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Abstract: The aim of this paper is to design a nonlinear model predictive control for DC-DC buck converters to track

constant reference signals with zero steady-state error. The online trained neural network (NN) model is employed as

the predictor and the steady-state error, which is called the offset, is studied in the presence of the changes in system

parameters and the external disturbances. The stability of the closed-loop system is investigated using the Lyapunov

direct theory. The proposed method can provide offset-free behavior in the presence of constant disturbances. For

rejecting nonconstant disturbances, a nonlinear disturbance observer based on the NN inverse model is proposed. Due to

wide applications of the DC-DC converter in power electronics, control of its output voltage is considered in this paper.

The effectiveness of the proposed control method is demonstrated by experimental results.
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1. Introduction

Regulating the output voltage of DC-DC converters has been an interesting subject in the research area of

power electronics and automatic control for many years. The wide applications of the converters in industrial

electronics, computers, power supplies, and motor drivers make them important from the control-engineering

viewpoint. The model predictive control (MPC) method is one of the advanced control algorithms that is

widely used in industrial applications due to its ability in control of constrained and nonlinear systems [1].

MPC is employed in the power control area, especially in control of converters [2,3]. This control strategy

utilizes an explicit process model to predict the future response of the system and provides the control signal

by solving an online constraint optimization problem [4]. Accuracy of the predictor model is an important issue

in MPC. Hence, due to the nonlinear nature of almost all plants, using nonlinear models can improves the

MPC performance in different industrial applications [5]. Neural networks (NNs) as general approximators are

widely used in nonlinear MPC (NMPC) [6]. NNs are cascaded recursively in the NMPC structure to provide

the output predictions over the prediction horizon.

Model–plant mismatches and external disturbances deteriorate the control performance and cause steady-

state error in the output response. Eliminating the steady-state error in the presence of the model–plant

mismatches and disturbances is widely studied in the literature and different approaches are proposed for it.

One of these approaches is adaptive control that adjusts the changes of the system and the disturbances, which

reduces the influence of these factors [7]. Another approach is offset-free control, which tries to reject the effect

of the disturbance by augmenting the system model with the disturbance fictitious model and employing an
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observer to estimate the states of the augmented system [8–10]. In some offset-free approaches the difference

between system and predicted model outputs is utilized to correct the predictions in the multistep output

recursive prediction [11]. In [12,13], the classical control structure along with the resonant controller is used

to achieve zero steady-state tracking error in the current control of the inverters and converters. A robust

approach for estimating and rejecting the disturbance uses a disturbance observer (DOB) that is studied in

both time and frequency domains [14]. In the frequency domain, which is mostly used in the linear control

area, the inverse model of the system is utilized; then, by comparing the system input and the output of the

inverse model, the disturbance is estimated. The estimated disturbance is used in the feedforward structure

to modify the controller output [15]. The time domain approach, which is used mostly in nonlinear control, is

based on the design of the observer gain for nonlinear augmented systems [16]. In order to provide a robust

current model predictive control of the converters, the feed-forward compensation of disturbances was employed

and a disturbance observer such as a Luenberger observer or extended state observer was utilized to estimate

the uncertainties, system model errors, and disturbances in [17,18].

The three basic switch-mode DC-DC power converters are the buck, the boost, and the buck–boost

configurations. The buck (step-down) converter produces an output voltage lower than the input. A typical

buck converter works in continuous current mode. The most important problem in these converters is to achieve

good tracking accuracy [19].

In this paper, the offset-free tracking control of DC-DC buck converters in the presence of model–plant

mismatches and external disturbances is considered. The NMPC controller based on the adaptive NN predictor

model is utilized. The adaptive structure of the model helps the controller to reject the model–plant mismatches

(internal disturbances) as well as external constant disturbances. For nonconstant disturbances a DOB is added

to the adaptive NN-based NMPC (ANNMPC) to reject the effects of other types of disturbances. The structure

of the frequency domain DOB with some modifications is used and the NN model is employed to obtain the

inverse model of the converter. Moreover, stability of the closed-loop system is studied using the Lyapunov

direct method. Experimental results show substantial improvements of the proposed controller as compared

with the standard NMPC.

This paper is organized as follows. Section 2 gives the problem statement. The NMPC strategy and

the structure of the adaptive NN predictor are explained in this section. Disturbance rejection of constant and

ramp disturbances using the DOB along with the stability of the closed-loop system is explained in Section 3.

Experimental results of the buck DC-DC converter are given in Section 4. Section 5 concludes the paper.

2. Problem statement

Consider the following SISO nonlinear nonaffine dynamic system with unknown external disturbance:

y(k) = f (y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k − nu), d(k)) (1)

where f is an unknown nonlinear function, y and u are the output and input of the system, ny and nu

respectively refer to the maximum lags in the system output and input, and d(k) is an unknown but bounded

disturbance.

2.1. Nonlinear model predictive control formulation

Model predictive control utilizes the explicit model of the system and provides the control signal based on the

online constraint optimization problem. The performance index of the NMPC contains the tracking error over
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the prediction horizon (NP ) and the changes of the control signal over the control horizon (M ≤ NP ) as follows:

LNMPC = min
∆u(k|k),...,∆u(k+M−1|k)

[
NP∑
i=1

(ysp(k + i )− ym(k + i |k)) Q (ysp(k + i )− ym(k + i |k))

+
M−1∑
j=0

(∆u(k + j |k))R (∆u(k + j |k))

] (2)

subject to:

ymin ≤ ym(k + i |k) ≤ ymax 1 ≤ i ≤ NP

umin ≤ u(k + i |k) ≤ umax 0 ≤ i ≤ M − 1

∆umin ≤ ∆u(k + i |k) ≤ ∆umax 0 ≤ i ≤ M − 1

(3)

where ysp(k) is the desired reference signal, ym(k) is the output of the model, and Q and R are the weighting

factors on the predicted error and the control effort, respectively. Moreover, it is considered that ∆u(k+j|k) = 0

for j > M − 1.

In this paper, the NN model is employed as the predictor in the NMPC structure, which is trained online.

The NN model is described by the following nonlinear autoregressive moving averaging model:

ym(k) = fNN (y(k − 1), . . . , y(k − n̂y), u(k − 1), . . . , u(k − n̂u)) (4)

where fNN represents the nonlinear mapping function, and n̂y and n̂u are the maximum lags in the model

output and input, respectively. A multilayer perceptron (MLP) NN with one hidden layer is considered. In

each step, the NN weights are trained via the new data obtained from the system by solving the following

optimization problem:

min
w(k)

ENN (k) = min
w(k)

1

2

(
eM (k)2 + eT (k)

2
)

(5)

where w(k) is the NN weights vector and

eM (k) = y(k)− ym(k), eT (k) = ysp(k)− ym(k) (6)

Since the NN model is used as a predictor in the NMPC problem, in addition to the modeling error, the tracking

error is also used for training the NN model parameters. The online minimization problem of Eq. (5) is solved

by the Levenberg–Marquardt (LM) algorithm and the NN weights are updated by the following equation:

w(k + 1) = w(k)− η
(
JT (k)J(k) + µI

)−1
JT (k)e(k) (7)

where η is the learning rate, µ is the regularization parameter of the LM algorithm, J(k) = −∂ym(k)/∂w(k)

is the Jacobian vector, and e(k) = eM (k) + eT (k) is the instantaneous training error. The NN input vector is

considered as ϕ(k − 1) = [y(k − 1) · · · y(k − n̂y) u(k − 1) · · · u(k − n̂u)]
T .

The NN model is a one-step-ahead predictor for the system output. To produce the predictions of the

output over the prediction horizon, the past output samples in the vector ϕ(.) are gradually replaced by their

predicted values. That is, by updating the vector ϕ(.), the one-step-ahead NN model is recursively cascaded

to generate the future predictions, as depicted in Figure 1. The NN weights are considered fixed and are not

trained over the prediction horizon. That means:
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w(k + i|k) = w(k) 1 ≤ i ≤ NP (8)

The structure of the closed-loop system is illustrated in Figure 1.

Figure 1. Closed-loop system with ANNMPC and recursive NN predictor.

3. Disturbance rejection

Model mismatches and external disturbances lead to tracking error, which can deteriorate the performance

of control systems. Adaptation ability of the online modeling helps the controller to adjust the changes of

the system parameters in each time step and attenuate the tracking error. Moreover, the constant external

disturbances can be rejected by adaptive control methods. This issue is investigated in the following theorem.

Theorem 1 The ANNMPC controller with the cost function of Eq. (2) and online model training rule of Eq.

(7) leads to the asymptotically stable closed-loop system in the presence of the model mismatches and the external

step disturbances if the NN learning rate satisfies the following condition:

Table. Parameter values of the buck DC-DC converter.

Parameter Value Unit
Input voltage 12 V
Inductance 100 µH
Capacitance 220 µF
Load resistance 72 Ω
Switching frequency 20 kHz

0 < η(k) <
1

J(k) (JT (k)J(k) + µI)
−1

JT (k)
(9)
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Proof The candidate Lyapunov function is considered as:

V (k) = eT (k)
2 + eM (k)2 (10)

Since the stability of the closed-loop system is investigated in the presence of the model mismatches and external

disturbances, the Lyapunov function contains both the tracking and the modeling error. The first difference of

Eq. (10) is:

∆V (k) = V (k + 1)− V (k) = 2eT (k)∆eT (k) + ∆eT (k)
2 + 2eM (k)∆eM (k) + ∆eM (k)2 (11)

After some calculations, Eq. (11) can be written as

∆V (k) = 2eT (k) (∂eT (k)/∂w(k))
T
∆w(k) +

(
(∂eT (k)/∂w(k))

T
∆w(k)

)2

+2eM (k) (∂eM (k)/∂w(k))
T
∆w(k) +

(
(∂eM (k)/∂w(k))

T
∆w(k)

)2
(12)

According to the definition of the Jacobian vector (J(k) = −∂ym(k)/∂w(k)) and using Eq. (7), Eq. (12) can

be rewritten as:

∆V (k) =
(
2η(k)J(k)

(
JT (k)J(k) + µI

)−1
JT (k) (eT (k) + eM (k))

2
)

(
−1 + η(k)

[
J(k)

(
JT (k)J(k) + µI

)−1
JT (k)

])
< 0 .

(13)

Since the sum of two positive definite (PD) matrices is PD, hence
(
JT (k)J(k) + µI

)
and its inverse are PD as

well. Then, using the Sylvester criterion, it can be written as:

J(k)
(
JT (k)J(k) + µI

)−1
JT (k) > 0 (14)

Therefore, the first term in Eq. (13) has a positive value and the second term must be negative. Hence, the

stability bound for η is obtained as in Eq. (9).

Remark 1 In this paper, the NN is utilized as an adaptive predictor model in ANNMPC. This model is trained

in each time step using new data obtained from the system. Therefore, this NN model may learn the disturbances

(in output or in system parameters) along with the disturbed system response. The model mismatch is included

in the modeling error and the disturbance exists in both the tracking and modeling error due to the NN modeling.

Hence, using the Lyapunov function of Eq. (10) for the stability of the closed-loop system, the effect of model

mismatch and disturbances is considered. According to Theorem 1, if η is selected in the stability region of Eq.

(9), for k → ∞ (the steady-state behavior), the Lyapunov function and consequently the modeling and tracking

error tend to zero:

lim
k→∞

V (k) = 0 ⇒


lim
k→∞

eT (k) = 0

lim
k→∞

eM (k) = 0
(15)
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Therefore, the error between the reference signal and the real plant output tends to zero in the presence of the

model–plant mismatches and disturbances, which provides offset-free behavior for the system response:
lim
k→∞

yNN (k) = y∞sp

lim
k→∞

yNN (k) = lim
k→∞

yp(k)
⇒ lim

k→∞
yp(k) = y∞sp (16)

It should be noted that the Lyapunov theory considers the steady-state behavior of the system. Hence, step

disturbances (i.e. external disturbances with constant values) can be successfully rejected. However, no such

conclusion can be drawn about the nonconstant disturbances. Typically, nonconstant disturbances in real ap-

plications are ramp or sinusoidal signals [20,21]. NMPC based on the adaptive NN model cannot reject these

types of disturbances. An important approach for dealing with nonconstant disturbances is using the feedforward

control algorithm with the DOB. The DOB-based control methods utilize the inverse model of the system and

estimate the disturbance by comparing the output of the inverse model and the input signal of the system. The

estimated disturbance is subtracted from the controller output and therefore rejects the disturbance from the

control signal. The structure of the proposed ANNMPC method using the DOB is depicted in Figure 2.

Figure 2. Structure of the proposed ANNMPC with disturbance observer.

Since the inverse model of the system is utilized in the nonlinear disturbance observer method, the

nonlinear system must be in minimum phase. A NN model with the MLP structure is used to obtain the

inverse model of the system. According to Figure 2, the estimated disturbance ( d̂(k)) is given by:

d̂(k) = ûp(k)− u(k) = g (Y(k),Up(k))− u(k) = g (Y(k),U(k) +D(k))− u(k) (17)

where g(·), the inverse model of the system, is a MLP NN, which is trained offline using the LM algorithm.

Moreover:
ûp(k) = g (y(k − 1), . . . , y(k − ñy), up(k − 1), . . . , up(k − ñu)) (18)

and

Y(k) = [y(k − 1), . . . , y(k − ñy)], Up(k) = [up(k − 1), . . . , up(k − ñu)],

U(k) = [u(k − 1), . . . , u(k − ñu)], D(k) = [d(k − 1), . . . , d(k − ñu)].
(19)

Where, ñy and ñu are the maximum lags in the model input and output, respectively.

The weights of the NN inverse model are adjusted using the following objective function:

Loff−line =
1

2

∑
n

einv(n)
2

(20)
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where einv(n) = up(n) − ûp(n) is the training error. By minimizing the objective function of Eq. (20), the

weights of the NN inverse model are given by

v(n+ 1) = v(n)− ρ
(
JT
inv(n)Jinv(n) + γI

)−1
JT
inv(n)einv(n) (21)

where ρ is the learning rate, γ is the regularization parameter of the LM algorithm, and Jinv(n) = ∂einv(n)/∂v(n)

is the Jacobian vector.

It can be shown that for the specific bound on the learning rate of the NN model weights, the NN inverse

model converges asymptotically to the actual value of the plant input. This is shown in the following theorem.

Theorem 2 If the weights v(n) of the offline trained NN inverse model are trained using Eq. (21), then the

NN inverse model will converge to the actual value of the plant input asymptotically if the learning rate satisfies

the following condition:

0 < ρ(n) <
2

Jinv(n)
(
JT
inv(n)Jinv(n) + γI

)−1
JT
inv(n)

(22)

Proof The candidate Lyapunov function is considered as:

V (n) = einv(n)
2
. (23)

The first difference of Eq. (23) is:

∆V (n) = 2einv(n)∆einv(n) + ∆einv(n)∆einv(n) (24)

The first difference of the tracking error can be written as:

∆einv(n) = (∂einv(n)/∂v(n))
T
∆v(n) (25)

Using the definition of the Jacobian vector, it gives ∆einv(n) = JT
inv(n)∆v(n). Substituting Eq. (21) into Eq.

(25) yields:

∆V (n) = −ρeinv(n)
2
Jinv(n)

(
JT
inv(n)Jinv(n) + γI

)−1
JT
inv(n)[

2− ρ Jinv(n)
(
JT
inv(n)Jinv(n) + γI

)−1
JT
inv(n)

] (26)

To ensure that the output of the NN converges to the desired output, it is required to have ∆V (n) < 0. Finally,

a procedure similar to the proof of Theorem 1 follows the assertion.

According to Theorem 2, it can be written that g( · ) = f−1( · ) . Substituting this equation into Eq.

(17), the estimated disturbance is calculated as:

d̂(k) = g (Y(k),U(k) +D(k))− u(k)

= f−1 (Y(k),U(k) +D(k))− u(k) = u(k) + d(k)− u(k) = d(k)
(27)

Hence, the disturbance can be observed exactly by the proposed NN-based DOB. Hence, it can be obtained

from the Figure 2 that:

ûp(k) = up(k) = uc(k) (28)
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4. Experimental results

In this section, the performance of the proposed method in tracking the reference signals and disturbance

rejection is demonstrated. The control of the DC-DC converter is considered here. DC-DC converters provide

different DC voltage levels and are employed in power electronic equipment. The Buck DC-DC converter is

depicted in Figure 3. Regulating the output voltage to the desired reference value is investigated in different

converter applications. Changes in the output load and in the input voltage are mostly considered as the

disturbances in the DC-DC converter [19]. The duty ratio of the power MOSFET is considered as the control

signal. The comparing signal that is called OCR (Figure 3) is equal to the duty ratio of the MOSFET. The

experimental prototype of the converter is implemented by the analog circuit. As depicted in Figure 3, the control

system consists of the ANNMPC controller, an AVR microcontroller, the MOSFET gate driver (TLP250), and

the converter. The AVR microcontroller is utilized for producing the PWM signal, reading the output voltage,

and serial connection to the computer for receiving/transmitting data. The system parameters are selected as

given in the Table. The waveforms of the buck converter are illustrated in Figure 4. It is considered that the

inductor current is always positive. When the MOSFET is on, the diode is reverse-biased and when it is off,

the diode conducts the current to the inductor [22].

Figure 3. Closed-loop structure of the buck DC-DC con-

verter.

Figure 4. Waveforms of the buck converter.

4.1. Reference tracking

Here the proposed controller is applied to the DC-DC converter to study the performance of reference tracking

for the output voltage. The number of neurons in the hidden layer of the NN predictor is equal to two with

tangent hyperbolic functions; the tapped delays are selected as n̂u = 2, n̂y = 3 and the learning rates η and

µ are set to one. The parameters of the ANNMPC are NP = 10, M = 2, Q = 1, and R = 0.01. The tracking

2202



VATANKHAH and FARROKHI/Turk J Elec Eng & Comp Sci

performance of the ANNMPC is depicted in Figure 5. As shown in this figure, the tracking response of the

proposed algorithm is acceptable in both the transient and the steady-state responses. Moreover, the tracking

is offset-free. For comparison, the NMPC controller based on a nonadaptive NN model (NNMPC) response is

shown in this figure as well. As can be observed from this figure, the tracking responses of this controller have

offsets.

Figure 5. Reference tracking response of the converter.

4.2. Disturbance rejection

In this part, the disturbance rejection behavior of the ANNMPC in the presence of fluctuations on the output

load and the input voltage is studied.

In Figure 6, the load is changed from 72 Ω to 160 Ω and the input voltage is changed from 12 V to 15 V

and returns to 12 V. As this figure shows, the NNMPC algorithm that uses a nonadaptive predictor model has

offsets for the step disturbance rejection. On the other hand, the ANNMPC strategy has good performance in

the rejection of the step disturbances.

In addition to these step-like disturbances, the output load is changed from 72 Ω to 160 Ω slowly as a

ramp disturbance. As proposed in this paper, for rejection of the ramp disturbances, the DOB is added to the

control system in a feedforward control structure. In the DOB, the NN for the inverse model has one hidden

layer with 15 neurons with tangent hyperbolic functions. Other parameters for this network are selected as

ñu = 2, ñy = 3. Moreover, ρ and γ are set to one. The parameters of the ANNMPC are the same as in

Section 4.1. The results of the disturbance rejection behavior of the proposed controller are depicted in Figure 7.

For ramp disturbance rejection that is incurred to the converter in the output load, only the proposed algorithm

in this paper has efficient behavior and provides zero steady-state error.
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Figure 6. Step disturbance rejection responses of the converter: a) load changing from 72 Ω to 160 Ω, b) input voltage

changing from 12 V to 15 V and then back to 12 V.

Figure 7. Rejection of ramp disturbance in output load.
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5. Conclusion

In this paper, an NMPC strategy based on an adaptive NN predictor model was proposed to control the DC-DC

buck converter in the presence of the external and internal disturbances caused by model–plant mismatches.

The asymptotic stability and thus the offset-free behavior of the closed-loop system in tracking the constant

reference signals in the presence of the constant disturbances was shown via the Lyapunov direct method. For

nonconstant disturbances, a DOB based on the NN inverse model was proposed to estimate the nonconstant

external disturbances and it was used as a feedforward compensation term in the ANNMPC approach. The

experimental results for offset-free reference tracking as well as disturbance rejection on the voltage regulating

show the effectiveness of the proposed control strategy.
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