE

100 3.8286 5.1e-03 6.9326 2.0e-03 17.4590 1.15e-04

101 3.5305 3.28e-04 3.7445 3.12e-04 11.7044 2.53e-05

103 4.1280 1.04e-02 8.4883 6.0e-03 18.1110 3.61e-04

105 7.2344 1.10e-02 9.0482 1.7e-03 19.3932 8.35e-04

106 3.9266 1.1e-03 5.3831 8.01e-04 12.5836 6.15e-05

108 8.9079 1.47e-02 10.7044 9.7e-03 20.6134 8.66e-04

112 3.5660 1.5e-03 6.6893 7.15e-04 15.0421 5.05e-05

113 3.3690 1.3e-03 6.5621 6.30e-04 15.4663 3.68e-05

114 5.7988 2.06e-02 7.5206 1.4e-03 20.0555 5.38e-04

115 4.8433 1.4e-03 7.3859 7.89e-04 17.4115 4.94e-05

116 6.3323 5.03e-02 8.1179 4.4e-03 17.8918 2.25e-04

117 5.2256 1.81e-02 8.7776 8.0e-03 18.3845 5.70e-04

121 5.3583 7.5e-03 9.9772 2.6e-03 18.8628 2.21e-04

122 3.1873 4.0e-03 3.7663 3.5e-03 12.0947 2.65e-04

123 4.3027 1.0e-02 8.9304 3.5e-03 18.0581 2.40e-04

200 4.0723 3.76e-04 5.8450 2.50e-04 14.8123 2.24e-05

202 6.6418 9.0e-03 9.6953 4.4e-03 19.1839 3.77e-04

205 4.2529 6.76e-04 5.6977 4.84e-04 14.3636 3.78e-05

212 8.4667 2.52e-02 9.0827 2.17e-02 18.9557 2.1e-03

213 5.6996 9.02e-02 7.3913 6.11e-02 17.8650 3.8e-03

215 4.4202 1.72e-02 7.5185 8.43e-03 16.5545 6.02e-04

220 3.8261 4.06e-02 6.6269 1.69e-03 17.7738 8.34e-04

223 6.0924 3.29e-02 8.8749 2.7e-03 19.4381 1.15e-04

231 6.2719 8.0e-03 8.5448 4.7e-03 18.9004 3.13e-04

233 6.5279 4.86e-02 8.9212 2.80e-02 18.7656 2.2e-03

In the ECG signal, the R-peak is the most prominent deflection as the maximum information is concen-

trated in the region around this peak. The precise detection of the R-peak forms the basis for the detection of

other components in the signal. Accurate detection of R-peaks is also necessary to compute the R-R interval,

the distance between two adjacent R-peaks, which may be used to detect irregularities in the ECG wave, and

the average R-R interval is used to calculate the heart rate [5]. The heart rate derived from an ECG signal

can be used to detect cardiac abnormalities such as sinus tachycardia and sinus bradycardia [14]. The R wave

can be easily detected due to its higher amplitude than other peaks. In the proposed method, the R wave is

detected by squaring and thresholding the eigenvalues obtained with PCA. The detected R wave with PCA is

shown in Figure 5.

The indexes of R-peaks marked in Figure 5 are stored for detection of the QRS complex. For detecting

the QRS complex, minimum values are searched by scanning the noise-free signal on the left (or right) side of

the R-peak for Q (or S) peaks. Figure 6a demonstrates the QRS complex detected from the ECG signal with

reference to R-peak indexes and its wider view is shown in Figure 6b.
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Figure 5. Detected R wave in the ECG signal.

Figure 6. (a) Detected QRS complex of record mitdb/103, (b) wider view of QRS complex.

In Figure 6a, different markers are used to clearly depict the detected Q and S peaks with the R peak,

and a wider view of the detected QRS complex is illustrated in Figure 6b for better visibility. From Figures 5,

6a, and 6b, it is notable that the proposed approach successfully detects Q, R, and S peaks. For denoising and

detection purposes, different ECG records have been selected from the arrhythmia database with the aim of

presenting a comparative performance of the proposed work with recent past studies. The results for the beat

detection algorithm are provided in Table 2.

Table 2 depicts the total number of beats, number of detected beats, true positive beats, and false

negative and false positive beats. In Table 2, the value of the sensitivity parameter specifies the percentage of

heartbeats properly detected by the algorithm and positive predictivity indicates that detected heartbeats are

real heartbeats. A comparison of the proposed beat detection algorithm with previous methods is shown in

Table 3.

In Table 3, for ECG signals from serial order 1 to 14 and from 15 to 22, the proposed analysis is compared

with the work presented in [8] and [38], respectively. In Table 3, NR signifies not reported. In [8], the authors

applied Hilbert transform and adaptive thresholding for beat detection and reported an overall 96.28% of Se
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Table 2. Performance evaluation of beat detection algorithm.

ECG Total Detected TP FP FN Se P+ DER

record beats beats beats beats beats (%) (%) (%)

100 2273 2265 2265 0 8 99.6 100 0.353

101 1865 1865 1865 0 0 100 100 0

103 2084 2084 2084 0 0 100 100 0

105 2572 2569 2560 9 12 99.5 99.6 0.820

106 2027 2027 2027 0 0 100 100 0

108 1774 1774 1774 0 0 100 100 0

112 2539 2538 2538 0 1 99.9 100 0.039

113 1795 1795 1795 0 0 100 100 0

114 1879 1874 1874 0 5 99.7 100 0.266

115 1953 1953 1953 0 0 100 100 0

116 2412 2410 2410 0 2 99.9 100 0.082

117 1535 1535 1535 0 0 100 100 0

121 1863 1861 1862 1 1 99.9 99.9 0.107

122 2476 2476 2476 0 0 100 100 0

123 1518 1516 1516 0 2 99.8 100 0.131

200 2601 2601 2601 0 0 100 100 0

202 2136 2135 2134 1 2 99.9 99.9 0.140

205 2656 2654 2653 1 3 99.8 99.9 0.150

212 2748 2748 2748 0 0 100 100 0

213 3251 3250 3250 0 1 99.9 100 0.030

215 3363 3362 3359 3 4 99.8 99.9 0.208

220 2048 2048 2048 0 0 100 100 0

223 2605 2604 2604 0 1 99.9 100 0.038

231 1573 1570 1570 0 3 98.8 100 0.191

233 3079 3073 3072 1 7 99.7 99.9 0.260

Total 56625 56587 56573 16 52 99.90 99.97 0.120

and 99.71% of P+. In [38], 99.85% Se, 99.92% P+, and 0.221% DER were reported for R-peak detection

with DWT, whereas the proposed beat detection approach measures Se of 99.90%, P+ of 99.97%, and DER of

0.120%. Therefore, it is clearly seen from Tables 2 and 3 that our proposed scheme achieves superior detection

rates and outperforms the techniques illustrated in the literature.

5. Conclusion

The detection of ECG signals is closely related to examination and diagnosis of cardiac status. In the presented

work, ECG signal analysis is carried out by the method of HLM and PCA. The denoising of ECG wave is a

prerequisite to accurate signal processing. In the reported work, ECG signal denoising is achieved successfully

through the new approach of HLM, which uses a combination of EKF and DWT to remove baseline wander

and muscle artifacts, and hence HLM yields improved SNR and MSE, confirming its superiority over other

techniques. Furthermore, the most important part of any ECG signal analysis technique for cardiac health
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Table 3. Comparison of proposed work with work reported in [8] and [38].

S. No. ECG record Se (%) P+ (%) DER (%) Se (%) P+ (%) DER (%)
Proposed work Rodriguez et al., 2015 [8]
1 101 100 100 0 99.94 99.51 NR
2 103 100 100 0 99.95 100 NR
3 108 100 100 0 96.13 99.93 NR
4 116 99.9 100 0.082 98.82 99.78 NR
5 117 100 100 0 100 99.93 NR
6 121 99.9 99.9 0.107 99.89 99.94 NR
7 200 100 100 0 99.84 99.80 NR
8 202 99.9 99.9 0.140 99.00 99.95 NR
9 205 99.8 99.9 0.150 99.81 99.47 NR
10 213 99.9 100 0.030 99.90 97.44 NR
11 215 99.8 99.9 0.208 98.58 100 NR
12 223 99.9 100 0.038 98.99 100 NR
13 231 99.8 100 0.191 99.87 99.93 NR
14 233 99.7 99.9 0.260 99.77 99.93 NR
Proposed work Kaur et al., 2016 [38]
15 100 99.6 100 0.353 99.6 100 0.397
16 101 100 100 0 99.6 99.7 0.693
17 103 100 100 0 100 99.7 0.239
18 112 99.9 100 0.039 99.9 100 0.039
19 113 100 100 0 99.6 99.9 0.391
20 115 100 100 0 100 99.8 0.153
21 122 100 100 0 100 100 0
22 123 99.8 100 0.191 99.8 100 0.198

assessment is the R-peak and QRS complex detection, which is done using PCA and thresholding. The proposed

algorithm is tested and validated using a variety of signals from the standard MIT-BIH Arrhythmia Database.

The parameters used to analyze the performance of the beat detection algorithm achieve 99.90% sensitivity,

99.97% positive predictivity, and a detection error rate of 0.120%. The values of SNR and MSE for denoising

and of Se, P+, and DER for beat detection acquired by our processed algorithm are comparable with many

other techniques in the literature. The improved accuracy in detection rates of the proposed method makes

it highly consistent and efficient. In the future, an ECG classifier based on heart rate using some artificial

neural network models can be proposed to automate the detection and classification of various cardiovascular

abnormalities.
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