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Abstract: Graph classification is an important problem in graph mining with various applications in different fields.

Kernel methods have been successfully applied to this problem, recently producing promising results. A graph kernel that

mostly specifies classification performance has to be defined in order to apply kernel methods to a graph classification

problem. Although there are various previously proposed graph kernels, the problem is still worth investigating, as the

available kernels are far from perfect. In this paper, we propose a new graph kernel based on a recently proposed concept

called edge distance-k graphs. These new graphs are derived from the original graph and have the potential to be used

as novel graph descriptors. We propose a method to convert these graphs into a multiset of strings that is further used

to compute a kernel for graphs. The proposed graph kernel is then evaluated on various data sets in comparison to a

recently proposed group of graph kernels. The results are promising, both in terms of performance and computational

requirements.
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1. Introduction

Graphs gain more importance with the continuous growth of structured data, including the World Wide Web,

social networks, biological networks, program flows, and biological molecules. All these data can be represented

as graphs composed of nodes, individual entities of interest, and edges, with the connections depicting the

interactions or relationships among the entities. Devising fast and accurate algorithms for this kind of data

is essential for correctly interpreting a highly connected society, which is usually modeled as a social network,

and for predicting a specific outcome (or behavior) of a network (or graph) by exploiting the previously known

outcome of similarly structured networks. The research that extracts such useful information from graphs is

known as graph mining. One of the most important topics in graph mining is the classification of graphs.

Grouping a given set of graphs into a set of predefined categories is called graph classification and is of utmost

importance in several fields such as drug discovery [1], software verification, extraction of similar code [2], or

clustering of people in a social network [3]. Kernel methods [4], such as support vector machines (SVMs), have

been widely and successfully applied to classification problems including graph classification [5]. One of the

most active fields in this area is the construction of efficient, reliable, and easy-to-implement graph kernels that

can be used effectively in classification. Despite the variety of the proposed kernels, current kernels suffer either

from performance issues or computational requirements. There is no single best kernel that can be applied to

all domains and problems.

A large portion of the graph classification problems include moderately sized graphs. Among other

∗Correspondence: mtan@etu.edu.tr

2479



TAN/Turk J Elec Eng & Comp Sci

problems, the classification of small molecules, such as chemical compounds, is important, as the prediction of

some properties, such as solubility and toxicity of drug candidate compounds, is essential for drug discovery.

Additionally, in silico determination of the functions of some small proteins is needed, as they play important

roles in various biological processes [6]. In this paper, we propose a new graph kernel based on the edge distance-

k graphs introduced in [7]. An edge distance-k graph depicts the edges that are of distance k to each vertex,

depending on a vertex-edge distance measure. We propose a descriptor based on a set of edge distance-k graphs

corresponding to a set of k values. Then, based on this representation of graphs, we propose a graph kernel that

performs better than certain state-of-the-art kernels, evaluated in terms of both performance and computational

requirements. The results demonstrate the applicability and effectiveness of the kernel.

In the next section, we give a brief overview of notation and background. Section 3 describes the proposed

graph kernel and Section 4 reports and discusses the experimental results. We conclude in Section 5 and give

some future research directions.

2. Background

2.1. Related work

Various different graph kernels have been proposed, exploiting different features of graphs such as random walks

or paths [8–10], subtrees [11,12], and subgraphs [13,14]. One study [9] proposed a random walk kernel that

computes the similarity by considering all the random walks in the given graph pair. Another [11] proposed a

subtree kernel with limited height by extending the work from [8]. The proposed kernel is successful for some of

the data sets, but it generally suffers from scalability. Scalability is the main concern of several proposed kernels,

as they are designed for fast analysis of large graphs [15]. A kernel based on walks on shortest path graphs, which

is a transformation of a given graph into another that includes the shortest path information, was proposed

in [10]. Shervashidze et al. in [12] proposed a family of Weisfeiller–Lehman (WL) kernels that are members

of the propagation kernel family. Propagation kernels compute the similarity by iteratively propagating the

structural information through nodes and edges. Recently, the authors of [16] discussed the general definition

of propagation kernels and extended them by applying locally sensitive hashing to decrease the computational

requirements.

Enumeration of all subgraphs of a given graph is known to be NP-complete [8]. Therefore, the authors of

[13] proposed using only frequent subgraphs as descriptors. The authors of [14] also restricted enumeration by

comparing maximum common subgraphs only. A subgraph matching kernel that, given a radius, computes the

similarity by comparing the neighborhood of each vertex was proposed in [17]. Recently, graph classification

over streams was investigated in [18], where the main problem addressed is the difficulty of constructing a single

feature space over streams where the graphs should be mapped as the data set expands continuously. Finally,

the authors of [19] proposed a kernel based on subgraph matchings for small-sized attributed graphs.

We selected five of the mentioned kernels for comparison to the proposed kernel. Among these, the WL

kernel [12] propagates the label information for each node to the others and therefore embeds the substructure

information into the labels of the nodes. Iteratively propagated labels are then relabeled to shorter ones

for efficiency, and each graph is then described as a count vector of these labels. The kernel is computed by

performing a dot product of these vectors. The neighborhood subgraph pairwise distance kernel [17] decomposes

the graph into small subgraphs of increasing radius and compares them to compute the kernel value. It compares

the graphs by computing fast graph invariants for subgraphs and then adding up all pairwise subgraph similarity

values. The optimal assignment kernel [20] works by finding an optimal assignment (or matching) among the
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atoms of a molecular graph. It does this by considering the neighborhood information, certain structural

elements (a ring, for instance), and other chemical properties of each atom. The marginalized kernel [9] is based

on comparing label sequences of random walks that can be up to infinite length. A method was proposed for

computing this by solving a system of linear simultaneous equations. The shortest path kernel [10] defines a

similarity among the graphs based on the polynomially computable shortest paths on graphs.

This paper describes a new kernel that is based on a novel descriptor that exploits edge distance-k graphs.

This is the first time that edge distance-k graphs are used as descriptors for labeled graphs. The descriptors

mentioned in [7] are based on B-matrices and do not consider vertex labels. It is important to consider the

labels of nodes, especially for molecular graphs. Therefore, this paper proposes using the edge distance-k graphs

as descriptors for the labeled graphs in an easily parallelizable manner. The previously proposed kernels are not

directly convertible to a parallel version, and, to the best of our knowledge, parallel versions are not available

for most of them. The EDk kernel that we propose is suitable for parallelization, which is also described in this
paper.

2.2. Definitions and notation

An undirected graph G consists of a nonempty set of vertices (or nodes), V (G), and a set of edges, E(G). An

edge {u,w} is said to connect two vertices uw and is usually abbreviated (or labeled) as uw . If V (G) and/or

E(G) are labeled using symbols from a finite alphabet, then G is said to be a labeled graph. If V (G) can

be decomposed into two disjoint sets V1(G) and V2(G), where V (G) = V1(G) ∪ V2(G), such that uw ∈ E(G)

implies u ∈ V1(G) and w ∈ V2(G), then G is called a bipartite graph. A path is a sequence of distinct vertices

(except start and end vertices) connected by an edge. The distance d(uw) between nodes u and w on a graph

is the length of the shortest path starting from u and ending on w . The maximum distance between nodes

is the diameter of the graph, which will be shown as diam(G). Edge distance de is defined as the distance

between a node and an edge: de(vuw) = (d(vu) + d(vw))/2. An invariant is a graph property that does not

change under different graph representations such as different labelings or drawings. When defining the graph

kernel, we will use the < ., . > notation for a dot-product.

For a given graph G , a distance-k graph is a graph with vertex set V (G), where an edge exists between

vertices uv ∈ V (G) if d(uv) = k [21]. Note that, for such graphs, as k grows, the information about G goes

from local to global. Therefore, invariants for a set of distance-k graphs can be good candidates for graph

descriptors. Based on these, a matrix representation of graphs is proposed called the B-matrix representation,

where each element of the matrix includes the following information [22]:

Bk,l = number of nodes that have lmembers in their k − shells

where a k -shell for a node v is defined as the set of nodes that are of distance k to v .

Recently, in [7], Czech extended distance-k graphs to edge distance-k graphs and proposed the edge

B-matrix representation for graphs:

BE
i,l = number of nodes that have l edges in their

1

2
i− edge− shells

where an i-edge-shell for a node v is the set of edges that are of distance i to v . More detail is given for edge

distance-k graphs in the next section.

Kernel methods are a set of algorithms for pattern analysis [4]. The kernel, which is the core of these sets

of methods, can roughly be considered as a similarity function among the objects of interest. A kernel usually

2481



TAN/Turk J Elec Eng & Comp Sci

computes the similarity by mapping the objects to a higher dimensional Hilbert space. It is said to be valid if it

is positive, semidefinite, and symmetric, where validity is a necessary property for the kernel to be safely used

in classification. SVMs are one of the most widely used kernel methods among others such as kernel regression

and kernel PCA [23].

3. Edge distance kernel

In this section, we first define the new proposed descriptor, and then we give the formal definition of the edge

distance kernel. In addition, we analyze the time complexity and prove that the proposed kernel is valid.

3.1. A new graph descriptor based on edge distance-k graphs

An edge distance-k graph (EDk(G)) is a bipartite graph between sets V (G) and E(G). An edge exists between

node v ∈ V (G) and e ∈ E(G) if de(ve) = k (see Figures 1a–1c). An edge in EDk(G) will be named in the

same way as the convention mentioned above. For instance, the edge connecting node 4 and node {3,5} in the

ED1 graph in Figure 1b is edge 435. All connections for a node will be concatenated. Therefore, label 43556

corresponds to the connections of node 4, as 4 is connected to 35 and 56. Each such string will be called the

adjacency string of a specific node (4 in this case) for the given EDk(G).

Figure 1. a) Sample graph, b) edge distance-1 graph, c) edge distance-1.5 graph (adapted from [7]).

Among other representations, EDk(G) can be represented as a list of edges. For example, the list

representing the ED1 graph in Figure 1b is {345, 43556, 53446, 645}, corresponding to node labels concatenated

with the lexicographically sorted list of connected edges for each node. As the edges are considered, the nodes

with no connections are not included in the list. We will denote this list of edges representing EDk(G) as

EDk(G).

The nodes of the graph in Figure 1 have unique labels. Hence, in this case, EDk(G) is a set. Some

graphs can have nodes with identical labels. For such graphs, EDk(G) can include the same elements more

than once; thus, it is a multiset for the general case. Therefore, we will depict EDk(G) as {s0 : l0 , s1 : l1 ,

s2 : l2 ,...}, where si corresponds to the adjacency string of node i and li is the number of occurences of si in

EDk(G).
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This representation may include some ambiguities. Given de(vuw) = k , there is no way to uniquely

identify the pairwise distances of the nodes u and w to v . Distance information may provide the ability to

distinguish between some cases that are otherwise indistinguishable. For example, when de(vuw) = 1.5, it is

impossible without further information to derive which of the nodes u or w is of distance 1 and which is of

distance 2 to v . Therefore, one final extension for EDk(G) is the addition of distance information to each edge

label: si = vud(vu)wd(vw). Figure 2 depicts the insertion of distance information to adjacency strings of nodes

0, 1, and 3 for ED1.5(G) of the graph in Figure 1.

Figure 2. Insertion of distance information to adjacency strings.

Figure 3 gives an example of deriving EDk for the graph of a real chemical compound, trichloroethylene.

The labels here are not unique; there are 3 chloride and 2 carbon atoms in the compound. Therefore, there

are three edges labeled ‘ClC1Cl0’ in ED0.5(G). Note that EDk(G) for integer k has edges only when G is

cyclic; otherwise, it is a graph composed only of nodes. As trichloroethylene has no cycles, EDk(G) = {} for

k = {1, 2} . We will utilize this information in computing the kernel. Additionally, note that EDk(G) = {}
for k > diam(G). Consequently, for any graph, EDk(G) is computed for k = {0.5, 1, 1.5, . . . , diam(G)}
(diameter is 3 in Figure 3).

3.2. Edge distance graph kernel

In order to define a kernel based on edge distances, we first define a similarity metric between EDk(G1) and

EDk(G2). Note that the adjacency strings in EDk(G) can also be seen as a hash table, where adjacency strings

are keys and their number of occurrences are values. Let ωk(G) be the set of keys of hash table EDk(G) and

let Gk[s] denote the value of key s in EDk(G). Then we define the similarity metric Sk(G1G2) as follows:

Sk(G1G2) = T ∗ δ(ωk(G1), ωk(G2), ∅) +
∑

s∈ωk(G1)∩ωk(G2)

δ(Gk
1 [s], G

k
2 [s]) ∗ |s|,

where δ(ijk) is the ternary Kronecker delta that returns 1 if i = j = k and 0 otherwise, and |s| is the length

of s . T is the constant that represents the case where both EDk(G1) and EDk(G2) are empty, i.e. if, for a

given k , two graphs have empty EDk(G), then their Sk value is T . Based on our experiments, we suggest

using T = 10, which is the value we used in the experimental results. In summary, Sk(G1G2) returns the total

2483



TAN/Turk J Elec Eng & Comp Sci

Figure 3. Edge distance-k multisets for the compound trichloroethylene.

number of common elements with an equal number of occurrences in EDk(G1) and EDk(G2) weighted by the

length of the element.

Definition 1 The edge distance-k (EDk) graph kernel between graphs G1 and G2 is defined as follows:

EDk(G1G2) =

D∑
k

Sk(G1G2),

where D = min(diam(G1)− 0.5, diam(G2)− 0.5) .

The EDk kernel is obviously symmetric, as Sk(G1G2) = Sk(G2G1). Although it does not include an

explicit dot-product operation, we will show that it is actually a dot-product kernel. Let each si ∈ EDk(G)

be concatenated with Gk[s] producing a new concatenated adjacency string si G
k[si] . Additionally, let

ωk(G) = k if EDk(G) = {} . Without loss of generality, let Σ∗ be the combination of the set of all possible

concatenated adjacency strings and a set of special strings ∀k k } denoting the case of empty EDk(G). Since

k is limited and the node labeling alphabet is finite, Σ∗ is also finite. A vector of length |Σ∗| can then be

defined as the descriptor for each graph, where these vectors are the parameters of the dot-product computing

EDk kernel. The following theorem gives the definition of these vectors and formally states the validity.
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Theorem 1 The EDk kernel is positive definite.

Proof The EDk kernel defines a kernel with the corresponding feature map ϕ
(k)
EDk ,

ϕ
(k)
EDk(G) = ∀k ∈ {0.5, 1, 1.5, ..., diam(G)}{g(s)|s ∈ Σ∗,

where

g(s) =

{ √
|s | ∗ 1ωk(G)(s), ifEDk(G) ̸= {}√

T , ifEDk(G) = {} ,

where s is the prefix of s up to the character and 1 is the indicator function. Then the EDk kernel is

defined as the following dot-product:

EDk(G1G2) =< ϕ
(k)
EDk(G1), ϕ

(k)
EDk(G2) > .

3.3. Time complexity

For the ease of notation, in this section we will denote |V (G)| as n and |E(G)| as m . To compute edge

distances, first all shortest paths have to be computed. The single source shortest path problem can be solved

in O(m + nlog(n)) by using Dijkstra’s algorithm. Thus, all shortest paths for a graph can be solved in

O(mn + n2log(n)). The second step in computing the kernel is the computation of the edge distances. This

step can be performed at O(mn) in the worst case; however, it can be performed efficiently in practice, since

only distances up to a maximum of h have to be computed. Third, building edge distance representations

from these requires O(hmn) time, as each EDk(G) can have at most mn edges. Hence, all the descriptors

for N graphs can be computed in O(Nhmn + Nn2log(n)) time. Finally, the Gram matrix computation can

be performed in O(N2). Therefore, the complexity of computing the EDk graph kernel for N graphs is

O(Nhmn + Nn2log(n) + N2). There can be different methods or heuristics to achieve speed-ups in practice.

First, there are various successful shortest path approximation algorithms (such as [24]) that bring significant

computational gains in exchange for a small error. These can be applied for finding the shortest paths faster.

Second, parallel implementations and GPU algorithms are possible to be applied, as the methods here are easily

divided into independent pieces of execution. Table 1 gives the time complexities of various kernels compared

to EDk.

Table 1. Time complexities of the kernels (h: number of iterations, n: |V(G) | , m: |E(G) | , N: number of graphs).

EDk WL NSPD OA MG SP
O(Nhmn + Nn2log(N) + N2) O(Nhm + N2hn) O(N2n) O(N2n3) O(N2n6) O(N2n4)

3.4. Parallel EDk (EDkP)

The EDk kernel is based on computation of a descriptor for each graph in a given data set. The operations

performed to compute this are highly independent, which means that they can be performed in a totally

distributed manner. Therefore, we also propose a distributed version of the algorithm that greatly improves

the computation time of the kernel.
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The distribution of the computation is based on the independence of the computation from the descriptors

for each graph. Each EDk(G) can be distributed to a different core or machine on a cluster, and then the

results can be collected back to construct the descriptors for the whole data set. The parallelization of the

gram matrix computation is straightforward, as it is composed of N2 independent computations. However,

parallelization for descriptor computations cannot be performed for every previously proposed kernel, as they

include sequential computations. The simple scheme that we follow for parallel computation is summarized in

Figure 4.

Figure 4. Parallel computation of the EDk kernel.

4. Empirical evaluation

4.1. Data sets and benchmarking kernels

We evaluated the proposed kernel on 9 data sets with different characteristics. The descriptions of the data sets

are given below, and some of their statistical properties are given in Table 2.

Table 2. Data set statistics. N is the total number of compounds, +% is the percentage of positive samples, NV is

the average number of vertices, and NE is the average number of edges.

N +% NV NE

FM 349 40.9 25.2 25.6
MM 336 38.3 25.0 25.4
FR 351 34.5 26.0 26.5
MR 344 44.1 25.6 25.9
NCI109 4154 50.0 57.47 59.71
HIV 1503 28.1 59.03 61.55
MUTAG 188 66.5 17.9 19.8

FM, FR, MM, MR: The Predictive Toxicology Challenge (PTC) [25] data sets consist of four data

sets describing the toxic effect of a number of compounds on four different animals: female mice (FM), male

mice (MM), female rats (FR), and male rats (MR). Each compound is labeled as toxic or nontoxic.

MUTAG: A set of 188 compounds with class labels set according to whether they have mutagenic

effects on the bacterium Salmonella typhimurium or not [26].

NCI109: NCI109 is a balanced subset of the anticancer screening data set available from PubChem.

HIV: A set of compounds tested against HIV. The compounds are grouped as active and moderately

active (http://dtp.nci.nih.gov/docs/aids/aids data.html).
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We compared the performance of the EDk kernel to 5 previously proposed kernels. The WL kernel [12]

and the neighborhood subgraph pairwise distance (NSPD) kernel [17] are recent kernels that can be considered

as state-of-the-art. There are also other well-known kernels that we used in comparison, including the optimal

assignment (OA) kernel [20], the marginalized (MG) kernel [9], and the shortest path (SP) kernel [10].

4.2. Experimental setup

We report the classification performance of the kernels by using scikit-learn [27], the machine learning library

for Python. The results were obtained by using 10-fold cross-validation with fixed folds for all algorithms. All

experiments were executed on a computer with Intel Core-i5 3.2 GHz CPU and 6 GB of memory running Linux.

We used 10-fold cross-validation to divide the data into training and testing sets. Then the values of the

critical parameters of each kernel were chosen by another 10-fold cross-validation on training data only. The

model with the selected parameters is then constructed for the training data and applied to the testing data.

The reported average accuracies are for testing data. For the WL kernel, h , the level parameter, is chosen

from the set h = {1, 2, 3, ..., 10} . For the NSPD kernel, there are two critical parameters, maximum radius and

distance. As in the original NSPD paper [17], we chose the radius (r) from r = {0, 1, 2, 3, 4, 5} and distance (d)

from d = {3, 4, 5, 6, 8, 10, 12, 14, 20} separately for each fold. The OA kernel uses the default parameters from

the original paper, as suggested by the authors. For the MG kernel, termination probabilities were optimized

among {0.1, 0.3, 0.5, 0.7}. Though k in the EDk kernel can obtain values similar to 0.5, we chose from integer

values k = {1, 2, 3, .., 10} , as the other values do not significantly change the result. The C parameter of the

SVM is also optimized among 10−3, 10−2, 10−1, 1, 10, 102, 103 .

All the Gram matrices of kernels were normalized (unless they were obtained in [0, 1]) by the following

standard equation, where κ and κN stand for the kernel and normalized kernel, respectively:

κN (G1G2) =
κ(G1, G2)√

κ(G1, G1) ∗ κ(G2, G2)
.

We used the Parallel Python (http://www.parallelpython.com) package, which is an open source Python module,

to execute parallel Python code in systems with multiple cores. The 2 cores on the computer on which we ran

the experiments were used in parallel execution.

5. Results and discussion

The experimental results are given in Tables 3 and 4. Table 3 reports the mean accuracies of each algorithm

for 10-fold cross-validation. The execution times of the kernels are given in Table 4. The EDk kernel performs

competitively with other kernels for most of the data sets; for FM and FR, it is the best performing kernel.

For MM, it performs worse than WL, NSPD, and MG, but it performs comparably to OA and SP kernels. For

MR, although WL is the worst performing kernel, EDk and NSPD reach almost equal accuracies. MG is the

best performing kernel for MR. For relatively larger data sets, such as NCI109 and HIV, EDk shows the same

performance as the recent kernels WL and NSPD, and it outperforms OA, MG, and SP. OA could not output a

result in less than 12 h for NCI109. For MUTAG, EDk is better than WL, NSPD, and MG, where OA performs

best this time.

When we look at the execution timetable, we see that EDk is faster than most of the kernels. In addition,

note that the results for the EDk and WL kernels are the cumulative durations for computing all 10-Gram

matrices corresponding to the different parameter values given in the previous section, not the Gram matrix
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Table 3. Comparison in terms of accuracy (±standard error). – : took more than 12 h.

FM FR MM MR NCI109 HIV MUTAG
EDk 64.15 ± 1.8 67.83 ± 1.92 64.88 ± 1.44 61.01 ± 2.25 87.17 ± 0.53 83.57 ± 0.9 87.69 ± 2.16
WL 63.0 ± 2.42 63.21 ± 2.26 69.41 ± 2.3 58.68 ± 1.61 88.01 ± 0.62 83.24 ± 0.91 86.11 ± 2.46
NSPD 63.91 ± 2.05 64.08 ± 1.65 69.35 ± 3.06 61.86 ± 2.8 87.94 ± 0.57 83.57 ± 0.94 84.53 ± 3.37
OA 62.72 ± 1.68 66.65 ± 1.47 64.56 ± 2.48 63.07 ± 2.2 - 82.1 ± 0.71 89.36 ± 1.59
MG 63.601.61 65.21 ± 1.66 67.31 ± 2.04 64.55 ± 2.83 76.82 ± 0.69 77.85 ± 0.65 85.64 ± 2.86
SP 62.45 ± 1.28 65.23 ± 2.02 65.46 ± 1.63 63.37 ± 1.79 79.27 ± 0.33 78.91 ± 0.63 87.78 ± 2.54

Table 4. Running time (in seconds, unless otherwise stated).

FM FR MM MR NCI109 HIV MUTAG
EDk 2.95 3.07 2.73 2.97 282.06 58.10 1.17
EDkP 1.65 1.81 1.59 1.58 142.64 30.11 0.83
WL 8.93 9.12 8.40 8.81 290.77 93.90 3.72
NSPD 9.40 9.47 9.11 9.56 1175.25 185.44 2.83
OA 82.88 100.77 76.06 80.51 > 12 h 648.08 min 28.50
MG 40.50 44.33 37.60 41.51 534.08 min 75.91 min 7.83
SP 2.50 2.40 1.75 1.86 86.78 37.87 0.54

for a single parameter. However, for NSPD, the result is given for only one parameter setting (r = 4, d = 5).

The OA kernel’s results are according to the default parameter values. It could not compute the Gram matrix

for the NCI109 data set in less than 12 h, and generally it is the slowest kernel. The MG kernel is the second

slowest kernel, and it also took a long time to compute the Gram matrix for NCI109. The SP kernel is fast, but

its performance is not very reliable, as it performs well for small-sized data sets, but for NCI109 and HIV, SP

performs 9% and 5% worse than the EDk kernel. From these results, it seems that when the data set and its

graphs become larger, the performance of SP drops. EDkP (the parallel version of EDk) computes the kernel

faster than EDk. Note that these results are achieved with an ordinary multicore desktop computer.

In summation, the EDk kernel is competitive with the state-of-the-art kernels in terms of performance.

It is significantly faster than WL, NSPD, OA, and MG. Only SP is faster, but its performance is very poor

for some data sets. Therefore, EDk is either faster or performs better than the kernels in our comparison

set. Its parallel version is easy to implement and has the potential to be executed on larger scale distributed

architectures, such as a cloud, using the MapReduce framework.

6. Conclusion

In this paper, we presented a new graph kernel, the edge distance-k graph kernel. The kernel exploits the

fact that the edge distance-k graphs actually include valuable topological information for graphs to be used

as a graph descriptor. By producing several edge distance-k graphs up to a given k , the kernel computes the

similarity among edge distance-k graphs, based on a similarity metric. Both this similarity metric and the

kernel itself are novel, built upon the previously proposed distance-k and edge distance-k graphs. This is the

first time that edge-distance-k graphs are used as graph descriptors for labeled graphs, and a parallel version of

the kernel is also proposed and implemented. The kernel is promising in the sense that it is fast and accurate.

The parallelization of the kernel is straightforward and its use can be extended to a cluster or a cloud as well

as a MapReduce framework.
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Notwithstanding its promising results, several of the kernel’s aspects can be improved. Feature selection

can be applied to the kernel, as feature selection has been previously shown to increase performance for graph

classification for different kernels [28,29]. Moreover, it would be interesting to investigate the performance of the

kernel in domains requiring pairwise kernels such as protein–ligand or protein–protein interaction predictions.
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