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Abstract: Entity-linking systems link noun phrase mentions in a text to their corresponding knowledge base entities

in order to enrich a text with metadata. Wikipedia is a popular and comprehensive knowledge base that is widely

used in entity-linking systems. However, long-tail entities are not popular enough to have their own Wikipedia articles.

Therefore, a knowledge base created by using Wikipedia entities would be limited to only popular entities. In order

to overcome the knowledge base coverage limitation of Wikipedia-based entity-linking systems, this paper presents an

entity-discovery system that can detect semantic types of entities that are not defined in Wikipedia. The effectiveness

of the proposed system was validated empirically through the use of generated data sets for the Turkish language. The

experimental results show that, in terms of accuracy, our system performs competitively in comparison to the previous

methods in the literature. Its high performance is achieved through a method that learns word embeddings for candidate

entities.

Key words: Entity discovery, fine-grained entity types, entity linking, word vectors, deep neural networks, knowledge

base population

1. Introduction

The amount of unstructured data has increased exponentially in recent years and Web resources form the vast

part of it, including Tweets, blogs, online news, and comments. Leveraging these resources through automatic

processing techniques is highly challenging due to the ambiguity of natural language [1]. The data need to be

transformed into a standard format that contains metadata so that they can be used in different information

retrieval and extraction applications, such as semantic search, question answering, and summarization systems.

Entity linking is one of the problems to be handled in order to process natural language and to enrich

the existing unstructured text with metadata. The generation of assignments between knowledge base entities

and lexical units is called entity linking. For example, Figure 1 shows an example mapping of a piece of textual

content to entities defined in Turkish Wikipedia (Vikipedi, tr.wikipedia.org) as of 26 August 2015. A spotter

would detect the two entity mentions defined in Wikipedia (“Arsenal” and “passing”) in this sentence.

The success of an entity-linking system clearly depends on the term coverage of the knowledge base

utilized. In order to effectively process domain-independent documents, a comprehensive, up-to-date, and

evolving knowledge base is required. Wikipedia is a popular knowledge base that satisfies these requirements

and is therefore widely used in entity-linking systems. However, long-tail entities are not popular enough to

have their own Wikipedia articles. For example, an article for “Yetenek Sizsiniz Türkiye” (the Turkish version
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Figure 1. A linking of a piece of textual content to entities defined in a knowledge base.

of the “Got Talent” television show series) exists in Vikipedi and it is typed as a television show; however, “İbo

Show”, another famous Turkish television show, lacks a Vikipedi article (date of access: 26 August 2015). In

this study, an entity-discovery system is proposed that semiautomatically detects entity mentions without a

Vikipedi entry in a given Turkish text corpus. The system also semantically types detected unlinkable entity

mentions. For informative knowledge, we aim to type new entities in a fine-grained manner (e.g., “basketball

player”, “economist”, “airport”, as opposed to generic types like “person”, “organization”, “event”) [2].

There are two main aspects of an entity-discovery system: the detection of candidate entities and the

prediction of their semantic types. We address the first part by using an n-gram-based approach to detect

frequent noun phrases in a given corpus as candidate entities. The second part is addressed with a fine-grained

entity recognizer. There are three main challenges in creating a fine-grained entity recognizer: selection of the

types, creation of the training data, and development of a fast and accurate multiclass classification algorithm

[3]. We address the first challenge by collecting a set of 100 unique tags (types), which were extracted from

Vikipedi articles’ infobox (https://en.wikipedia.org/wiki/Help:Infobox) information. The second challenge,

creating a training set for these tags, is addressed by utilizing existing Vikipedi article content and word vectors

(embeddings). Vikipedi articles with a description and tag information are used for the training process. Each

article description is parsed sentence by sentence and a set of words (verbs and nouns) is extracted from the

text. The extracted set of words is then converted into a set of vectors using the corresponding word vectors.

Afterwards, the set of vectors is converted into a fixed-length feature vector through average pooling [4]. Finally,

the labeled training data are used to train a linear classifier model for the fine-grained entity recognizer.

The generation of entity vectors based on word vectors and their classification using linear classifiers

form the core part of the proposed approach. The effectiveness of the system is validated empirically by using

evaluations over generated data sets. The experimental results indicate that our system performs competitively

compared to previous methods in terms of accuracy. The main contributions of this paper are summarized as

follows.
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• A novel Turkish entity-discovery system is proposed that semantically types entities not defined in

Wikipedia.

• The effectiveness of various feature combinations were tested for the fine-grained entity recognition task.

• A new data set was created for evaluating the performance of the proposed Turkish entity-discovery

system. The experimental results show that our system can achieve high accuracy on the data set.

2. Related work

This section first provides background information about the word embeddings utilized in this study. Existing

studies on fine-grained entity recognition and Turkish natural language processing (NLP) systems are then

discussed.

2.1. Word embedding

Word embedding is a distributed representation of a word that utilizes a high dimensional vector, where each

dimension corresponds to a latent feature of the word [5]. Thus, word embedding can capture both the semantic

and syntactic information of the corresponding word. The resulting distributed representation has several

advantages compared to traditional language models, such as bag-of-words (BOW), in terms of compactness

and sparsity. Also, semantically similar words are represented with closer vectors. For example, two semantically

similar words, such as “capital” and “city”, are expected to have similar values at least in some dimensions in

their corresponding vectors.

Word2Vec [6] and GloVe [7] are two popular word-embedding algorithms used to construct vector

representations for words. Word2Vec (http://code.google.com/p/word2vec/) and GloVe

(http://nlp.stanford.edu/projects/glove/) are both open source and publicly available tools. Also, pretrained

word vectors for English words are provided in these websites.

2.2. Fine-grained entity recognition

Fine-grained entity recognition is the task of identifying semantic types of entities in the text. A key feature of

named entity recognition (NER) is that more specific entity types are used in the fine-grained entity recognition

process. For example, “basketball player” is an entity type that would be used for typing basketball players,

such as Michael Jordan, and is a more informative type than “person”.

In contrast to coarse-grained NER [8], there are fewer fine-grained entity recognition studies [2,3,9–12]

proposed in the literature. These studies utilized trained classifiers over a variety of linguistic features (i.e.

part-of-speech tags, unigrams, bigrams) and contextual features (preceding and following words). Specifically,

Ling et al. [3] proposed FIGER, which classifies entity mentions with 112 unique tags curated from Freebase

[13] types. They trained a conditional random field by utilizing Wikipedia anchor links as training data. Yosef

et al. [11] proposed HYENA, which is a multilabel classifier based on the hierarchical taxonomy of the YAGO

[14] knowledge base. In this study, a support vector machine (SVM)-based classifier was utilized on Wikipedia

anchor links, similar to the work of Ling et al. [3].

The word embeddings approach is also applied to the fine-grained entity recognition task. Recently,

Yogatama et al. [15] proposed a novel method to learn an embedding for each entity type and each feature.

This way, feature vectors could be created for entity mentions in order to classify entities. They compared their

entity recognition method with FIGER and observed better performance (72.35% F1 score).
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In contrast to many successful applications for English, there is currently no publicly available fine-grained

entity recognition system for Turkish, though there are some studies [16,17] proposed to solve the coarse-grained

NER task.

2.3. Turkish NLP systems

There are currently two publicly available popular NLP tools for Turkish, Zemberek [18] and the ITU Turkish

NLP Web Service [19].

Zemberek is a popular open source NLP library for Turkish. Zemberek provides the most commonly used

NLP tasks, such as sentence detection, tokenization, morphological analysis, and morphological disambiguation.

The ITU Turkish NLP Web Service is another publicly available NLP library, which operates on a

“software as a service” basis and provides state-of-the-art NLP tools in many layers: preprocessing, morphology,

syntax, and entity recognition.

In this study, sentence detection, morphological parsing, and disambiguation processes were carried out

with the Zemberek library functions instead of the ITU Turkish NLP Web Service, mainly because of runtime

performance considerations.

3. Turkish entity discovery

This section introduces our entity-discovery system for Turkish language. The system semiautomatically detects

entity mentions that are not defined in Vikipedi for a given Turkish text and semantically types the detected

unlinkable entity mentions.

As shown in Figure 2, the Turkish entity-discovery system was developed through the design and

implementation of three major modules: a candidate entity detector, a feature extractor, and a fine-grained

entity recognizer.

Figure 2. Turkish entity-discovery system architecture.

3.1. Candidate entity detector

The candidate entity detector module produces a list of possible entity mentions for a given corpus. Entity

mention refers to small fragments of text that may correspond to an entity in a given knowledge base. This

task is achieved in two steps.

In the first step, the candidate entity detector produces all possible n-grams (where n can be between 1

and 4) of successive nouns in a sentence. This task consists of 1) sentence detection, where each document in the
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corpus is split into sentences; 2) lemmatization and parts of speech detection, where each word is analyzed to

find its root and part-of-speech tag; and 3) finding noun phrases, where groups of successive nouns are identified.

The idea behind this approach is that multiword entities, especially special names, location names, etc., usually

consist of noun phrases.

In the second step, the candidate entity detector identifies frequently occurring noun phrases as candidate

entities and filters the ones that are already defined in the utilized knowledge base and dictionary. In this study,

all phrases that occur in either Vikipedi or TDK(the official Turkish dictionary; http://www.tdk.gov.tr/) were

filtered out, since they are already known entities for Turkish.

3.2. Feature extractor

The feature extractor module takes the input list of entity mentions and the list of sentences in which the

entities occur from the candidate entity detector module. Then an entity vector is produced for each entity

mention by this module. This task is achieved in two steps.

In the first step, the feature extractor extracts linguistic features (part-of-speech tags and suffixes) and

contextual features through morphological analysis and the morphological disambiguation functionalities of the

Zemberek NLP tool. Morphological analysis is done for each sentence: the suffixes of the candidate entity

mention are identified and part-of-speech tags of other words in the sentence are determined. Morphological

analysis of a word may result in more than one possible parsing due to ambiguity. For example, there are four

possible analyses for the Turkish word “kalemi”, as shown in Figure 3. To handle morphological ambiguity,

morphological disambiguation is applied after the morphological analysis, again by using the Zemberek NLP

tool.

Figure 3. Zemberek NLP library morphological analysis.

Extracted part-of-speech tags are used to categorize and filter contextual information of the entity

mentions. Contextual words besides nouns and verbs (e.g., adverbs, adjectives, prepositions) are filtered since

they are not discriminating features. As a result of this step, a set of words and suffixes is created for each

candidate entity. The table in Figure 4 shows the generated features for the given Vikipedi article “Yeditepe

University”. Note that Vikipedi articles’ descriptions are used for creating feature vectors for known entities in

order to obtain training data for the classification algorithm. The details of this process are provided in Section

3.3.

In the second step, extracted feature sets (title, nouns, verbs, and suffixes) for the entity mentions are

used for creating vectors that represent the entities. In order to achieve this goal, Word2Vec word embedding

and average pooling algorithms were used.

The Word2Vec word embedding algorithm was used to construct vector representations for words.

Vikipedi articles content and the Milliyet corpus [20] were used as input data to cover all entities (nouns

and verbs) as much as possible. The input data were also lemmatized to find the root form of Turkish words

before training. Essentially, lemmatization makes the input space denser and disregards different vectors for
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Figure 4. Feature vector extraction for the entity “Yeditepe University”.

inflectional forms of words. After constructing word vectors, the extracted feature set (title, nouns, and verbs)

for a candidate entity is converted into a set of vectors using the corresponding word vectors obtained by the

Word2Vec algorithm.

Certainly, the number of features extracted for a candidate entity would differ based on the number of

verbs and nouns that exist in the context where this entity appears. Average pooling algorithms [4] are applied

in order to convert the set of word vectors into a fixed-length vector that can be processed in the fine-grained

entity recognizer module to classify entities by their types. The algorithm simply takes the average of the word

vectors and computes a fixed-length vector. The average pooling of set of word vectors can be computed as in

the following formula:

x̄ =
1

N
×

N∑
i

xi,

where xi denotes the word vector of the nth element in a given feature set and N is the number of word

vectors.

In contrast to other features, suffixes are not full words. In order to represent suffixes in a vector format,

the BOW method is utilized. As a result of this method, suffixes can be represented with a 64-length vector.

To derive the final entity vector, all feature vectors are unified, as shown in Figure 4.

4. Fine-grained entity recognizer

A fine-grained entity recognizer is used for detecting semantic typing of entities. This module is realized in

three steps: selection of the semantic types that will be utilized, creation of training data, and development of

a fast and accurate multiclass classification algorithm [3].
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Figure 5. List of 100 curated tags used in this study.

The first step in entity recognition is defining the set of semantic types. Although there have been

several studies [21] to create a standard comprehensive tag set, no consensus has been reached by the research

community [9]. On the other hand, a collaborative knowledge base, such as Wikipedia, provides hundreds of

types that are used to annotate each article in the website. Compared to other type sets and knowledge bases,

the most important advantage of Wikipedia is that it contains a variety of entity types and that a high number

of defined entities annotated with these types exist in this knowledge base. This is also true for the Turkish

language. While Wikipedia tags are comprehensive, there are also some very specific types that need to be

filtered for the process (e.g., Turkish village, football league season). To achieve a high-quality tag set, entity

types were sorted by the number of entities annotated with them. The most frequently occurring types were

manually analyzed by human experts and unnecessary ones were filtered. In the end, the 100 most frequent

entity types were used as the tag set in this study (listed in Figure 5).

The second step, creating a training set for these tags, is achieved by annotating the content of Vikipedi

articles (https://dumps.wikimedia.org/trwiki/20150826/) with a type in our tag set. Eligible articles’ contents

are given to the feature extractor module and a vector is created for each article. Here, the feature extraction

procedure described in the previous section is used to form the feature vectors of Vikipedi entities. For the

candidate entities, the procedure extracts the features from the context where the entity appears. For the

Vikipedi entities, the content of the corresponding article is utilized, this time for the feature extraction process.

As a result of this operation, 36,245 vectors are created. Since the Vikipedi articles have defined types, the data

set formed can be utilized as a labeled set. In the final step, the labeled data are used to train classifier models

for the fine-grained entity recognizer. Let x = (x1, x2, x3, ...., xn) be the feature vector of the sequence of m

instances, and let y = (y1, y2, y3, ...., yn) be the vector of labels of the m instances. This multiclass classification

problem can be solved by using classic linear classifiers in the form of:

ŷ =
argmax ωT × f (x, y)

y
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where ŷ is a predicted label, f(x, y) is the feature vector of a mention x with a label y ∈ T , T is our set of 100

unique tags (types), and w is the weight vector of the model.

SVM, logistic regression, and Softmax classifiers were built as linear classifiers. SVM and logistic

regression classifiers were created using Liblinear [22], which is a library for large linear classification. Softmax

classifier was created using the software Encog [23]. Two parameters were set in Liblinear: cost of constraints

violation = 2.0 (default: 1.0) and stopping criterion = 0.05 (default: 0.1). The cost of constraints violation was

doubled and a smaller stopping criterion was used in order to learn a more accurate model over the training

data utilized. We formed a simple three-layer neural network, which consisted of an input layer, a hidden layer,

and an output layer. The number of neurons of the hidden layer was set to half of the input size and the number

of neurons of the output (Softmax) layer was set as the number of tags, which is 100.

5. Evaluations and experiments

To evaluate the performance of the proposed entity discovery algorithm, the Vikipedi articles and a corpus

formed from the Milliyet online newspaper were used. Vikipedi articles were used as a validation set in order to

tune the parameters of the fine-grained entity recognizer. As described in Section 3.3, a set of labeled data with

36,245 instances was created by using Vikipedi articles. The data set was split into two parts: 70% training,

30% testing. The performances of the entity discovery algorithms were computed as in the following formula:

accuracy =
# correct predictions

# total entities

First, the fine-grained entity recognizer was evaluated with different classifier algorithms and with varying word

vector sizes on the Vikipedi data set. In the experiments, the linear classifiers SVM, logistic regression, and Soft-

max were utilized and the vector sizes (from 50 to 200) were tested. The performances of the linear classifiers were

evaluated based on L2-regularized L2-loss support vector classification and L2-regularized logistic regression,

which were implemented through a Java version of Liblinear (https://github.com/bwaldvogel/liblinear-java).

Table 1 shows the performance values for this experiment. The SVM and larger vector sizes resulted in better

performance values. Hence, the best performance result (78.69%) was obtained with the SVM and a vector size

of 200. This setting was used for further experiments to assess the final performance of the system.

Table 1. Evaluation of the fine-grained entity recognizer algorithm with varying classifiers and word vector sizes.

Language Vector size SVM (%) Logistic regression (%) Softmax (%)

Turkish

50 74.16 73.15 73.30
100 77.08 75.90 74.28
200 78.69 77.51 74.75

English 200 77.14 - -

We also evaluated our fine-grained entity recognition algorithm for the English language in order to

prove that the approach is language-independent. In a similar way, English Wikipedia articles were processed

and, again, the 100 most frequently occurring entity types were determined and the experimental data set was

formed. By using an English NLP tool (https://opennlp.apache.org/) and the Glove word vectors for English,

entity vectors were also created for English Wikipedia articles. We observed 77.14% accuracy for English, which

is a very close performance compared to the experimental results in Turkish.
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After tuning the parameters, the performance of each feature set (title, nouns, verbs, and suffixes) was

calculated separately to assess their contributions. Table 2 shows the performance values for this experiment.

The best performance was observed when all of the features were utilized together.

Table 2. Comparison of the performance values of the fine-grained entity recognizer with varying feature sets.

Features Suffixes Verbs Title Nouns

Verbs

AllTitle
Nouns

Accuracy (%) 11.58 48.23 58.98 65.68 78.18 78.69

In the last experiment, the corpus [20] created by the Bilkent Information Retrieval Group

(http://www.cs.bilkent.edu.tr/∼canf/bilir web/) was used. The corpus contains 408,305 documents; they are

news articles and columns collected from the Turkish newspaper Milliyet (www.milliyet.com.tr) from 2001 to

2005.

First, the Milliyet corpus was given as input to the candidate entity detector module and a list of

candidate entities was extracted. This process produces hundreds of 1-grams, 2-grams, 3-grams, and 4-grams

as candidate entities. However, these identified candidate entity mentions are noisy; not all of them are real

entities. Concurrent entity mentions, typos, and HTML tables are the main causes of this problem. Therefore,

human intervention is needed to finalize the candidate entity detection process. In the end, we manually selected

and annotated 150 candidate entities as the test data. Samples from the manually annotated entities are listed

in Table 3; column 1 contains entity titles and column 3 contains the manually assigned type information.

Table 3. Fine-grained entity recognition sample results of the Milliyet test data.

Candidate entity Prediction Correct

İbo Show Televizyon (TV) Televizyon (TV)
Polat Renaissance Otel Yapı (construction) Yapı (construction)
Van Hooijdonk Futbolcu (footballer) Futbolcu (footballer)
Pablo Montoya Otomobil (automobile) Sürücü (driver)
Sunday Times Gazete (newspaper) Gazete (newspaper)
Robert Pearson Makam sahibi (officeholder) Makam sahibi (officeholder)
Albert Einstein Bilim adamı (scientist) Bilim adamı (scientist)
Harun Doğan Person Sporcu (sportsman)

Finally, the manually created Milliyet data set was evaluated by the fine-grained named entity recognizer.

The experiment resulted in 56.00% accuracy for strict typing of entities and 72.00% for relaxed typing of entities.

In contrast to strict typing, classifying entities with a more general type is evaluated as a correct assignment in

relaxed typing, such as “sportsman” instead of “footballer”.

Note that the accuracy of this second experiment is lower compared to the first one. In fact, this is an

expected result, since the classifier was trained using Vikipedi pages and then tested with different entities,

but again collected from Vikipedi in the first experiment. However, in the second experiment, a general corpus

collected from an online newspaper was utilized. Moreover, missing types and types from the same domain

reduce performance. For example, “Pablo Montoya” was classified as an automobile rather than as a driver in

the experiments. The reasons for this incorrect assignment are that “driver” was not in our tag set and that
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driver and automobile entities are related entities that share similar contextual features (words). Hence, such a

misclassification occurs in the system. In order to handle this kind of incorrect assignment, more sophisticated

features and algorithms are needed. For example, a hierarchical classifier based on the taxonomy of Wikipedia

types could be used to differentiate upper-level classes with higher accuracy. It would be easier to differentiate

“person” and “machine (device)” rather than “driver” and “automobile”.

6. Discussion and conclusion

This study presents an entity discovery system that semantically types entities not defined in Wikipedia. Fine-

grained entity recognition is the key challenge in the proposed system. To address this problem, a supervised

multiclass classification algorithm that leverages word-embedding models is proposed. Moreover, a series of

experiments is conducted to evaluate the performance of the system. Evaluations show that the proposed

system has a satisfactory accuracy, with 56.00% for strict typing of entities and 72.00% for relaxed typing of

entities. Although there are slightly better performance results (72.35% F1 score) for English, there is no such

study for the Turkish language to perform comparative evaluations.

Our research differs from the previous entity discovery studies [2,3,9–12] introduced in Section 2.2 mainly

in three points. First, we used a full text corpus rather than a single document or plain text to discover

entities and their types. Second, we applied the average pooling method to neural network-based language

models to obtain feature vectors for candidate entities instead of using handcrafted features. Finally, our

approach is simple to implement for other languages. As of 26 August 2015, there were 282 active Wikipedias

(https://en.wikipedia.org/wiki/List of Wikipedias) in various languages that could be used for entity discovery.

In conclusion, this paper has demonstrated the potential of word vectors for entity discovery. In the future,

the proposed entity discovery system could be fully automated by employing machine learning algorithms rather

than using only the n-gram approach for candidate entity detection. Moreover, fine-grained entity recognizer

performance could be improved by utilizing more sophisticated features and algorithms, such as a hierarchical

classifier based on the taxonomy of Wikipedia types.
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