
Turk J Elec Eng & Comp Sci

(2017) 25: 2434 – 2443

c⃝ TÜBİTAK
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Abstract: In this paper, the problem of optimally placing shunt capacitors and generators in radial distribution systems

is handled and a new calculation technique based on wavelet neural network (WNN), which is computationally effective

compared to well-known techniques, is proposed. The objectives for the proposed method are simply selected as the

minimum cost of peak power and losses and maximum voltage stability. The suggested optimization technique is tested

on various IEEE radial buses and then compared to the well-known methods in the literature, i.e. golden section search,

grid search, and Acharya’s heuristic method. The proposed and conventional methods are applied to well-known IEEE

buses to see the performances of the suggested technique. The results demonstrate that WNN provides an efficient

solution to the placement of both shunt capacitors and distributed generators for power distribution systems.
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1. Introduction

Among energy sources, electrical energy is inevitable and should be supplied to the end-users while taking into

account power quality issues. Today’s energy companies should make additional efforts to meet the required

demand for energy, resulting in an increase in power generation (distributed generations), as well as the use of

energy with the highest efficiency.

The main way to increase the efficiency of energy use is to minimize losses. Furthermore, high power

quality is expected in electrical distribution systems. The most effective way to improve the power quality in

electrical networks requires minimizing the losses and increasing voltage stability. This is simply achieved by

compensating reactive power. Optimal placement of shunt capacitors and distributed generations stand out to

achieve them effectively [1–3].

If reactive power is not properly compensated, power losses occur and nodal voltage stability decreases.

In this case, the efficient use of electrical power is not mentioned. This is also true if the capacitors are installed

in a wrong node (bus). Therefore, optimal placing of shunt capacitors is of great importance [4,5].

In recent years, the electric power distribution network has started to include distributed generating

sources (DGs) with different characteristics. DGs mostly consist of renewable sources within the range of

10 kW–10 MW and are designed to work either parallel to a grid or alone. The optimal placement of DGs

has positive impacts on a power grid, such as minimizing losses and harmonics, and increasing the voltage

and frequency stability, and power quality indices in a way similar to capacitor placing. It is for the reasons

summarized above that the efficient use and placing of DGs in power distribution systems is so important [6,7].
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When the concept of DG is mentioned, generation technology usually comes to mind. In fact, it primarily

deals with the concept of planning and operation in terms of electric distribution systems. While the load flow

is from the generated site to the end-user in a traditional power network, when DGs are used it causes problems

due to two-way load flow. To avoid these problems, a DG should be installed on a suitable bus. This helps

to reduce problems such as voltage swell and flicker, resulting in a better voltage and frequency profile with

minimum loss over the network [8,9].

Consequently, the optimal placement of both shunt capacitors and DGs has caught the attention of

many scholars. To overcome this obstacle, different techniques and computational methods for optimal loca-

tion/installation have been proposed in recent years [10].

There are mainly three optimization techniques used: conventional, artificial intelligence, and hybrid

techniques. The 2/3 rule [11], analytical techniques [12,13], power flow methods [14], and nonlinear programming

methods [15,16] are the major methods currently used in distribution systems. Evolutionary algorithms [17],

simulated annealing [18], differential evolution [19,20], particle swarm [21,22], fuzzy systems [23], ant colony

[24], cuckoo search [25], imperialist competition [26,27], tabu search [28], artificial bee colony [29], and firefly

[30] are the major methods currently used in distribution systems.

This paper presents a different and simple capacitor/DG localization and integration technique based

on a wavelet neural network (WNN). Wavelet functions are selected using the criteria of minimum description

length while the decomposition levels are selected using minimum description length Shannon’s entropy method,

which provides less computational burden compared to classical usage of wavelet methods. The major IEEE

bus examples, such as 12 bus and 33 bus, with their DG options are used to test the traditional and WNN

approaches. The efficiencies of all algorithms are then compared with each other [31].

2. Formulation of the objective functions

Optimal placing problems for shunt capacitors and DGs can be overcome to include nonlinear objective functions

such as minimizing power losses, decreasing installation costs, and enhancing voltage profile and overall system

stability. These objective functions are taken into account for well-known radial distribution systems under

analysis [32]. Mathematical representation of the selected objective functions is described in Eq. (1).

Min(pl + k1vq + k2vs+ k3lb) (1)

In Eq. (1), pl, vq, vs, and lb are the objective functions with the penalty coefficients k1 , k2 , and k3 . The

coefficients k1 , k2 , and k3 are chosen as penalty and their values can simply be defined according to the

importance degree of selected objective functions.

2.1. Power losses (pl)

The prevention of active power losses can be maintained by adding capacitors and DGs where appropriate in

the power distribution grid. The result will yield a reduction in active power losses and improve the efficiency.

Eq. (2) gives the calculation of active power losses.

pl =

nbtot∑
i=2

(Pbi − Pcbi − VmiVniYni cos{δmi − δni + θni}), (2)

where nb tot is the total number of buses, Pbi is the active power output at bus ni , Pcbi is the active power

demand at ni bus, Vmi is the voltage bus of mi , Vni is the voltage at ni bus, Yni is the admittance matrix
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between ni and mi buses, δmi is the phase angle of voltage bus at bus mi , δni is the voltage phase angle at

bus ni , and θni is the phase angle.

2.2. Maximizing voltage quality (vq)

Maximizing voltage quality as an objective function is given in Eq. (3).

vq =

nbtot∑
ni=1

(Vni − Vrated)
2, (3)

where Vrated is the rated voltage in pu.

2.3. Voltage stability (vs)

A simple distribution part of the power grid is shown in Figure 1. The optimal placement problem of capacitors

and DGs is solved, increasing the voltage stability of the distribution busses (sending or receiving as in Figure

1). The main calculation employs load flow studies for this purpose [33].

vs
mi

mimi
V δ∠

nini
V δ∠

ni
Ini

ni
jX

ni
R +

Load Side

ni
jQ

ni
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Figure 1. A simple two-end radial distribution network.

In Figure 1, m side represents the sending bus, while n side represents the receiving bus. The load is

connected to n bus that requires voltage stability in terms of power quality concept. This index can be defined

as in Eq. (4).

vs = |Vmi|4 − 4 [Pni(ni)Rni +Qni(ni)Xni] |Vmi|2 − 4 [Pni(ni)Rni +Qni(ni)Xni]
2

(4)

The vs can also be modified as in Eq. (5).

vs mod ified = 1
vs(ni)

ni = 2, 3, ...nbtot (5)

2.4. Load balancing (lb)

The load-balancing function is given in Eq. (6).

lb =
m∑
i=1

(
Ini

Inj,avg

)
(6)

Inj,avg can be calculated using Eq. (7).

Inj,avg =
1

m

m∑
j=1

Inj , (7)

where Ini and Inj are the currents of the associated branches.
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3. Modified wavelet neural network

The use of wavelets has been popular in engineering problems recently, and they present an effective time-

frequency solution of the analyzed signal. Furthermore, artificial neural networks (ANNs) are important due

to their ability to model nonlinear systems in power distribution networks [34]. As of late, the concept of the

WNN has been introduced. Although in theory it remains similar to the traditional ANN, the main difference

is its use of activation neurons produced from mother wavelet functions. As in the case of the classical ANN,

however, training and testing procedures remain the same. It has been reported that classification and estimation

(regression analysis) can be performed more effectively with the WNN rather than the traditional ANN.

The network type can be defined in different types, but the structure of a feed-forward neural network

is taken into account here and applied in order to estimate the optimal placing of capacitors and DGs. An

advantage of using a WNN is having numerous wavelet functions in hidden layer(s), too.

Published papers demonstrate that some scholars have interpreted the use of WNNs from a different

perspective. For this reason, the use of WNNs can be divided into two groups. The first one includes the

wavelet decomposition of the analyzed signal and then the use of those approximation and detail coefficients as

inputs of the predefined ANN structure. In this particular example, the ANN consists of well-known activation

neurons such as tansig and logsig. However, the second one includes both an ANN and wavelet analysis.

Activation neurons are mainly wavelet functions that can be selected from a large wavelet family. The second

type reduces the number of used activation neurons, providing better regression analysis [35].
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Figure 2. Wavelet-based neural network configuration.

In Figure 2, ϕ1...ϕ10 are the (optimized) wavelet-based activation neurons.

Although some scholars prefer to use the first one, the second type is used to estimate the optimal placing

of capacitors and DGs on a power network under analysis in this work. Using the second type of network (WNN)

results in the selection problem of a mother wavelet family over a large wavelet pool. Deciding on an optimum

wavelet filter that proposes a high efficiency from a variety of filters requires additional work. This is simply
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remedied using an approach known as the minimum description length (MDL) data criterion. This approach

helps not only select the most appropriate mother wavelet function (i.e. filter) but also to select the best wavelet

filter number [36]. Once the best wavelet filter is chosen using MDL, the selected filter is used for the rest of

the calculation.

Eq. (8) gives the definition of MDL method.

MDL(x, y) = min

(
3

2
x logN +

N

2
log

∥∥ãy − axy
∥∥2)

0 ≤ x < N ; 1 ≤ y ≤ M (8)

In Eq. (8), aãy = Wyf represents approximation coefficients using n wavelet filter and f decomposition

coefficient. axy = ΘxWyf represents approximation coefficients with a threshold function of Θx retaining m

largest elements of aãy , setting all other elements to zero. The length of the signal is N , the total number of

wavelet filters is M, and x represents the wavelet coefficients. Details of the MDL approach can be found in

the literature.

The selected wavelet filter using MDL for particular simulation data cannot be effectively applied to

another simulation set. The optimum wavelet family is then decided according to the RMS/RMSE criteria. In

this work, db2, sym3, coif4, bior3.7, and rbio4.4 wavelet filters are the best wavelet filters for the simulation

data. After selecting the best wavelet filter, selecting the optimum decomposition level should be considered.

For this purpose, Shannon entropy is applied to simulation data processed with the best wavelet filter. The

decomposition level where the Shannon entropy curve changes its direction is regarded as the optimum level

with a specific wavelet filter. After this level, it is not necessary to use the other decomposition levels.

4. Simulation results

In this paper, complex neural network architecture with wavelet-based neurons is used to simulate the relation-

ship between an input and an output. When the function is learnt by the WNN, then the optimal capacity and

position is predicted.

Training and testing data are produced in the MATLAB environment. As in the previous methods

(GSS, GS, and AHM), loss reduction of active and reactive power and maximizing voltage profile are taken into

account.

There are some concerns about the proposed objective functions that can be valid only in vertically

integrated utilities from a power system perspective. Indeed, the cost of DG and the cost of capacitor can very

seldom be added because private producers own DGs, while the distribution system operator pays for that. The

stochastic behavior of DG (i.e. wind, solar) is not considered and the coincidence between load and generation

is taken as a constant in the analysis.

Remarkably, four methods have been shown to produce similar results. Therefore, performance analysis

only consists of computational burden and functionality.

4.1. GSS algorithm

In the GSS algorithm, the search space is decreased by checking some separate values of the capacitor size

only in every computational step. The minimization of losses is regarded as an objective function. The main

constraints are restraining the maximum capacitor size selected as total load size.
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4.2. GS algorithm

In the GS algorithm, a shunt capacitor is added to each bus and the size of the capacitor is changed from 0%–

100% of total connected load in small computational runs. Minimization of losses is regarded as the objective

function. For this purpose, successive load flow methods are used for each capacitor size. The main constraints

are to restrain the maximum capacitor size selected as total load size, as in the case of GSS.

4.3. AHM technique

In the AHM technique, a criterion known as loss sensitivity is formulated for optimum placing problems of

capacitors and DGs. This method uses bus current and bus voltage matrices. The size of network plays an

important role for this technique, due to matrix manipulations.

4.4. WNN technique

In the WNN technique, wavelet-type activation neurons are selected in layers and these neurons are optimized

during the training procedure. Therefore, the computational speed is high in testing procedure. Moreover,

there is no constraint or matrix calculation and it can be applied to large networks with high reliability. Figure

3 demonstrates the data flow through the individual components of WNN technique.

Start

Network

Data for

Load flow

Run Load Flow

(NR)

GSS, GS  and

AHM

Techniques

WNN

Technique

DG and Capacitor

Sizing

End

Figure 3. Flow diagram of the proposed DG and capacitor sizing/placing approach.

WNN method is then tested using six well-known IEEE buses, which are 12 bus, 12 bus + DG, 33 bus,

and 33 bus + DG radial feeders. Their graphical examples can be found in the literature [37]. All objective

functions, load values at buses, and total DG capacity are the inputs of the WNN. The output of the network
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serves to predict the active power of all PQ buses, the most critical bus, and the optimal bus for placing

capacitors and DGs. The suggested network type consists only of one hidden layer with 10 neurons after

the modification process of MDL and Shannon’s entropy. As a performance criterion, RMSE is selected, and

for both training and testing procedures it is calculated as 0.14 and 0.11, respectively. In training and testing

procedures, the resilient back propagation algorithm is used, which is recorded faster than the standard steepest

descent algorithm. The performances of WNN and the traditional techniques (GSS, GS, and AHM) can be seen

in Tables 1 and 2. Graphical representations of the analyzed methods on the test feeders are given in Figures

4 and 5.

Table 1. DG placing for 12, 12 + DG, 33, and 33 + DG test bus feeders [38].

 Values 

/methods 
Optimal 

bus 
Optimal 

capacity 

(MV) 

Active 

power loss 

without 

DG (MW) 

Reactive  

power loss 

without DG 

(MVAr) 

Active 

power loss 

with DG 

(MW) 

Reactive 

power loss 

with DG 

(MVAr) 

Min 

woltage 

without DG 
Min voltage 

with DG 

DC 

placing for 

12 

GSS 9 0.2354 0.02069 0.00806 0.01076 0.00413 
0.9433 pu  

at bus 12 

0.9835 pu 

 at bus 7 

GS 9 0.2349 0.02069 0.00806 0.01076 0.00414 
0.9433 pu  

at bus 12 

0.9834 pu 

 at bus 7 

AHM 9 0.2271 0.02069 0.00806 0.01077 0.00415 
0.9433 pu 

 at bus 12 

0.9823 pu 

 at bus 12 

WNN 9 0.2386 0.02069 0.00806 0.01077 0.00415 
0.9433 pu 

 at bus 12 

0.9842 pu 

 at bus 12 

DC 

placing for 

12 + DG 

GSS 8 0.2042 0.01119 0.0047 0.00683 0.00282 
0.9594 pu 

 at bus 11 

0.984 pu  

at bus 11 

GS 8 0.2044 0.01119 0.0047 0.00683 0.00262 
0.9594 pu 

 at bus 11 

0.984 pu  

at bus 11 

AHM 9 0.2276 0.01199 0.0047 0.00746 0.00279 
0.9433 pu 

 at bus 12 

0.9917 pu 

 at bus 7 

WNN 8 0.2251 0.01199 0.0047 0.0094 0.0025 
0.9557 pu 

 at bus 11 

0.9916 pu 

 at bus 11 

DC 

placing for 

33 

GSS 6 2.5902 0.211 0.143 0.111 0.00816 
0.9037 pu 

 at bus 18 

0.9423 pu 

 at bus 18 

GS 6 2.6005 0.211 0.143 0.111 0.00817 
0.9037 pu 

 at bus 18 

0.9425 pu 

 at bus 18 

AHM 6 2.4907 0.2111 0.143 0.111 0.00816 
0.9037 pu 

 at bus 18 

0.409 pu  

at bus 18 

WNN 6 2.5645 0.2112 0.143 0.111 0.00415 
0.903 pu  

at bus 18 

0.9444 pu  

at bus 18 

DC 

placing for 

33 + DG 

GSS 29 1.3379 0.1335 0.0919 0.0768 0.0552 
0.9283 pu  

at bus 33 

0.9633 pu 

 at bus 14 

GS 29 1.3335 0.1335 0.0919 0.0768 0.0552 
0.9283 pu  

at bus 33 

0.9633 pu 

 at bus 14 

AHM 6 2.4462 0.1335 0.0919 0.0825 0.006 
0.9283 pu  

at bus 33 

0.9639 pu  

at bus 33 

WNN 29 1.7081 0.1333 0.0918 0.077 0.0557 
0.928 pu  

at bus 33 

0.9635 pu  

at bus 14 

It can be observed from Figures 4 and 5 that the performance of WNN technique with respect to optimal

DG capacities is close to the performances of other techniques.

5. Conclusion

Optimal operation of distribution systems has garnered attention due to technical, economical, and environmen-

tal aspects. To achieve this, two major problems need to be solved, i.e. optimal capacitor and DG placement.
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Table 2. Capacitor placing for 12, 12 + DG, 33, and 33 + DG test bus feeders [38].

 Values 

/methods 
Optim

al bus 
Optimal 

capacity 

(MVAr) 

Active 

power loss 

without 

capacitor 

(MW) 

Reactive 

power loss 

without 

capacitor 

(MVAr) 

Active 

power loss 

with 

capacitor 

(MW) 

Reactive 

power 

loss with 

capacitor 

(MVAr) 

Min 

voltage 

without 

capacitor 

Min 

voltage 

with 

capacitor 

Capacitor 

placing for 

12 

GSS 9 0.2101 0.02069 0.00806 0.01257 0.00483 
0.9433 pu  

at bus 12 

0.9563 pu 

 at bus 7 

GS 9 0.2106 0.02069 0.00806 0.01257 0.00483 
0.9433 pu  

at bus 12 

0.9563 pu 

 at bus 7 

AHM 9 0.2102 0.02069 0.00806 0.01257 0.00483 
0.9433 pu 

 at bus 12 

0.9563 pu 

 at bus 12 

WNN 9 0.2143 0.02069 0.00806 0.01257 0.00483 
0.9433 pu 

 at bus 12 

0.9563 pu 

 at bus 12 

Capacitor 

placing for 

12 + DG 

GSS 8 0.2042 0.01199 0.0047 0.00677 0.00259 
0.9594 pu 

 at bus 11 

0.9688 pu  

at bus 11 

GS 8 0.2025 0.01199 0.0047 0.00677 0.00259 
0.9594 pu 

 at bus 11 

0.9687 pu  

at bus 11 

AHM 8 0.2105 0.0119 0.0047 0.00718 0.0027 
0.9433 pu 

 at bus 11 

0.9719 pu 

 at bus 11 

WNN 8 0.2077 0.01199 0.00472 0.0079 0.0026 
0.9557 pu 

 at bus 11 

0.9735 pu 

 at bus 11 

Capacitor 

placing for 

33 

GSS 30 1.258 0.211 0.143 0.1513 0.1038 
0.9037 pu 

 at bus 18 

0.9164 pu 

 at bus 18 

GS 30 1.265 0.211 0.143 0.1513 0.1038 
0.9037 pu 

 at bus 12 

0.9165 pu 

 at bus 12 

AHM 30 1.2297 0.211 0.143 0.1514 0.1037 
0.9037 pu 

 at bus 18 

0.9162 pu  

at bus 18 

WNN 30 1.259 0.211 0.1431 0.1513 0.1037 
0.9036 pu  

at bus 18 

0.9163 pu  

at bus 18 

Capacitor 

placing for 

33 + DG 

GSS 30 1.1334 0.1335 0.0919 0.0867 0.0604 
0.9283 pu  

at bus 33 

0.9548 pu 

 at bus 14 

GS 30 1.127 
0.1335 

 
0.0919 0.0867 0.0604 

0.9283 pu  

at bus 33 

0.9547 pu 

 at bus 14 

AHM 30 1.2244 0.1335 0.0919 0.087 0.0607 
0.9283 pu  

at bus 33 

0.9553 pu  

at bus 14 

WNN 30 1.1704 0.1333 0.091 0.087 0.0605 
0.928 pu  

at bus 33 

0.9549 pu  

at bus 14 
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Figure 4. Optimal placement of DG at 12 bus + DG test

feeder [38].

Figure 5. Optimal placement of DG at 33 bus + DG test

feeder [38].
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The optimal placement of capacitors and DGs will help the distribution network control reactive power, reduce

losses, and increase voltage and frequency stability over the distribution network. For this purpose, WNN is

suggested for the optimal location problem. It has also been compared to traditional methods, such as GSS,

GS, and AHM. WNN presents an effective optimization method that is simple to implement for any radial bus

system. The proposed technique can easily be applied to any distribution system, including different objective

functions and different stability indices.
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