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Abstract:Lithium-ion batteries are commonly preferred in electric vehicle applications. The relative capacity and state

of health of a battery decrease with age. Therefore, accurate estimation of these parameters is essential. In this study a

parametrical approach for estimation of battery state of health is proposed. A hybrid battery model that has a maximum

error less than 3% is used. The relative capacity of the battery is estimated by using performance decrement with age.

The method is validated by two different set of experiments. The first set is conducted with batteries that were aged

by a controlled process and the second set is conducted with randomly aged batteries. The proposed method works

successfully in both conditions with maximum error less than 5%.
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1. Introduction

Today electric vehicles (EVs) are one of the cleanest alternatives in the transportation field considering envi-

ronmental factors. Lithium batteries are commonly used in EV applications thanks to their higher open circuit

voltages and efficiency, longer cycle life, and lower self-discharge rate when compared with other battery types

[1–5]. Accurate information about the remaining battery life is important for reliable operation in EV appli-

cations. Therefore, a parameter called battery state of health (SoH) is defined that basically indicates battery

health. The value of SoH demonstrates a comparison between the actual and initial conditions of a battery. The

unit of SoH is percent points and 100% SoH means the battery has the specifications of a brand new battery.

SoH also provides an idea about remaining battery life. Additionally a battery should not be used with SoH

below 80% [6].

There is a multiplicity in the definition of SoH in the literature [7]. Moreover, there is a wide spectrum of

methods about estimation or determination of SoH. SoH can be determined by using electrochemical impedance

spectrometry measurement [8]. However, advanced techniques are needed for measurement of SoH and online

measurement is not possible. Therefore, estimation-based methods are more popular. Advanced regression,

classification, and state estimation algorithms can be used for collecting data for battery health management

[9]. A statistical parametric model is also developed in order to estimate error time [10]. A model was proposed

for crank capability prognosis and impedance spectrometry was used [11]. In some studies the focus is directed

towards hybrid EVs where state estimation techniques such as the extended Kalman filter are used [12,13].

Autoregressive integrated moving average and artificial neural networks are also used for both clustering of
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measured data and estimation [14]. Dynamical models representing nonlinear potentials of lithium-ion batteries

such as temperature changes, heat effects, and transient response are proposed in [15]. These models are

developed by resistive companion method to avoid electrochemical calculations. Several battery parameters

are estimated using operating current and voltage quantities in an electrical battery model [16]. In order to

attain a dynamic estimation, an adaptive observer is designed and Lyapunov stability theorem is used to ensure

observer convergence. In [17] pattern recognition is used to monitor the health of batteries in a stack. However,

determination or estimation of the remaining battery life is difficult when the environmental conditions and

load variations are considered. There are studies in which a support vector machine (SVM) [18] and a Bayesian

implementation of generalized linear form of SVM, relevance vector machine employing particle filter algorithms

[19], are used. In a more recent study dynamic Bayesian networks are also used [20]. A discrete wavelet transform

is also used to extract information about battery health using an electrochemical model [21]. A very detailed

review can be found in [22]. The method proposed in the present study is a simple method that requires less

computational effort while providing accuracy. Although the method can only be employed in a specific driving

cycle, it is obvious that slopes in the driving cycle used in SoH estimation can be adopted for online applications

in EVs.

The capacity of a battery can simply be defined as the length of time that a fully charged battery can

be totally discharged under nominal discharge current. The maximum capacity of a battery decreases with

battery age. The change in capacity can be indicated with a parameter, relative capacity (RC), which is the

comparison of maximum capacity of a battery to its initial maximum capacity. The unit of RC is also percent

points. The main purpose of the present study is to indicate the SoH of a battery in terms of RC. In order to

achieve this goal the reference cycle number of the battery (RCN) is used. RCN is the cycle number of a battery

that was aged by using the manufacturer’s procedures as mentioned in the technical specifications manual. If

the condition of a battery is represented in terms of RCN, RC can also be calculated by this relationship.

Battery performance can be related to several factors such as voltage imbalances in a stack, temperature,

or health of a battery. In EVs battery temperatures or balancing issues are mostly controlled by thermal or

battery management systems. Therefore, performance degradation can be a measure that indicates battery

health, assuming a stable battery temperature and balanced cells in the stack.

In the present study RCN is determined by using the performance degradation of the battery with age.

In order to obtain SoH, RC is calculated by using RCN. For this purpose a battery model capable of reflecting

the changes in battery parameters during aging is required. Thus a previously proposed battery model [23] was

improved and used to simulate the behavior of a battery at different cycles. The battery model has a maximum

error less than 3%. RCN is obtained by a parametrical method in which the simulation results are used. The

method is validated by experiments in which both batteries aged by a controlled process and randomly aged

batteries are used. The proposed method works successfully in both conditions with a maximum error less than

5%. Assuming that an EV should have a successful thermal management system to keep battery temperature

around the optimum operating temperature, changes in temperature are not reflected in the battery model.

Thus both the battery model and the SoH estimation method are independent of temperature.

2. Battery model

Modelling of a battery is a difficult task because of the complex electrochemical structure and nonlinear

characteristics. The criteria needed to design an accurate battery model and to compare it with existing models

can be summarized as accuracy, calculation time, number of parameters, contribution required from other
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disciplines, and analytic structure. Battery reactions must be defined to develop a mathematical relationship

between aging and health in batteries. For this purpose, a model capable of reflecting aging effects of the battery

is needed. Therefore a previously proposed battery model [23] is improved and used in this study.

In this study Kokam LBP55205130H [24], 11-Ah automotive grade LiNiMnCo4 batteries are used. Within

the scope of this work a relationship between battery cycle life and battery terminal voltage is established and

adopted to the battery model. The proposed model is able to obtain terminal voltage of the battery, Vt , with

respect to open circuit voltage, VOC , which was recorded in no-load condition. The value of VOC is calculated

by a mathematical function that represents the correlation between battery capacity and VOC . In the model a

parallel RC block in series with a resistor is used to increase accuracy in transient conditions. Although both

the accuracy and the complexity of the model increase by enhancing the number of RC blocks, a single RC block

produced satisfactory results without sacrificing simulation performance. The model can be seen in Figure 1.

Figure 1. Electrical equivalent circuit battery model.

VOC of a battery can be obtained depending on the value of SoC and SoC can be obtained by using

several methods including Coulomb counting. In the proposed model, a set of experiments was performed [23].

By interpreting the experimental results and using mathematical methods VOC is defined as an exponential

function of SoC as

VOC = −1.035e−25SoC + 0.325SoC2 + 0.495SoC + 3.575 (1)

To study the effects of aging on a battery the model should reflect the capacity changes of the battery at different

cycles. For this purpose, VOC is multiplied by an aging coefficient. The value of this coefficient is taken from a

look-up table formed using the information given by the manufacturer, which is shown in Figure 2.

2.1. Verification of the model

In order to determine the accuracy of the model a simulation was done in Simulink environment. Constant

discharge current of 11 A was applied to the battery model. The VOC values were generated by a mathematical

function block that employs Eq. (1) depending on SoC level. Thus terminal voltage Vt can be produced as

seen in Figure 3 faithfully representing the terminal voltage curve of an actual battery. As seen from Figure 3,

measured and experimental data are in close agreement. The average error is 0.422% while the maximum error

is less than 3%.

3. Relative capacity estimation method

The relative capacity of a battery decreases with age and information about this parameter is provided by the

manufacturer. For instance, the relative capacity over cycle number curve of the battery that was used in this
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Figure 2. Relative capacity over cycle number graphic for the battery.
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Figure 3. Comparison of simulation and experimental results.

study is given in Figure 2. The blue solid line is the relative capacity of the battery and the red dotted line is

the limit of battery capacity for safe and reliable operation [24]. However, manufacturers have standard charge

and discharge routines for the aging process. For the battery used in this study a charge/discharge cycle is

summarized as below.

The charging sequence is named constant charge/constant discharge (CC/CV) and the first battery is

charged with constant 11 A until it reaches 4.2 V; then charging is continued for 5 h or until the battery

current falls below 0.055 A. In the discharge sequence the battery is discharged with constant 11 A until battery

terminal voltage falls to 3.0 V. There is a rest time of 10 min between charge and discharge sequences and all

this process continues at 23 ± 3 ◦C [24].

It is not possible for an EV battery to be aged ideally in a similar cycle as the manufacturer’s aging test

above. Thus the aim of the present study was to develop a technique that is able to estimate the RC of any

battery.

Batteries give different reactions to same inputs at different ages. In Figure 4 the outputs of the same

battery at different ages are given. The input signal that the batteries were subjected to is a test cycle derived
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from ECE15 Urban Driving Cycle. The blue solid line is the response of the battery at 100 cycles and the red

dotted line is the response of the same battery at 700 cycles. As can be seen from the figure, there are especially

three zones in which the response of batteries can clearly be separated from each other. In the proposed method

the RCN of a battery to which the specified driving cycle is applied will be calculated by using the slopes in
zones.
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Figure 4. Reaction of two different aged batteries to the same driving cycle.

In the estimation method the parameter “ αa” is described and the value of α is extracted from simulation

results of the battery model for every 100 cycles. Next, an equation that gives the RCN of a battery is obtained

depending on α values. Then an equation to obtain the SoH of a battery depending on RCN is proposed.

Thus, with the proposed method the SoH of a battery can be estimated by finding α , which can be obtained

by measuring the voltage drop ratio.

3.1. RCN estimation

The slope of the voltage degradation in Figure 4 can be represented by a parameter for comparison of battery

responses. A linear voltage signal can be represented as in Eq. (2), where α and b are the parameters, Vt is

voltage, and t is the corresponding time values in our problem.

Vt =
b

a+ t
(2)

The parameters α and b reflect the difference between the slopes of lines. These parameters can be obtained

by using two voltage values during the slope.

a =
V2t2 − V1t1
V1 − V2

, b =
V1V2(t2 − t1)

V1 − V2
, (3)

where V1 and V2 are the voltage values observed at t1 and t2 instances, which are the starting and finishing

instances of slopes, respectively. Because these two parameters are dependent on each other they will give the

same results.
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In the test cycle the first, second, and third zones last 1–6, 41–56, and 111–136 s, respectively. Because

the test cycle is used in both simulation of the model and validation tests for the method, time values are

accepted as t1 = 1, t2 = 6 s for the first zone, t1 = 1, t2 = 16 s for the second zone, and t1 = 1 and t2 = 16 s

for the third zone. The simulation results for a battery of every 200 cycles of age for first zone are given as an

example in Table 1. In the table given quantities are the recorded voltage values in corresponding seconds of

the simulation.

Table 1. Reaction of two different aged batteries to the same driving cycle.

Time (s)
Age (cycle number)
1 400 800 1200 1600 2000

1 4.310 4.310 4.310 4.310 4.310 4.310
2 4.294 4.269 4.244 4.207 4.161 4.108
3 4.274 4.221 4.169 4.093 3.999 3.892
4 4.249 4.167 4.086 3.970 3.827 3.663
5 4.219 4.108 3.996 3.838 3.644 3.421
6 4.187 4.045 3.903 3.702 3.457 3.175

For the simulation results in Table 1, a and b can be obtained as given in Table 2, by using Eq. (3).

Table 2. Parameter values for the first zone.

Parameter
Age (cycle number)
1 400 800 600 1200 1600 2000

α 169.3 75.4 46.9 58.4 29.4 19.2 13
b 733.9 329.1 234.6 256 131.1 87.3 60.3

The changes in the values of parameters for age are taken into account to generate a function for RCN.

By using curve fitting and the parameter values given in Table 2, Eqs. (4) and (5) are generated to calculate

the value of RCN depending on parameters a and b , respectively.

RCN (a1) = −0.001371a31 + 0.4846a21 − 58.15a1 + 2579 (4)

RCN (b1) = −0.001713b31 + 0.02631b21 − 13.71b1 + 2637, (5)

where the subscript represents the zone to which the parameter belongs.

Equations for the other zones were also generated with the same logic and are given in Eqs. (6), (7), (8),

and (9).

RCN (a2) = −0.0003195a32 + 0.179a22 − 35.28a2 + 2642 (6)

RCN (b2) = −4.019× 10−6b32 + 0.009731b22 − 8.29b2 + 2678 (7)

RCN (a3) = −1.612× 10−4a33 + 0.1074a23 − 25.82a3 + 2233 (8)

RCN (b3) = −2.055× 10−6b33 + 0.005887b23 − 6.09b3 + 2259 (9)
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3.2. Battery SoH estimation

In this study SoH is indicated as relative capacity. The SoH of a battery can be estimated by using RCN and

the correlation between RCN and capacity, which is given in Figure 2. If the graphic in the figure is smoothed

by moving average method, maximum capacity can be represented as an 8th order polynomial in terms of RCN

as given in Eq. (10).

SoH% = 1.165× 10−17RCN6 − 8.103× 10−14RCN5 + 2.15× 10−10RCN4 − 2.66x10−7RCN3

+1.441× 10−4RCN2 − 0.3418RCN + 99.95
(10)

4. Test results

Two different tests were carried out for validation of the method: controlled and uncontrolled tests. For
controlled tests a battery is aged for 500 cycles with recommended charge/discharge procedures. Consequently

cycle age of this battery shows the actual RCN with this method. The RCN determination method is applied

to the battery for every 100 cycles. On the other hand, 5 different batteries that were previously employed in

different applications are used in uncontrolled tests. Neither are they aged with recommended procedures nor

is there any information about their health.

For both tests actual capacity values of test batteries must be compared to estimated SoH value to

evaluate the success of the proposed method. Actual capacity may be measured by discharging a fully charged

battery with rated current. The capacity of a test battery is 11 Ah. Thus a battery with RC of 100% must be

totally discharged in 3600 s with rated current of 11 A. For capacity measurement test batteries are discharged

with 11 A current and their discharge time is compared with 3600 s.

4.1. Controlled tests

In these tests a battery is aged for 500 cycles with recommended procedures and the test cycle is applied to the

battery every 100 cycles.

In Table 3, experimental results are shown for every 100 cycles of the battery where V1 and V2 are the

voltage values recorded in t1 and t2 , which are the starting and finishing instances of slopes, respectively.

Table 3. Experimental data of the battery which was aged with catalogue procedures.

Zone Cycle number 100 200 300 400 500

1

V1 4.209 4.214 4.188 4.207 4.201
V2 4.048 3.982 3.902 3.871 3.815
t1 12.058 10.9 12.4 10.579 13.519
t2 17.868 16.858 18.68 16.809 19.505

2

V1 4.209 4.183 4.168 4.188 4.172
V2 3.931 3.845 3.784 3.753 3.698
t1 51.337 51.099 52.819 52.578 53.499
t2 67.326 67.798 67868 66.99 67.455

3

V1 4.176 4.146 4.146 4.137 4.13
V2 3.698 3.589 3.477 3.405 3.367
t1 121.87 121.39 122.51 120.75 120.63
t2 146.78 146.09 147.08 145.57 144.77

The value of α may be obtained as in (3) by using gathered voltage and time values. Subsequently RCN

may be calculated by using Eqs. (4), (6), and (8) for the first, second, and third zones, respectively. In Table 4

values of α RCN and the difference between RCN and actual cycle number are given for all three zones.

2866



SARIKURT et al./Turk J Elec Eng & Comp Sci

Table 4. Comparison of estimated and calculated cycle numbers in controlled tests.

Zone Cycle number 100 200 300 400 500

1

Value of parameter αa 148.72 103.72 87.359 72.685 59.852
Calculated cycle number 139.43 231.15 283.31 386.09 540.61
Error (%) 39.43 15.57 5.56 3.47 8.12

2

Value of parameter α 230.32 183.02 152.46 127.05 11.649
Calculated cycle number 108.16 222.19 291.63 393.80 489.68
Error (%) 8.16 11.10 2.79 1.55 2.06

3

Value of parameter α 197.11 157.84 131.61 119.31 110.27
Calculated cycle number 75.95 194.64 323.64 403.87 472.29
Error (%) 24.050 2.68 7.90 0.99 5.52

In Table 5 the comparison between the measured capacity and the estimated SoH is given for all three
zones.

Table 5. Comparison of estimated SoH and measured capacity values in controlled tests.

Zone Cycle number 100 200 300 400 500

1

Estimated SoH (%) 97.342 97.025 97.027 97.047 96.472
Measured capacity (%) 102.167 100.667 98.167 97.694 97
Error (%) 4.723 3.617 1.162 0.663 0.535

2

Estimated SoH (%) 97.631 97.033 97.031 97.039 96.774
Measured capacity (%) 102.167 100.667 98.167 97.694 97
Error (%) 4.440 3.609 1.157 0.671 0.233

3

Estimated SoH (%) 98.076 97.082 97.049 97.027 96.085
Measured capacity (%) 102.167 100.667 98.167 97.694 97
Error (%) 4.004 3.561 1.139 0.683 0.155

4.2. Uncontrolled tests

Uncontrolled tests were undertaken with five different batteries that were previously employed in several

applications and tests. Thus these batteries are not aged with standard procedures and their cycle numbers

are unknown. In the first phase, experimental results of the batteries under the test driving cycle are used

in the proposed method. Then RCN and SoH estimations are performed. In the second phase capacities of

tested batteries are measured and compared with estimated values. In Table 6 the experimental results of the

5 different batteries are given for all three zones.

In Table 7 the value of α , the calculated cycle number by using α , and the estimated SoH value for that

cycle number and the obtained capacity value are given.

The maximum capacity of battery #3 was very low as can be seen from Tables 7 and 8. The battery was

fully emptied during the 3rd slope. Thus there are no available time, voltage, or α values for this battery for

the 3rd slope.

5. Conclusions

Accurate estimation of the SoH of a battery has vital importance for battery applications. In this study a novel,

analytical approach for SoH estimation of an automotive grade lithium-ion-polymer battery is proposed. The

proposed SoH estimation method is based on an accurate battery model and RCN estimation. Although the
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Table 6. Experimental results for 5 batteries without aging information.

Zone Battery ID #1 #2 #3 #4 #5

1

V1 4.216 4.216 4.193 4.205 4.186
V2 4.054 4.014 3.166 4.005 4.005
t1 12.45 12.47 11.939 13.758 12.918
t2 17.87 17.218 16.518 20.238 17.781

2

V1 4.214 4.195 4.136 4.191 4.171
V2 3.944 3.815 2.651 3.904 3.828
t1 51.937 51.658 82.039 53.778 52.5
t2 66.857 66.558 66.349 68.793 68.089

3

V1 4.17 4.169 N/A 4.162 4.141
V2 3.67 3.569 N/A 3.65 3.585
t1 122.157 122.257 N/A 124.356 122.739
t2 146.28 146.446 N/A 147.404 145.629

Table 7. Comparison of estimated and measured capacity values in uncontrolled tests.

Zone Battery ID #1 #2 #3 #4 #5

1

Value of parameter α 137.77 95.375 13.638 132.16 109.91
Calculated cycle number 180.53 251.61 1872.6 193.30 221.47
Estimated SoH (%) 97.124 97.018 74.808 97.085 97.034
Measured capacity (%) 99.722 98.583 77.666 101.33 100.05
Error (%) 2.605 1.587 3.679 4.192 3.0193

2

Value of parameter α 221.69 152.70 26.126 208.94 178.84
Calculated cycle number 136.93 290.92 1836.7 170.67 230.01
Estimated SoH (%) 97.360 97.031 75.452 97.162 97.026
Measured capacity (%) 99.722 98.583 77.666 101.33 100.05
Error (%) 2.179 1.574 2.850 4.116 3.027

3

Value of parameter α 180.37 147.35 N/A 168.61 152.31
Calculated cycle number 114.577 240.10 N/A 155.00 217.69
Estimated SoH (%) 97.549 97.021 N/A 97.241 97.038
Measured capacity (%) 99.722 98.583 77.666 101.33 100.05
Error (%) 2.179 1.584 N/A 4.038 3.015

Table 8. Summary of errors of the controlled tests.

Zone 1 Zone 2 Zone 3 Average
RCN prediction error (cycles) 28.35 11.02 16.93 18.77
RCN prediction error (%) 14.43 5.13 8.23 9.26
Capacity estimation error (%) 2.14 2.02 1.91 2.02

method can only be employed in a specific driving cycle, it is obvious that slopes in the driving cycle used in

SoH estimation can be adopted for online applications in EVs.

The battery model is an electrical equivalent circuit battery model that contains a mathematical function

to determine its open circuit voltage when it is loaded. Parameters for the model were extracted using results

of a series of experiments. The model is simulated in MATLAB/Simulink environment and the maximum error

is less than 3%.

The performance of a lithium-ion-polymer battery decreases over time and different aged batteries have
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different responses under the same conditions. In this study a parameter-based function was developed to reflect

these changes in a battery. The SoH estimation method is combined with an RCN estimation method where

this parameter was used. Validation of the method was performed using two different test procedures and the

results were compared with maximum usable capacities. Tests were carried out both with batteries aged by

aging procedures of the manufacturer and with batteries randomly aged where average errors for SoH estimation

are 2.02% and 2.823%, respectively.
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