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Abstract: Frequent load fluctuation and set-point variation may affect the stability of grid-connected heavy-duty gas

turbine power plants. To overcome such problems, a novel neuro-fuzzy controller is proposed in this paper for single-

shaft heavy-duty gas turbines ranging from 18.2 MW to 106.7 MW. A neuro-fuzzy controller was developed using a

hybrid learning algorithm and the effectiveness of the controller for all heavy-duty gas turbine plants (5, 6, 7, and 9

series) is demonstrated against load disturbance and set-point variation in a grid-connected environment. Various time

domain specifications and performance index criteria of the neuro-fuzzy controller are compared with that of a fuzzy

logic controller and an artificial neural network controller. The simulation results indicate that the neuro-fuzzy controller

yields optimal transient and steady-state responses and tracks set-point variation faster than a fuzzy logic or artificial

neural network controller. Hence, the neuro-fuzzy controller is identified as an optimal controller for heavy-duty gas

turbine plants. The neuro-fuzzy controller proposed in this paper is also applicable to the latest derivative Speedtronic

controller.

Key words: Artificial neural network controller, fuzzy logic controller, heavy duty gas turbine, neuro-fuzzy controller,

simplified model, Speedtronic governor

1. Introduction

Electrical power generation from biomass-based gas turbine power plants has become attractive because of gasi-

fier technology availability and developments [1]. A heavy-duty gas turbine (HDGT) has numerous advantages,

such as shorter commissioning time, fast startup time, efficient energy conversion, and flexibility for variety of

fuels [2]. Gas turbines are broadly classified as single-shaft and twin-shaft, based on their construction and the

governor used [3]. Since renewable energy sources have also increased system fluctuation, an effective control

is required for systems based on renewable energy [4–8]. Attempts were made to analyze the performance of

combined cycle gas turbine plants using a model predictive controller, robust controller, etc. [9,10]. Further

literature also reveals that the performance of grid-connected gas turbine plants in simple cycle operations needs

to be analyzed [11–14].

The authors have developed a fixed gain and self-tuning proportional integral derivative (PID) controller

for HDGT plants. On analyzing the results, the fuzzy self-tuning PID controller was found to be more adaptive

for grid-connected operation [15]. The latest derivative of the Mark V Speedtronic governor control system uses
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microprocessors for protection and control [16]. Since controllers based on soft computing techniques can be

easily embedded in a microprocessor, it becomes a viable option for HDGT plants controlled by a Speedtronic

governor. Balamurugan et al. developed an artificial neural network (ANN) controller and a fuzzy logic controller

(FLC) for the 7001Ea model of HDGT [17]. However, these controllers cannot be optimal until the responses

of all HDGT plants are analyzed. Furthermore, the input and output scaling gains of the FLC have not been

adjusted by any optimization algorithm. Hence, this FLC cannot be an adaptive controller. Therefore, the

authors have developed an ANN controller and an FLC for all HDGT plants in this paper, overcoming these

drawbacks. The literature survey on soft computing techniques reveals that the excellent learning of ANNs and

the rule base of FLCs can be combined to develop an adaptive controller [18,19]. As frequent load fluctuation

and set-point variation may affect the stability, a novel neuro-fuzzy controller (NFC) is also proposed in this

paper for grid-connected HDGT plants. Since the turbine speed of HDGT models developed by General Electric

are limited at between 95% and 107% of their rated speed [3], the effectiveness of the NFC, FLC, and ANN

controllers was demonstrated and an optimal controller was identified for the HDGT.

2. Simplified gas turbine model

Figure 1 shows the standard configuration of a simple cycle gas turbine plant in a grid-connected operation.

The output power generated by the synchronous generator can be controlled by the fuel input to the combustor.

Rowen proposed a transfer function model for analyzing a simple cycle operation of HDGT plants based on

Speedtronic governors [3]. It includes three limiters (speed, acceleration, and temperature) along with the fuel

system and turbine dynamics. The acceleration limiter is useful only during startup time and the temperature

limiter takes control action only when the exhaust temperature exceeds the limit. Because of the reduced

influence of these limiters during normal operation, they have been eliminated. A speed control loop with

speed governor and fuel system dynamics has been identified as the predominant control loop [17]. The speed

governor, as expressed in Eq. (1), is a lag–lead compensator for deciding the fuel demand signal, Wd, based

on speed error, e .

Compressor Gas Turbine 

Combustor 
Fuel 

Inlet Air Exhaust gas 

3φ Mains 

Synchronous 

Generator 

Gear Box 

Figure 1. Gas turbine power plant in grid-connected mode.

Wd (s)=
W (Xs + 1)

Y s + Z
× e (s) (1)

Droop governor mode was identified as a suitable mode for grid-connected operation [20]. Further, the authors

optimized the Speedtronic governor droop setting using a genetic algorithm and it was found to be around 4%

for all HDGT plants [21]. To maintain a self-sustaining gas turbine under no-load operations, a fraction of rated

fuel of approximately 23% is required [3]. Fuel system control includes the valve positioner and fuel system
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actuator blocks, whose transfer function models are shown in Eqs. (2) and (3), respectively.

V p(s) =
a

bs + c
×Wd(s) (2)

Wf2(s) =
1

1 + s T
× V p(s) (3)

Based on fuel supply (Wf2) and the actual turbine speed (N), the turbine torque is computed using a function,

F2. The rotor time constant, T1, of HDGT models varies from 12.2 to 25.2. A simplified model of the HDGT

for simple cycle operation is shown in Figure 2. Model parameters of various blocks in the simplified model

are described in [15,17]. Because of the drooping nature of the speed governor, the steady-state responses of

HDGT models are poor [17]. In order to improve the dynamic as well as steady-state responses, the controller

has to be developed for maintaining stable operation by controlling the fuel flow. Moreover, the controller needs

to be fast enough to take control actions during disturbances. The main purpose of this work is to identify

an optimal controller that can satisfy the controller requirement of HDGT plants. Therefore, ANN controllers,

FLC, and NFC were developed for the HDGT, as presented in Sections 3, 4, and 5, respectively. The responses

are compared in Section 6.
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Figure 2. Simplified model of the HDGT plant for simple cycle operation.

3. Artificial neural network

McCulloch and Pitts introduced the simplified neuron in 1943. Since then, interest in neural networks has

emerged and the ANN controller has been developed for many applications [22–24]. The ANN controller

developed in this paper is a feedforward network consisting of an input layer, a hidden layer, and an output

layer, as shown in Figure 3. A backpropagation algorithm was used for learning while developing the ANN

controller for HDGT plants. Two hidden layers, hidden layer 1 and hidden layer 2, have 28 and 15 neurons,

respectively, with bias values B1 and B2 of 1.0.

A total of 166 input–output patterns were collected based on prior knowledge of the plant with the

conventional controller. Out of the total data patterns, 116 data patterns were selected randomly for training

the neural network and the remaining 50 data patterns were used for testing the neural network. The activation

functions considered for the hidden and output layers are Tansig and Purelin, respectively. The network was

trained for 100 epochs with a learning rate of 0.5, for the goal of 0.005, through the gradient descent method.

Then the ANN controller was implemented in the MATLAB/Simulink of the HDGT plants and the input and

output signals of the ANN controller were normalized by scaling gains using a simplex search algorithm in order
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Figure 3. Architecture of the ANN controller for HDGT plants.

to maintain stable operation [25]. Then the step responses of HDGT models were analyzed, as presented in

Section 6.

4. Fuzzy logic controller

Fuzzy logic is based on fuzzy set theory, which was first introduced by Zadeh in 1965. It gained widespread

acceptance in various applications, such as modeling, design, and analysis of control and power system problems

[26–28]. Two inputs and one output Sugeno fuzzy inference system have been used in this work to develop the

FLC for all the HDGT models [29]. Speed error, e and change in speed error, ce were chosen as the input

signals and control signal, C was considered an output signal of the FLC as given in Figure 4. The scaling

gains Ge , Gce and Go were used to normalize the input and output signals by a simplex search algorithm

[25].
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Figure 4. Simulink model of the FLC for HDGT plants.

A triangular membership function and a constant membership function were chosen for the input signals

and the output control signal, respectively. Seven fuzzy sets, namely, negative big (NB), negative medium (NM),

negative small (NS), zero (Z), positive small (PS), positive medium (PM), and positive big (PB), are used for

both the input and output membership functions [17]. From expert knowledge about HDGT performance, the

range of membership functions for e , ce, and C were selected as [0, 1], [–1, 0], and [–1, 1] respectively. Table 1

shows 49 fuzzy rules for developing the FLC. Fuzzy IF–THEN rules are characterized by an appropriate fuzzy

set and membership function in the following form: IF e is NB AND ce is NB, THEN C is NB.

The output signal was obtained by fuzzification, rule evaluation, and defuzzification procedures [29].

Initially, e and ce signals were fuzzified and the antecedent of each fuzzy rule was evaluated using a fuzzy
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Table 1. Fuzzy rule base of FLC for HDGT plants.

Error (e)
NB NM NS Z PS PM PB

Change in error (ce)

NB NB NB NB NM NM NS Z
NM NB NB NM NM NS Z PS
NS NB NM NS NS Z PS PM
Z NM NM NS Z PS PM PM
PS NM NS Z PS PS PM PB
PM NS Z PS PM PM PB PB
PB Z PS PM PM PB PB PB

operator (PROD). Then the consequent part of each fuzzy rule was derived by using the implication operator

(MIN). Afterwards, all the output fuzzy sets were combined using an aggregation operator (MAX). The output

control signal of FLC was obtained by defuzzifying the aggregated output fuzzy set using the weighted average

(WTAVER) method. By the same procedure, FLCs for all the HDGT were developed and the step responses

were compared, as presented in Section 6.

5. Neuro-fuzzy controller

Control logic based on neuro-fuzzy systems has gained an advantage by combining the rule base feature of fuzzy

logic and the efficient learning ability of neural networks [30]. Since the NFC is developed from the input–

output data patterns and rule base of the HDGT plants, a predetermined model structure is not required. The

application of learning algorithms in a neuro-fuzzy system through a neural network also helps to visualize the

changes in error signal, which are useful in updating the parameters [31]. The Takagi, Sugeno, and Kang (TSK)

network has performed better than the Mamdani network in terms of network size and learning accuracy. The

gradient method-based learning rule tends to get trapped in local minima. Therefore, a TSK-based NFC was

developed for HDGT plants using a hybrid learning algorithm.

5.1. Architecture of neuro-fuzzy systems

The NFC can be designed by properly selecting the input and output signals to represent the dynamic behavior

of the system [30]. In this work, e and ce were used as the input signals and C as the output signal for NFC.

The basic architecture of type-3 neuro-fuzzy for the following two TSK IF–THEN rules are shown in Figure 5

[19].

Rule 1: IF (e is X1) and (ce is Y1) THEN (f1=a1e+b1ce+r1)

Rule 2: IF (e is X2) and (ce is Y2) THEN (f2=a2e+b2ce+r2)

The neuro-fuzzy architecture has five layers, out of which the square nodes (layers 1 and 4) are the

adaptive nodes and the circle nodes (layers 2, 3, and 5) are the fixed nodes. The nodes of layer 1 have

modifiable parameters (premise parameters) pertaining to the input membership functions and calculate the

degree of membership functions for the inputs, e and ce . Here, X i and Y i are the linguistic variables of e and

ce , respectively, and the output control signal of the ith node of j th layer in the neuro-fuzzy model is denoted

by OLj.i . The ith node outputs of layer 1 are the membership functions µXi (e) and µYi (ce), as represented

in Eqs. (4) and (5) [19].

OL1,i=µXi(e); i = 1 and 2 (4)
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Figure 5. Architecture of a neuro-fuzzy model.

OL1,i=µYi(ce); i = 3 and 4 (5)

The nodes in layer 2 denoted as P multiply their input in order to compute the firing strength of the rule, Wi ,

as expressed in Eq. (6) [19].

OL2,i=Wi= µXi
(e) ×µYi (ce) ; i = 1 and 2 (6)

The layer 3 node denoted as N normalizes the firing strength calculated by layer 2 nodes. The normalized firing

strength, W i is the ratio between the ith rule firing strength (Wi) and the sum of W1 and W2, as given in

Eq. (7) [19].

OL3,i=W i=
Wi

W1+W2
; i = 1 and 2 (7)

The normalized firing strength and first-order polynomial (fi) of the consequent parameters (ai , bi , and ri)

are multiplied as in Eq. (8) to obtain the output of layer 4 nodes [19].

OL4,i= W i f i=W i (aie+ bice+ri) ; i = 1 and 2 (8)

At layer 5, the layer 4 outputs are summed up and the overall output (C) of the NFC is obtained as shown in

Eq. (9). The overall output of the NFC can be represented in expanded form and generalized form as in Eqs.

(10) and (11), respectively [19].

OL5= C =
∑
i

W ifi= (w̄1f1+ w̄2f2) (9)

C =

[
W1

W1+W2

]
(a1e+ b1ce+r1)+

[
W2

W1+W2

]
(a2e+ b2ce+r2) (10)

C =

∑
i

Wifi∑
i

Wi
; i = 1 and 2 (11)
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5.2. Design procedure

The ANFIS editor in MATLAB was used to develop the NFC in three stages, namely ‘load data’, ‘generate

fuzzy inference system (FIS)’, and ‘train FIS’ [31,32]. Initially, out of the input–output data patterns, 145

in total were identified based on prior knowledge of the HDGT models. From the data patterns, 70% (102

data pairs) were chosen randomly for training and loaded in the editor window. The remaining 30% (43 data

pairs) were used for testing the network. Then a grid partitioning scheme was selected for generating FIS and a

constant membership function was chosen for the output signal. Seven fuzzy sets (NB, NM, NS, Z, PS, PM, and

PB), as shown in Figures 6 and 7, were chosen for the input and output signals, respectively. The membership

function ranges for the e , ce, and C signals were [0, 1], [–1, 0], and [–1, 1], respectively. Then the hybrid

learning algorithm was selected as the optimization method and the FIS was trained for 100 epochs with an

error tolerance of zero.
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Figure 6. Input membership functions of the NFC.
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Figure 7. Output membership functions of the NFC.

Because of its simple approach, computational efficiency, and easy implementation, a triangular mem-

bership function was preferred for the motor control application [33]. In this paper, both the triangular and

trapezoidal membership functions were considered for the input signals. The training and testing error values

for the 5001M, 7001Ea, and 9001Ea models are compared in Table 2. Both the training and testing error values

were less for the triangular input membership function than the trapezoidal membership function. Therefore,

the FIS was created for the HDGT models using the triangular membership function for the input signals. Then

the trained FIS was used in MATLAB/Simulink and the step response of the HDGT models with NFC was

compared with those of the FLC and ANN controllers, as illustrated in Section 6.

6. Simulation results and discussion

ANN controllers, FLC, and NFC, as described in Sections 3–5, respectively, were developed for the HDGT

models. The step response, with an optimal droop setting of 4%, was obtained against the load disturbance
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Table 2. Training and testing error of NFC using triangular and trapezoidal memberships.

Model code
Training error Testing error
Triangular MF Trapezoidal MF Triangular MF Trapezoidal MF

5001M 0.00048264 0.013713 0.03249 0.73341
7001Ea 0.00038364 0.011343 0.028938 0.57125
9001Ea 0.00041512 0.014281 0.032519 0.76533

and set-point variation. Since the performances of all the HDGT models are nearly the same with 5001M,

7001Ea , and 9001Ea model controllers, HDGT alone was considered for the analysis. The simulation results

are compared based on maximum peak overshoot (Mp), rise time (Tr), settling time (Ts), and steady-state

error (Ess). The integral of the squared error (ISE) and integral of time multiplied by squared error (ITSE),

as shown in Eqs. (12) and (13), were also used as performance evaluation indices to analyze the response of the

HDGT models.

QISE=

∫
e2dt (12)

QITSE=

∫
(e

2
) t dt (13)

Initially the MATLAB/Simulink models of the 5001M, 7001Ea , and 9001Ea models were simulated for 10 s for

a unit step load disturbance applied at t = 1.0 s. The step responses are shown in Figures 8–10, respectively.

The respective time domain specifications and performance indices are shown in Table 3. The steady-state offset

was almost zero by using all these controllers. The ANN controller requires more time to reach the steady-

state value. However, the FLC improves both the dynamic and steady-state response compared to the ANN

controller. The settling times of the models using FLC were less than 1 s. The simulation results also indicate

that the NFC proposed in this paper improves the dynamic and steady-state response. It is also found that

the NFC reduces the offset and overshoot (Mp). Tr and Ts decreased noticeably when the NFC was used;

hence, the steady-state response was reached faster than with FLC and ANN controllers. The performance

evaluation indices of the HDGT models using the NFC were also less than that of FLC and ANN controllers.

This confirms that the proposed NFC yielded an optimal transient and steady-state response.
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Figure 8. Step response of the 5001M model with NFC, FLC, and ANN.
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Figure 9. Step response of the 7001Ea model with NFC, FLC, and ANN.
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Figure 10. Step response of 9001Ea model with NFC, FLC, and ANN.

Table 3. Time domain specifications and performance indices of the HDGT models.

Model code Controller
Time domain specifications Performance indices
Mp (pu) Tr (s) Ts (s) Ess (pu) QISE QITSE

5001M

NFC 0.0003 0.3829 0.6856 0.005 0.2566 0.0397
FLC 0.0007 0.4001 0.7359 0.0052 0.2743 0.0455
ANN 0.016 1.361 2.281 0.0002 0.7444 0.3429

7001Ea

NFC 0.0018 0.4055 0.7366 0.0064 0.2867 0.05
FLC 0.0067 0.4317 0.8099 0.0062 0.2939 0.0526
ANN 0.0191 1.4083 2.3605 0.0007 0.7467 0.3480

9001Ea

NFC 0.002 0.4322 0.7349 0.0019 0.2741 0.0442
FLC 0.0016 0.4321 0.7828 0.0026 0.2942 0.0512
ANN 0.0174 1.3783 2.2545 0.0005 0.7524 0.3508

The responses of NFC, FLC, and ANN controllers were obtained against the set-point variation and the

effectiveness was demonstrated. Four set-points with the magnitudes of 1.0 pu, 1.05 pu, 1.0 pu, and 0.95 pu were

set at 0, 10, 20, and 30 s, respectively, and the MATLAB/Simulink models of the HDGT plants were simulated

for 40 s. Figures 11–13 show the peak step response of the 5001M, 7001Ea , and 9001Ea models, respectively,

against these set-point variations. The NFC tracks set-point variation and reaches a steady-state response faster

than the FLC and ANN controllers. The performance indices of the 5001M, 7001Ea , and 9001Ea models at
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these set-points are shown in Table 4. It indicates that the NFC performs better than the FLC and ANN

controllers for all set-point variations. Even though the latest derivative Mark-VI and Mark-VIe systems each

have an additional features (backup protection and Ethernet-based I/O communication, respectively), all these
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Figure 11. Response of the 5001M model with controllers for various set-points.
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Figure 12. Response of the 7001Ea model with controllers for various set-points.
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Figure 13. Response of the 9001Ea model with controllers for various set-points.
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versions use microprocessor-based logic for turbine control [34,35]. Therefore, the NFC algorithm proposed

in this paper can also be applied to the newer versions of the Speedtronic control system in order to avoid

inevitable shutdown in a grid-connected environment.

Table 4. Performance indices of HDGT models for different set-point variations.

Model code Controller

Performance indices at different set-points
1.0 pu 1.05 pu 1.0 pu 0.95 pu
QISE QITSE QISE QITSE QISE QITSE QISE QITSE

5001M

NFC 0.2566 0.0397 0.2577 0.0520 0.2588 0.0760 0.2600 0.1111
FLC 0.2743 0.0455 0.2755 0.0583 0.277 0.0909 0.2785 0.1392
ANN 0.7444 0.3429 0.7488 0.3916 0.7512 0.4421 0.7536 0.5190

7001Ea

NFC 0.2867 0.05 0.2881 0.0662 0.2894 0.0943 0.2907 0.1347
FLC 0.2939 0.0526 0.2953 0.0682 0.2968 0.1004 0.2982 0.1474
ANN 0.7467 0.3480 0.7497 0.3806 0.7519 0.4261 0.7542 0.4996

9001Ea

NFC 0.2741 0.0442 0.2748 0.0516 0.2760 0.0764 0.2772 0.1140
FLC 0.2942 0.0512 0.295 0.0601 0.2965 0.0921 0.2981 0.1402
ANN 0.7524 0.3508 0.7581 0.4153 0.7606 0.4671 0.7630 0.5446

7. Conclusions

A dynamic simulation model was derived for grid-connected HDGT plants. The soft computing controllers were

implemented with a MATLAB/Simulink model of HDGT plants and their behavior was analyzed against the

load disturbance. A triangular membership function was identified as an effective membership function type for

the NFC. Even though the transient and steady-state responses were improved by the ANN, FLC, and NFC,

the comparative results suggest that the NFC imparts greater improvement than the FLC and ANN.

Furthermore, the effectiveness of the controllers have been tested against set-point variations at different

intervals. The time domain specifications and performance evaluation indices indicate that the NFC responds

faster for all set-point variations and helps reach the steady-state equilibrium faster. The performance indices

confirm that the NFC yields optimal transient and steady-state responses. Since the set-point in grid-connected

operation is a frequently varying parameter and the NFC satisfies the control requirement, the NFC proposed

in this work is identified as an optimal controller for grid-connected HDGT plants.

The overall analysis of HDGT plants with soft computing controllers indicates that the NFC is able to

maintain stable operations for all HDGT models irrespective of the rotor time constants. The NFC proposed

in this paper can also be applied to the latest derivative Speedtronic governor control system of HDGT plants

in grid-connected operation.
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