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Abstract: Hamstring and quadriceps muscles are essential for the performance of athletes in various sport branches.

Hamstring muscles control running activities and stabilize the knee during turns or tackles, while quadriceps muscles

play an important role in jumping and kicking. Although hamstring and quadriceps muscle strength in athletes can

be accurately measured using isokinetic dynamometry, practical difficulties, such as the requirement of nonportable

and costly equipment as well as a long period of measurement time, motivate the researcher to predict hamstring and

quadriceps muscle strength using promising machine-learning methods. The purpose of this study is to build prediction

models for estimating the hamstring and quadriceps muscle strength of college-aged athletes using a support vector

machine (SVM). The data set included 75 athletes selected from the College of Physical Education and Sport, Gazi

University, Turkey. The predictor variables of sex, age, height, weight, body mass index, and sport branch were utilized

to build the hamstring and quadriceps muscle strength prediction models for various types of training methods. The

generalization error of the prediction models was calculated by carrying out 10-fold cross-validation, and the prediction

errors were evaluated using several performance metrics. For comparison purposes, prediction models based on a radial

basis function neural network (RBFNN) and single decision tree (SDT) were also developed. The results reveal that

the SVM-based hamstring and quadriceps strength prediction models significantly outperform the RBFNN-based and

SDT-based models and can be safely utilized to produce predictions regarding new data with acceptable accuracy.

Key words: Support vector machine, radial basis function neural network, single decision tree, hamstring strength,

quadriceps strength

1. Introduction

Muscular strength refers to the maximal amount of force that a muscle can apply against resistance in a single

effort. The basic purpose of skeletal muscle is the creation of force, either to stabilize and balance the skeleton

or to generate movement. Muscular strength is very critical and important for achieving a healthy and high-

quality life. In addition to essential motoric parameters, such as endurance, speed, flexibility, and coordination,

muscular strength is considered as a further fundamental parameter for athletes’ success in their respective sports

and is also assumed to be in close relation with each of these four parameters. For instance, trainings conducted

for improving fast-running capability include not only speed practices but also muscle strength practices, as

athletes’ speediness is strongly dependent on their muscle strength [1]. Furthermore, monitoring the strength
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and stiffness of an athlete’s musculature plays a crucial and important role in planning an appropriate training

program, reaching expected levels of performance, avoiding injuries that stem from athletes’ weakness, and

determining suitable therapy programs to cure these injuries. Knowledge of strength parameters can even be

used to gather knowledge in the field of rehabilitation and to develop appropriate treatment regimens. Well-

known factors that can affect muscular strength include sex, age, and level of physical conditioning [2].

When recent research in the related literature is investigated, it is seen that athletes of various sport

branches require high muscular performance to attain success. Two types of upper leg muscles, hamstring and

quadriceps muscles, are especially related to the performance of athletes [3–5]. Quadriceps muscles play an

important role in jumping and kicking, while hamstring muscles are found to control running activities and

stabilize the knee during turns or tackles.

In the past decades, various techniques have been proposed for the direct measurement of hamstring

and quadriceps muscle strength, including dynamometer tests [6], tensiometer tests [7], and isokinetic tests [8].

However, among these, isokinetic testing has become the most popular measurement technique in the field. The

first devices conducting isokinetic tests were developed in the late 1960s and they have been indispensable for

training and strength measurements of performance athletes ever since [9]. Isokinetic systems target specific

muscles or muscle groups at various speeds and angle options and thus enable safe testing of muscle performance.

Since isokinetic systems provide numeric measurements for muscle performance, today they are considered as

the most preferred method for the rehabilitation of muscle injuries, injury follow-ups, and, most importantly,

evaluation of athletes’ performance [10].

The direct measurement of hamstring and quadriceps muscle strength in laboratory environments using

advanced isometric devices leads to the most certain and accurate results. However, despite a high level

of accuracy, the direct measurement of hamstring and quadriceps muscle strength is associated with several

practical difficulties and limitations. First, the equipment required for conducting the measurements is highly

expensive and not readily available. In particular, such measurement activities are frequently conducted within

the scope of research projects in educational institutions or are provided as services in rehabilitation or health

care facilities. Second, since those devices are bulky, they are not portable and their usage on the field is

impossible. Portable devices, such as dynamometers, could be used on the field for strength measurement;

however, they have notoriously limited utility [11]. Third, it is only possible to test one participant at a

time and hence the practical application of direct measurement is not feasible for large populations. Finally,

direct measurement via isokinetic devices requires expertise, detailed calculations, time-consuming practices,

and interpretation of the data. Nevertheless, trainers on the field prefer directly administered, quick-resulting,

and practical methods.

Because of these significant disadvantages and difficulties, it may be beneficial to predict rather than

measure hamstring and quadriceps muscle strength. Although there are many studies [12–15] in the literature

that directly measured hamstring and quadriceps muscle strength in laboratory environments using various test

protocols, to the best of our knowledge, no study has ever attempted to predict them via promising machine-

learning methods, which provide important tools for intelligent data analysis.

The purpose of this study is to build prediction models for estimating the hamstring and quadriceps

muscle strength of college-aged athletes using a support vector machine (SVM). The data set included the data

of 75 athletes from the College of Physical Education and Sport, Gazi University, Turkey. The hamstring and

quadriceps muscle strength was predicted for various types of training methods by using several scientifically

relevant predictor variables such as sex, age, height, weight, body mass index (BMI), and sport branch (SB),
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which have previously been shown in the literature to correlate with hamstring and quadriceps muscle strength

[16–18]. The generalization error of the prediction models was calculated by carrying out 10-fold cross-validation,

and the prediction errors were computed using the root mean square errors (RMSEs), mean absolute errors

(MAEs), mean absolute percentage errors (MAPEs), and multiple correlation coefficients (Rs). For comparison

purposes, prediction models based on a radial basis function neural network (RBFNN) and single decision tree

(SDT) have also been developed. The results have shown that the lowest RMSEs are obtained by the SVM-based

models with 15.55 Nm and 24.17 Nm for prediction of hamstring and quadriceps muscle strength, respectively.

2. Data set generation

To create the ground-truth data set, 75 young athletes from the College of Physical Education and Sport of Gazi

University were selected for the experiments. Four different protocols were applied to the athletes on different

days. In particular, the protocols involved: (a) a light run for 5 min, referred to as classic training (CT); (b) a

light run for 5 min, followed by active static stretching for 4 min, referred to as static training (ST); (c) a light

run for 5 min and active static stretching for 4 min, followed by a rest for 5 min (ST-5MIN); and (d) a light

run for 5 min and active static stretching for 4 min, followed by a rest for 15 min (ST-15MIN).

Subjects were requested to perform a warm-up exercise on a cycle ergometer at 55 ± 5 rpm for 5 min.

The load of the warm-up exercise was adjusted to the subjects’ heart rate, which had been previously recorded

by a telemetric heart monitor (S810, Polar, Finland). During the warm-up period, the heart rate of the subjects

was kept between 100 and 120 bpm.

After each warm-up exercise, the isokinetic strength of subjects was measured by fine-tuning the dy-

namometer settings according to the subjects’ physical structure. The tests were performed in the sitting

position, in such a way that subjects were fixed in a specific position on a chair with the help of tapes wrapping

their abdomen and thighs. The chair settings involved the adjustment of the rotation degree and back angle,

which were set to 40◦ and 85◦ , respectively. Dynamometer settings, on the other hand, required the adjustment

of the tilt degree, rotation degree, and height, which were set to 0◦ , 40◦ , and 8 cm, respectively. Finally, the

distance between the chair and the dynamometer was adjusted to 38 cm. During the tests, the subjects were

requested to hold their arms on both sides of the chair, so that free movement of the arms was prevented and,

at the same time, support was provided for the arms.

The isokinetic strength of all subjects’ right upper leg hamstring and quadriceps muscles was measured

with an isokinetic dynamometer (Isomed 2000, Germany) at 60◦/s angular velocity. During isokinetic strength

measurements, subjects were verbally supported with encouraging phrases to sustain and even improve their

performance.

The created data set included the predictor variables of sex, age, height, weight, BMI, and SB, as well

as the target variables of hamstring and quadriceps muscle strength. In more detail, hamstring and quadriceps

muscle strength was measured using four different types of training methods, namely CT, ST, ST-5MIN, and ST-

15MIN, which are referred to as hamstring-CT, hamstring-ST, hamstring-ST-5MIN, and hamstring-ST-15MIN

and quadriceps-CT, quadriceps-ST, quadriceps-ST-5MIN, and quadriceps-ST-15MIN, respectively. Table 1 gives

the minimum, maximum, mean, and standard deviation values for each predictor variable.

3. Prediction models

Three machine-learning methods, including the SVM, RBFNN, and SDT, were utilized to build the hamstring

and quadriceps strength prediction models. The selection of these methods depended on several observations
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Table 1. Descriptive statistics of predictor variables.

Predictor variable Minimum Maximum Mean
Standard
deviation

Sex (M/F) 0 1.00 0.35 0.48
Age (year) 19.00 38.00 21.78 3.06
Height (m) 1.57 2.02 1.71 0.07
Weight (kg) 45.00 93.00 62.04 11.27
BMI (kg/m2) 16.45 26.31 21.05 2.57
SB 0 16.00 5.94 4.67

gained from the related literature. The SVM, in general, has been reported to be superior to other machine-

learning methods, especially in the field of sport physiology [19–21]. The RBFNN is a popular artificial neural

network (ANN)-based method that generally has a simpler structure and simpler learning methods than other

ANN-based methods. It is considered as the main rival to the popular multilayer perceptron and has the merit

of needing comparatively shorter training times. Finally, for the category of tree-structured methods, preference

was given to SDT, due to fact that it often exhibits acceptable prediction performance despite negligible training

times, which often are in the order of milliseconds.

Using the SVM, RBFNN, and SDT, hamstring and quadriceps muscle strength prediction models were

developed in two categories. The first category of prediction models includes the predictor variables of sex, age,

height, weight, and SB, whereas the second category of prediction models utilizes the same predictor variables,

except that BMI is integrated instead of height and weight. The performance of the SVM-, RBFNN-, and

SDT-based models was evaluated by using 10-fold cross validation and computing the values of RMSE, MAE,

MAPE, and R, whose equations are given in Eqs. (1)–(4), respectively.
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n
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In Eqs. (1)–(4), Y is the measured value, Y ′ is the predicted value, Ȳ is the mean of the measured values, and

N is the number of samples in a test subset. The RMSE, MAE, MAPE, and R metrics are the most widely used

evaluation measures in the field of sport physiology. In addition, most studies related to the prediction of muscle

strength utilize these metrics for performance and accuracy evaluations of prediction models. Particularly,

RMSE measures the difference between predicted and measured values, which are squared and then averaged
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over the number of total samples. In contrast to RMSE, MAE is less sensitive to occasional very large errors,

because it does not square the errors in the calculation. MAPE is expressed in generic percentage terms. It is

calculated as the average of the unsigned percentage error. Finally, the correlation coefficient R is a measure of

the strength of the linear relationship between predicted and measured values.

The final values of the performance measures for every prediction model were obtained by averaging the

values of performance measures for each fold of the 10-fold cross validation process.

3.1. SVM-based prediction models

The performance of an SVM model is affected by several parameters, including the value of C , the value of

ε for the ε-insensitive loss function, kernel function type, and the selected parameters related to the kernel.

There exists a trade-off between minimizing the complexity of the prediction model and the training error.

The trade-off cost is related to the value of C.It is well known that the count of errors in the training phase

increments with smaller values of C. On the other hand, a hard-margin SVM-like behavior is observed with

a large C . The ε-insensitive loss function, proposed by Vapnik [22], is the most frequently used function to

quantify the empirical risk and measure the quality of estimation. The value of εaffects the number of support

vectors used to build the regression model. The bigger ε is, the fewer support vectors are selected. On the

other hand, bigger ε-values result in flatter predictions. There are many different kernel functions, including

the radial basis function (RBF), the polynomial function, and the sigmoid function. After experimenting with

those different kernel functions, RBF was chosen in this study to develop the SVM-based prediction models,

because the RMSEs obtained by using the RBF kernel were lower than those obtained by the utilization of other

kernel functions. The RBF kernel function requires the regularization parameter gamma (γ) to be optimized.

Intuitively, γ defines how far the influence of a single training example reaches, with low values meaning ‘far’

and high values meaning ‘near’.

Building an efficient SVM model requires obtaining the optimal values of the three parameters C , ε ,

and γ . To this end, the grid search method has been used to determine the best values of the mentioned

parameters. The idea behind a grid search is simple and it relies on a trial-and-error process. The values of the

parameters are varied within a predefined range in the grid search, and the values of C , ε , and γ yielding the

maximum prediction performance are selected. The limit values used for the grid search method were selected

according to the recommendations made in [23]. Particularly, in [23] it was reported that trying exponentially

growing sequences of C and γ is an effective way to determine the optimal values. Similarly, as proposed in

.[24], the ε-values were chosen so that the percentage of support vectors in the respective SVM-based models

is about 50% of the number of total samples. Table 2 lists the intervals for values of the utilized parameters for

SVM-based prediction models.

Table 2. List of intervals for values of the utilized parameters for SVM-based prediction models.

Method Parameter Range

SVM

Cost (C) [2−6 to 216]
Epsilon (ε) [0.01–150]
Gamma (γ) [2−10 to 28]

The flow chart of the SVM-based prediction model is shown in Figure 1. First, the data set was

preprocessed using standardization so that the predictor variables had zero mean and unity variance. This

process created new training and testing sets. The advantage of applying a standardization process is that the
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predictor variables with high values get scaled. Hence, the computational power regarding creating the SVM

prediction model was reduced. 10-fold cross-validation was applied to the data set to validate the models and

improve the reliability of the presented results. Therefore, for each fold, the training data included 67 samples,

whereas the test data included 8 samples. The optimal values of C , ε , and γ were found by implementing the

grid search technique. These values were used for building the prediction model, which in turn was utilized for

predicting the hamstring and quadriceps muscle strength values in the test set.

Train subset Test subset  

Standardize predictor variables to have zero mean and unity 

variance 

New train subset  New test subset  

Grid search to find 

optimized (C, ε, γ) 

Train the new train subset 

with the optimized 

parameters to obtain the 

SVM-based prediction 

model 

Use the SVM-based model 

to predict the muscle 

strength 

Calculate the performance 

metrics 

Figure 1. Flow chart of the SVM-based model for predicting the hamstring and quadriceps muscle strength for a single

fold.

3.2. RBFNN- and SDT-based prediction models

RBFNNs are composed of a single hidden layer and a single output layer, which work faster compared to

multilayer feedforward neural networks that have multiple hidden layers. One kernel function is associated with

each hidden node in the RBFNN. The Gaussian function was used as a kernel function of the hidden nodes to
develop the hamstring and quadriceps muscle strength prediction models.

Several steps were followed in building the RBFNN-based prediction model. First, after reading all the

information from the data set, the network standardization of predictor variables is simulated and initialized.

Then a new neuron is added to the RBFNN, and after adjusting the weight for the output layer, the error at

the output of the network is computed. If the error is not acceptable, the RBFNN is enriched by inclusion

of an additional neuron and then the error check is repeated. Otherwise, the performance of the network
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for the test and training data is measured, and it is investigated whether the network exhibits satisfactory

performance or not. In the event that the performance is not acceptable, the process reverts to the stage where

an additional new neuron is added to the RBFNN and the acceptance checks of the error rates are repeated.

The regularization parameter (λ), population size, radius of the RBFNN, and maximum number of neurons

are the main parameters impacting the performance of an RBFNN-based model.

For a decision tree, the value of the target variable is predicted by using the values of the predictor

variables to move through the tree until a leaf node is reached. The important parameters of the SDT-based

prediction model are minimum rows in a node (i.e. a threshold value for the number of rows to fall after

splitting), minimum size node to split (i.e. a threshold value for a node to be split), and maximum tree levels.

Table 3 shows the ranges of the utilized values of the parameters for the RBFNN- and SDT-based

prediction models.

Table 3. List of intervals for values of the utilized parameters for RBFNN and SDT-based prediction models.

Method Parameter Range

RBFNN

Regularization parameter (λ) [0.001–25]
Population size [200–350]
Radius of the RBFNN [0.001–400]
Maximal number of neurons [90–100]

SDT

Minimum rows in a node [4–25]
Minimum size node to split [5–20]
Maximum tree levels [10–20]

4. Results and discussion

Tables 4 and 5 give the descriptive statistics of the measured and predicted target variables with and without

BMI cases, respectively. Tables 6–13 show the training and validation results (i.e. the values of RMSE, MAE,

MAPE, and R) for all prediction models that are used to predict the hamstring and quadriceps muscle strength

for various training types. All following discussions refer to validation results, which are shown in Tables 10–13.

However, the same observations also apply to the training results given in Tables 6–9.

In general, the results reveal that SVM-based prediction models yield the lowest RMSEs for the prediction

of hamstring and quadriceps muscle strength, independently of which type of training method was applied to

the participants. In particular, SVM-based models yield an average RMSE value of 17.20 Nm for the prediction

of hamstring muscle strength and an average RMSE value of 26.29 Nm for the prediction of quadriceps muscle

strength, respectively. The performance gain among the SVM-based models that yield the lowest and highest

RMSEs is 17.46% for the prediction of hamstring muscle strength and 16.10% for the prediction of quadriceps

muscle strength, respectively.

In contrast, for the prediction of hamstring muscle strength, the SDT-based prediction models show the

worst performance. In particular, the SDT-based models for prediction of hamstring muscle strength yield

an average RMSE value of 23.88 Nm. On the other hand, the RBFNN-based prediction models show the

worst performance for prediction of quadriceps muscle strength. In particular, the RBFNN-based models for

prediction of quadriceps muscle strength yield an average RMSE value of 29.64 Nm.

As compared to the RMSEs obtained by SDT-based prediction models, the average percentage decrement

rates in RMSEs obtained by SVM-based prediction models are 12.74%, 12.33%, 23.31%, and 23.72% for the

prediction of hamstring-CT, hamstring-ST, hamstring-ST-5MIN, and hamstring-ST-15MIN, respectively, and
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Table 4. Descriptive statistics of the measured and predicted target variables (with BMI).

Target variable (Nm) Minimum Maximum Mean Standard deviation
Hamstring-CT (measured) 50.10 195.90 111.84 36.10
Hamstring-CT (predicted) 48.73 182.17 111.04 33.10
Hamstring-ST (measured) 61.20 197.70 111.61 36.44
Hamstring-ST (predicted) 61.59 190.74 109.21 32.44
Hamstring-ST-5MIN (measured) 56.70 202.20 112.59 36.53
Hamstring-ST-5MIN (predicted) 69.56 180.09 112.37 30.87
Hamstring-ST-15MIN (measured) 46.50 194.60 113.16 36.44
Hamstring-ST-15MIN (predicted) 60.52 187.77 112.74 32.79
Quadriceps-CT (measured) 72.20 285.20 154.77 54.80
Quadriceps-CT (predicted) 94.74 320.43 157.13 53.80
Quadriceps-ST (measured) 85.20 278.10 157.01 54.41
Quadriceps-ST (predicted) 91.90 288.37 156.43 46.33
Quadriceps-ST-5MIN (measured) 85.70 301.20 161.76 56.62
Quadriceps-ST-5MIN (predicted) 100.73 272.79 160.97 47.86
Quadriceps-ST-15MIN (measured) 83.40 280.20 157.88 51.95
Quadriceps-ST-15MIN (predicted) 96.68 255.82 158.31 44.91

Table 5. Descriptive statistics of the measured and predicted target variables (without BMI).

Target variable (Nm) Minimum Maximum Mean Standard deviation
Hamstring-CT (measured) 50.10 195.90 111.84 36.10
Hamstring-CT (predicted) 63.57 188.99 112.41 33.01
Hamstring-ST (measured) 61.20 197.70 111.61 36.44
Hamstring-ST (predicted) 55.22 278.20 112.33 37.98
Hamstring-ST-5MIN (measured) 56.70 202.20 112.59 36.53
Hamstring-ST-5MIN (predicted) 72.54 187.19 112.39 32.01
Hamstring-ST-15MIN (measured) 46.50 194.60 113.16 36.44
Hamstring-ST-15MIN (predicted) 71.42 196.82 114.31 32.67
Quadriceps-CT (measured) 72.20 285.20 154.77 54.80
Quadriceps-CT (predicted) 90.72 295.94 154.57 49.49
Quadriceps-ST (measured) 85.20 278.10 157.01 54.41
Quadriceps-ST (predicted) 91.13 310.28 156.49 47.95
Quadriceps-ST-5MIN (measured) 85.70 301.20 161.76 56.62
Quadriceps-ST-5MIN (predicted) 78.55 323.22 163.20 54.67
Quadriceps-ST-15MIN (measured) 83.40 280.20 157.88 51.95
Quadriceps-ST-15MIN (predicted) 93.46 281.59 158.03 48.41

4.24%, 9.18%, 6.35%, and 5.81% for the prediction of quadriceps-CT, quadriceps-ST, quadriceps-ST-5MIN,

and quadriceps-ST-15MIN, respectively. Similarly, as compared to the RMSEs obtained by RBFNN-based

prediction models, the average percentage decrement rates in RMSEs obtained by SVM-based prediction models

are 22.83%, 23.24%, 29.80%, and 33.21% for the prediction of hamstring-CT, hamstring-ST, hamstring-ST-

5MIN, and hamstring-ST-15MIN, respectively, and 11.39%, 12.00%, 10.94%, and 10.78% for the prediction

of quadriceps-CT, quadriceps-ST, quadriceps-ST-5MIN, and quadriceps-ST-15MIN, respectively. Figures 2–5

illustrate the percentage decrement rates in RMSEs of hamstring and quadriceps muscle strength for SVM

compared to RMSEs obtained by RBFNN and SDT.

2574



AKAY et al./Turk J Elec Eng & Comp Sci

Table 6. Averages of 10-fold training results for hamstring strength prediction models using various muscle-training

types (with BMI).

Training type Models RMSE (Nm) MAE MAPE (%) R Training time (s)

CT

SVM 10.62 8.32 8.07 0.91 01.47
SDT 18.92 14.71 13.90 0.72 00.20
RBFNN 14.91 11.87 12.00 0.83 07.15

ST

SVM 11.19 9.03 8.70 0.89 01.40
SDT 18.83 14.69 13.73 0.73 00.20
RBFNN 13.72 10.07 9.49 0.88 06.19

ST-5MIN

SVM 12.30 8.75 8.57 0.89 02.54
SDT 19.30 14.67 13.52 0.72 00.18
RBFNN 13.24 10.10 9.46 0.87 10.00

ST-15MIN

SVM 13.91 11.00 10.76 0.85 01.40
SDT 20.11 15.30 14.74 0.69 00.18
RBFNN 14.90 10.75 11.18 0.83 11.50

Table 7. Averages of 10-fold training results for hamstring strength prediction models using various muscle-training

types (without BMI).

Training type Models RMSE (Nm) MAE MAPE (%) R Training time (s)

CT

SVM 12.39 8.30 8.36 0.88 01.01
SDT 14.07 10.65 10.79 0.85 00.19
RBFNN 13.59 10.21 10.11 0.86 06.04

ST

SVM 11.69 8.01 7.87 0.91 01.11
SDT 15.83 14.69 13.73 0.73 00.24
RBFNN 13.37 9.99 9.46 0.86 10.67

ST-5MIN

SVM 13.66 8.21 8.11 0.86 01.11
SDT 14.92 11.64 11.31 0.83 00.22
RBFNN 14.07 9.90 9.47 0.85 08.20

ST-15MIN

SVM 13.67 10.18 10.42 0.86 05.51
SDT 20.11 15.30 14.74 0.69 00.22
RBFNN 14.24 9.76 10.40 0.85 07.38

In general, hamstring muscle strength prediction models yield lower RMSEs than quadriceps muscle

strength prediction models, regardless of which regression method or training type was utilized. In particular,

as compared to RMSEs of quadriceps muscle strength prediction models, the average percentage decrement

rates in RMSEs for hamstring muscle strength prediction models are 34.56%, 28.60%, and 19.42% for SVM,

RBFNN, and SDT, respectively.

The RMSEs of the prediction models for classic and static training have been found to be comparable,

regardless of whether SVM, RBFNN, or SDT have been utilized for model development. On the other hand,

there is no specific order between ST-5MIN and ST-15MIN, but the RMSEs related to ST-5MIN and ST-15MIN

prediction models are always higher than those of CT and ST.

In general, using height and weight instead of BMI gives much lower RMSEs for the prediction of

hamstring and quadriceps muscle strength, irrespective of whether SVM, RBFNN, or SDT has been used

for model development, or which type of training method has been applied to the participants.
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Table 8. Averages of 10-fold training results for quadriceps strength prediction models using various muscle-training

types (with BMI).

Training type Models RMSE (Nm) MAE MAPE (%) R Training time (s)

CT

SVM 19.39 13.71 9.38 0.87 01.65
SDT 24.68 18.52 12.71 0.79 00.18
RBFNN 27.95 20.41 13.90 0.74 11.55

ST

SVM 18.53 14.73 10.18 0.88 01.50
SDT 25.50 16.40 11.28 0.86 00.22
RBFNN 27.07 21.52 14.20 0.75 10.71

ST-5MIN

SVM 21.83 16.54 10.59 0.85 01.57
SDT 22.27 17.42 11.55 0.84 00.22
RBFNN 24.67 15.39 9.73 0.84 11.58

ST-15MIN

SVM 12.50 9.11 6.24 0.94 04.42
SDT 17.48 12.68 8.53 0.89 00.19
RBFNN 22.62 18.77 12.41 0.77 09.19

Table 9. Averages of 10-fold training results for quadriceps strength prediction models using various muscle-training

types (without BMI).

Training type Models RMSE (Nm) MAE MAPE (%) R Training time (s)

CT

SVM 18.45 13.02 9.01 0.88 05.39
SDT 21.46 16.19 11.86 0.84 00.22
RBFNN 21.70 14.49 9.76 0.84 09.56

ST

SVM 17.24 12.61 9.02 0.90 03.30
SDT 20.61 18.54 12.78 0.81 00.20
RBFNN 21.73 14.91 10.09 0.85 08.35

ST-5MIN

SVM 19.35 13.72 9.32 0.88 01.57
SDT 22.66 17.01 10.91 0.84 00.23
RBFNN 28.25 21.35 13.49 0.75 12.00

ST-15MIN

SVM 12.85 9.67 7.07 0.94 01.45
SDT 22.44 15.11 9.73 0.81 00.20
RBFNN 24.67 18.77 12.41 0.77 10.49

The Wilcoxon signed-rank test, the details of which are given in [25], has been applied to determine the

statistical significance of SVM-based prediction results as well as the percentage decrement rates in the RMSEs

of SVM-based models compared to the RMSEs of RBFNN- and SDT-based prediction models.

The Wilcoxon signed-rank test was applied to four different pair sets, including (SVM, RBFNN)H , (SVM,

SDT)H , (SVM, RBFNN)Q , and (SVM, RBFNN)Q pairs, which represent the corresponding SVM-, RBFNN-,

and SDT-based RMSEs of hamstring and quadriceps muscle strength predictions. The sample size in each test

case is eight (n = 8) and the two-sided level of significance, i.e. α , is set to 0.05. The test statistic for the

Wilcoxon signed-rank test is W , defined as the smaller of W+ and W− , which are the sums of the positive

and negative ranks, respectively. It is to be checked whether the observed test statistic W supports the null

or research hypothesis. This check is performed using the critical value of W , which can be found using a

predefined and well-known table of critical values. The calculated value of W in each case equals zero, and the

critical value of W for n = 8 at α = 0.05 is 3. Since W is less than the critical value, the null hypothesis

is rejected, and it can be concluded that the performance gain obtained by SVM-based models compared to
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Table 10. Averages of 10-fold validation results for hamstring strength prediction models using various muscle-training

types (with BMI).

Training type Models RMSE (Nm) MAE MAPE (%) R

CT

SVM 17.67 13.94 14.19 0.76
RBFNN 20.50 15.21 14.99 0.67
SDT 24.28 18.48 17.03 0.54

ST

SVM 17.39 13.89 13.39 0.77
RBFNN 20.32 16.13 15.02 0.68
SDT 24.15 17.83 16.64 0.55

ST-5MIN

SVM 18.84 14.61 14.65 0.73
RBFNN 24.19 18.51 17.61 0.56
SDT 26.26 18.96 18.48 0.48

ST-15MIN

SVM 18.30 14.19 14.66 0.74
RBFNN 25.03 18.61 17.25 0.52
SDT 28.63 21.07 20.47 0.37

Table 11. Averages of 10-fold validation results for hamstring strength prediction models using various muscle-training

types (without BMI).

Training type Models RMSE (Nm) MAE MAPE (%) R

CT

SVM 15.55 11.40 11.35 0.81
RBFNN 17.60 12.73 12.41 0.76
SDT 19.05 14.75 14.55 0.72

ST

SVM 15.75 12.38 11.93 0.81
RBFNN 17.54 13.85 13.20 0.76
SDT 19.31 14.95 13.95 0.72

ST-5MIN

SVM 17.17 13.64 13.35 0.78
RBFNN 22.74 16.45 15.57 0.61
SDT 25.01 18.75 18.26 0.52

ST-15MIN

SVM 16.99 12.37 13.20 0.78
RBFNN 21.37 16.36 16.35 0.65
SDT 24.38 17.55 17.24 0.55

Table 12. Averages of 10-fold validation results for quadriceps strength prediction models using various muscle-training

types (with BMI).

Training type Models RMSE (Nm) MAE MAPE (%) R

CT

SVM 27.21 20.86 14.42 0.75
SDT 28.28 20.53 13.74 0.73
RBFNN 30.93 23.30 16.07 0.68

ST

SVM 27.01 21.28 14.89 0.75
SDT 29.95 23.23 15.63 0.69
RBFNN 30.50 24.36 16.63 0.61

ST-5MIN

SVM 28.32 20.47 12.84 0.75
SDT 30.17 22.05 13.83 0.71
RBFNN 31.51 24.12 15.58 0.69

ST-15MIN

SVM 28.16 22.05 14.57 0.70
SDT 30.55 22.11 15.25 0.65
RBFNN 31.87 22.07 14.63 0.62
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Table 13. Averages of 10-fold validation results for quadriceps strength prediction models using various muscle-training

types (without BMI).

Training type Models RMSE (Nm) MAE MAPE (%) R

CT

SVM 24.17 17.61 12.01 0.80
SDT 25.35 18.87 13.35 0.78
RBFNN 27.07 20.26 14.14 0.75

ST

SVM 23.76 18.16 12.52 0.81
SDT 25.97 20.25 13.58 0.79
RBFNN 27.16 19.50 13.15 0.75

ST-5MIN

SVM 26.52 19.77 12.90 0.78
SDT 28.38 21.38 13.51 0.75
RBFNN 30.05 20.71 13.72 0.71

ST-15MIN

SVM 25.24 18.54 11.93 0.76
SDT 26.24 19.82 12.93 0.74
RBFNN 28.03 17.88 12.90 0.70

Table 14. z -scores and p-values for each pair of muscle-training type (with BMI).

Muscle-training type z-score p-value
Hamstring-CT –0.38 0.70
Hamstring-ST –0.55 0.58
Hamstring-ST-5MIN –0.12 0.90
Hamstring-ST-15MIN –0.41 0.68
Quadriceps-CT –0.29 0.77
Quadriceps-ST –0.03 0.98
Quadriceps-ST-5MIN –0.20 0.84
Quadriceps-ST-15MIN –0.06 0.95

Table 15. z -scores and p-values for each pair of muscle-training type (without BMI).

Muscle-training type z-score p-value
Hamstring-CT –0.14 0.89
Hamstring-ST –0.28 0.78
Hamstring-ST-5MIN –0.21 0.83
Hamstring-ST-15MIN –0.16 0.87
Quadriceps-CT –0.42 0.67
Quadriceps-ST –0.34 0.73
Quadriceps-ST-5MIN –0.04 0.97
Quadriceps-ST-15MIN –0.16 0.87

RBFNN- and SDT-based models is statistically significant at α = 0.05, independently of whether hamstring or

quadriceps muscle strength is predicted.

After investigating the performance gain of the SVM-based models, the Wilcoxon signed-rank test was

also utilized to determine whether the differences between the measured and predicted values of hamstring and

quadriceps muscle strength, obtained by SVM, are statistically significant or not. In this case, the value of n is

set to 75 samples, whereas the two-sided level of significance, α , is again used as 0.05. Depending on the case

considered, the minimum W values range from 1149 to 1237.5. Since the sample size is greater than 20, the
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Figure 2. Percentage decrement rates in RMSEs of ham-

string strength prediction with SVM compared to RMSEs

obtained by RBFNN and SDT (without BMI).

Figure 3. Percentage decrement rates in RMSEs of ham-

string strength prediction with SVM compared to RMSEs

obtained by RBFNN and SDT (with BMI).
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Figure 4. Percentage decrement rates in RMSEs of

quadriceps strength prediction with SVM compared to

RMSEs obtained by RBFNN and SDT (without BMI).

Figure 5. Percentage decrement rates in RMSEs of

quadriceps strength prediction with SVM compared to

RMSEs obtained by RBFNN and SDT (with BMI).

table of critical values for W cannot be utilized [26]. Alternatively, statistical analysis can be conducted using

the normal distribution approximation. In this case, the required calculations for different cases yield z -scores

ranging from –0.55 to –0.03, which in turn yield p-values in the range of 0.58 and 0.98 for α = 0.05. All p-values

are higher than α ; therefore, the null hypothesis is accepted. In conclusion, the test results reveal that there

is a statistically insignificant difference between measured and predicted values of SVM-based hamstring and

quadriceps muscle strength prediction models. Tables 14 and 15 show z -scores and p-values for each pair of

muscle-training type with and without BMI cases, respectively.
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There are some indirectly related studies [27–30] in the literature that also predict other specific types

of muscle strength, such as back extensor muscle strength or skeletal muscle strength, via multiple regression

analysis. However, to the best of our knowledge, there is only a single study [31] in the literature that is directly

associated with our work. This study utilizes various equations (which are not based on machine-learning

algorithms) for predicting quadriceps muscle strength. As outlined below, there are several major differences

between the current study and the study in [31]:

• In [31], empirical prediction equations with just two independent variables, including weight and repeti-

tions to failure, were utilized. In contrast, the current study predicted both the hamstring and quadriceps

muscle strength by using several predictor variables and promising machine-learning methods with intel-

ligent data analysis capabilities. The effect of classic and static trainings on hamstring and quadriceps

muscle strength prediction was also investigated. Thus, the research results presented in this study are

more comprehensive.

• The study in [31] requires the subjects to complete a submaximal exercise test in order to generate the

predictions. In contrast, the current study provides a significant benefit by proposing nonexercise-based

prediction models that can be quickly applied to large populations without the need to perform any prior

exercise tests.

• In [31], the number of subjects within the utilized data set is very limited and only includes a group of

18 homogeneous subjects with osteoarthritis of the knee joint. In contrast, this study utilizes a data set

comprising 75 college-aged athletes, who are active in various sports branches.

Keeping these differences in mind, the performance of the models for prediction of quadriceps muscle

strength, evaluated in both studies, has also been compared. The difficulty here was that both studies used

different evaluation metrics with different units, which do not allow a direct comparison of the performances

of the prediction models. In particular, in contrast to the current study, which used metrics including RMSE,

MAE, MAPE, and R, the study in [31] used the typical error as the main performance evaluation criterion.

Thus, to enable a comparison between the results of the two studies, the typical error values of the prediction

models proposed in this study have also been calculated. In [31], it was reported that the values of the typical

error range from 3.1 kg to 5.2 kg, whereas the values of typical error of SVM-based models in this study

range from 3.9 Nm to 6.4 Nm. It is obvious that the lowest typical error values achieved in this study and

those reported in [31] have different units; therefore, a direct comparison of the results of both studies is not

feasible. However, significant advantages, such as nonexercise-based usage and applicability to a broader range

of college-aged athletes, make the prediction models proposed in this study reasonable alternative solutions.

5. Conclusion and future work

In this study, 75 healthy young athletes from Gazi University, Turkey, were examined to determine the possibility

of predicting hamstring and quadriceps muscle strength from sex, age, height, weight, BMI, and SB. Four

different muscle training methods were used, including CT, ST, ST-5MIN, and ST-15MIN. The prediction

models were developed based on the SVM, RBFNN, and SDT. For model validation, 10-fold cross-validation

was conducted and the accuracy of the prediction models was evaluated by calculating the values of RMSE,

MAE, MAPE, and R.

Several conclusions can be drawn from the results of this study. First, among the machine-learning

methods, the SVM-based models exhibited the best performance with acceptable RMSEs, independently of
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whether quadriceps or hamstring muscle strength had been predicted or which type of training method had

been applied to the participants. Depending on the type of training method, hamstring muscle strength was

predictable with RMSEs of 15.55–18.84 Nm, whereas the RMSEs of quadriceps muscle strength prediction varied

from 23.76 Nm to 28.32 Nm, respectively. Second, the models built for the prediction of hamstring muscle

strength give much lower RMSEs than the models developed for the prediction of quadriceps muscle strength,

regardless of which regression method or training type has been utilized. Third, it has been shown that the CT

and ST models for predicting hamstring and quadriceps muscle strength exhibit comparable performance and

yield the lowest RMSEs. In contrast, the RMSEs of the ST-5MIN and ST-15MIN prediction models are higher

than those of CT and ST prediction models. Finally, all prediction models that use height and weight instead of

BMI, in addition to other predictor variables, lead to relatively lower RMSEs for each machine-learning method

and training type.

This is the first major study that used intelligent regression methods for the prediction of hamstring and

quadriceps muscle strength of the upper leg. Several research directions for future work are available for this

prediction field. The prediction models proposed in this study can be developed into practical prediction

applications that can serve as a feasible alternative solution to the direct measurement of hamstring and

quadriceps muscle strength. Other candidate potential predictors of hamstring and quadriceps muscle strength,

such as the length and width of the bone and leg fat-free mass, can be tested to investigate whether more

accurate prediction models can be built. Finally, various feature selection algorithms can be applied to identify

the relevant and irrelevant predictors among the set of candidate predictors of hamstring and quadriceps muscle

strength.
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[19] Akay MF, Abut F, Özçiloğlu M, Heil D. Identifying the discriminative predictors of upper body power of cross-

country skiers using support vector machines combined with feature selection. Neural Comput Appl 2016; 27:

1785-1796.

[20] Abut F, Akay MF. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent

advances. Med Device 2015; 8: 369-379.

[21] Acikkar M, Akay MF, Ozgunen KT, Aydin K, Kurdak SS. Support vector machines for aerobic fitness prediction

of athletes. Expert Syst Appl 2009; 36: 3596-3602.

[22] Vapnik V. The Nature of Statistical Learning Theory. 2nd ed. New York, NY, USA: Springer, 2000.

[23] Hsu CW, Chang CC, Lin CJ. A Practical Guide to support Vector Classification. Taipei, Taiwan: National Taiwan

University, 2003.

[24] Mattera D, Haykin S. Support vector machines for dynamic reconstruction of a chaotic system. In: Schölkopf B,

Burges C, editors. Advances in Kernel Methods. Cambridge, MA, USA: MIT Press, 1999. pp. 211-241.

[25] Taheri SM, Hesamian G. A generalization of the Wilcoxon signed-rank test and its applications. Stat Pap 2012; 54:

457-470.

[26] Anaene Oyeka IC, Ebuh GU. Modified Wilcoxon signed-rank test. Open J Stat 2012; 2: 172-176.

[27] Tan S, Wang J, Liu S. Establishment of the prediction equations of 1RM skeletal muscle strength in 60- to 75-year-

old Chinese men and women. J Aging Phys Act 2015; 23: 640-646.

[28] Muraki S, Fukumoto K, Fukuda O. Prediction of the muscle strength by the muscle thickness and hardness using

ultrasound muscle hardness meter. Springerplus 2013; 2: 457.

[29] Maeda T, Oowatashi A, Kiyama R, Yoshida Y, Sakae K. Prediction of muscle strength using length and width of

the bone. J Phys Ther Sci 2001; 13: 27-30.

[30] Mannion AF, Adams MA, Cooper RG, Dolan P. Prediction of maximal back muscle strength from indices of body

mass and fat-free body mass. Rheumatology 1999; 38: 652-655.

[31] McNair PJ, Colvin M, Reid D. Predicting maximal strength of quadriceps from submaximal performance in

individuals with knee joint osteoarthritis. Arthritis Care Res (Hoboken) 2011; 63: 216-222.

2582

http://dx.doi.org/10.4236/ojim.2012.22022
http://dx.doi.org/10.4236/ojim.2012.22022
http://dx.doi.org/10.4236/ojim.2012.22022
http://dx.doi.org/10.4236/ojim.2012.22022
http://dx.doi.org/10.1177/0363546505281242
http://dx.doi.org/10.1177/0363546505281242
http://dx.doi.org/10.12965/jer.150100
http://dx.doi.org/10.12965/jer.150100
http://dx.doi.org/10.12965/jer.150100
http://dx.doi.org/10.1097/00005768-200008000-00021
http://dx.doi.org/10.1097/00005768-200008000-00021
http://dx.doi.org/10.1007/s00521-015-1986-9
http://dx.doi.org/10.1007/s00521-015-1986-9
http://dx.doi.org/10.1007/s00521-015-1986-9
http://dx.doi.org/10.1016/j.eswa.2008.02.002
http://dx.doi.org/10.1016/j.eswa.2008.02.002
http://dx.doi.org/10.1007/s00362-012-0443-4
http://dx.doi.org/10.1007/s00362-012-0443-4
http://dx.doi.org/10.4236/ojs.2012.22019
http://dx.doi.org/10.1123/japa.2014-0103
http://dx.doi.org/10.1123/japa.2014-0103
http://dx.doi.org/10.1186/2193-1801-2-457
http://dx.doi.org/10.1186/2193-1801-2-457
http://dx.doi.org/10.1589/jpts.13.27
http://dx.doi.org/10.1589/jpts.13.27
http://dx.doi.org/10.1093/rheumatology/38.7.652
http://dx.doi.org/10.1093/rheumatology/38.7.652
http://dx.doi.org/10.1002/acr.20368
http://dx.doi.org/10.1002/acr.20368

	Introduction
	Data set generation
	Prediction models
	SVM-based prediction models
	RBFNN- and SDT-based prediction models 

	Results and discussion
	Conclusion and future work

