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Abstract: Wave clus is an unsupervised spike detection and sorting algorithm that has been used in dozens of exper-

imental studies as a spike sorting tool. It is often used as a benchmark for comparing the performance of new spike

sorting algorithms. For these reasons, the spike detection performance of Wave clus is important for both experimental

and computational studies that involve spike sorting. Two measures of spike detection performance are the number of

false positive detections (type I error) and the number of missed spikes (type II error). Here, a new spike detection

algorithm is proposed that reduces the number of misses and false positives of Wave clus in a widely used simulated

data set across the entire range of commonly used detection thresholds. The algorithm accepts a spike if its amplitude

is larger than the amplitude of its two immediate neighbors, where an immediate neighbor is the nearest peak of the

same polarity within ±1 refractory period. The simultaneous reduction that is achieved in the number of false positives

and misses is important for experimental and computational studies that use Wave clus as a spike sorting tool or as a

benchmark. A software patch that incorporates the algorithm into Wave clus as an optional spike detection algorithm

is provided.
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1. Introduction

In vivo extracellular recordings of neuronal activity provide a wealth of information about the information

processing that takes place in biological neural networks [1]. Spiking activity of individual neurons is extracted

from such recordings through a process called spike sorting [2]. A variety of tools have been developed for this

purpose, such as the Offline Sorter (Plexon Inc., Dallas, TX, USA), SpikeSort 3D (Neuralynx, Inc., Bozeman,

MT, USA), KlustaKwik [3], Spike2 (Cambridge Electronic Design Limited, Cambridge, UK), Wave clus [4],

MClust (A David Redish, University of Minnesota, Minneapolis, MN, USA), OpenSorter and OpenEx (Tucker

Davis Technologies Inc., Alachua, FL, USA), and AutoSort (DataWave Technologies, Loveland, CO, USA) to

name a few. These tools perform spike detection using a variety of algorithms, including thresholding signal

energy functions and amplitude thresholding. For spike sorting, these tools allow the user to perform manual,

semiautomatic, or unsupervised sorting using algorithms such as template matching, k-means, expectation

maximization, valley seeking, and superparamagnetic clustering. The clustering can be performed in a variety

of feature spaces spanned by features such as peak or valley amplitude, principal components, or wavelet

coefficients. In addition to these commercial or widely used tools, new algorithms for performing spike sorting

continue to be developed [5–12].
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Among this wide collection of tools and algorithms, Wave clus has been used as an open source spike

sorting tool in dozens of experimental [13–19] and methodological studies [20], and also as a benchmark for new

spike sorting algorithms [7,8,11,12,21]. Considered as a state-of-the-art spike sorting algorithm [11], Wave clus

has been reported to be the second most highly cited spike sorting algorithm in the literature [21].

A simulated data set introduced by Quiroga et al. [4] has been used in several studies as a basis for

comparing the performance of various spike sorting algorithms [5–11,21,22]. Here, this data set is used for

examining how Wave clus’ spike detection algorithm misses spikes or detects false positives. It is discovered that

Wave clus treats certain identifiable nonspikes as valid spikes (false positives) and that any subsequent actual

spikes that happen to be within a refractory period of these false positives are ignored by the algorithm (misses).

The characteristics of the identifiable false positives are explained and an algorithm that successfully rejects

them is presented. The proposed algorithm and the spike detection algorithm of Wave clus are compared in

terms of their spike detection performance. A software patch that integrates the code of the proposed algorithm

into the Wave clus software as an optional spike detection algorithm is provided at scicrunch.org under RRID:

SCR 014652. In this way, the proposed algorithm can be readily integrated into the original Wave clus software

to improve the latter’s spike detection performance.

Because Wave clus is widely used as a spike sorting tool in experimental studies and as a benchmark in

computational studies, improving its spike detection performance is expected to improve the accuracy of the

experimental data analyses that are performed using Wave clus and raise the bar for alternative methods that

are tested against it.

2. Materials and methods

This section explains the proposed algorithm and the spike detection algorithm of Wave clus, along with the

method that is used for measuring the performance of these algorithms. All computations were performed in

MATLAB (R2015a, MathWorks, Inc., USA) under a 64-bit Windows 8.1 Single Language (2013) operating

system on a laptop computer with 6 GB RAM and 2.60 GHz Intel Core i5-3230M CPU.

2.1. Data set used

The spike detection performance of the algorithms considered here is assessed using a simulated extracellular

recording data set in which the occurrence time of spikes is known. These data were generated by Quiroga et

al. using a database of 594 average action potential waveforms of different shapes, collected from the cortex and

the basal ganglia [4]. The simulated recordings consist of spike trains superimposed on background noise. The

latter is generated through the superposition of action potential waveforms that are randomly selected from the

database, where the superposition is performed with randomized amplitudes and occurrence times. The spiking

activity in each simulated recording is generated by selecting three different action potential waveforms from

the database and adding each to the background noise as Poisson events with a frequency of 20 Hz. Thus, each

simulated recording contains the simultaneous spiking activity of three distinct neurons, with an overall firing

rate of about 60 Hz. A 2-ms refractory period is enforced for the spike train of each distinct waveform. The spike

amplitudes in each simulated recording are set to 1 unit. For each triplet of action potential waveforms, four

different simulated recordings are generated by setting the standard deviation of the background noise to 0.05,

0.1, 0.15, and 0.2 units, respectively. Four different waveform triplets are used, resulting in a total of 16 simulated

extracellular recordings. The sampling rate and the duration of each simulated recording are 24 kHz and 60 s.

These data were downloaded along with the Wave clus software package from www.vis.caltech.edu/∼rodri [4].

2584



OKATAN/Turk J Elec Eng & Comp Sci

2.2. Spike detection algorithm of Wave clus

Wave clus is a computer program for detecting spike waveforms found in extracellular neural recordings and

sorting them using the superparamagnetic clustering method [4]. The scope of the present study is limited to

the presorting spike detection performance of Wave clus. Type I and type II errors of presorting spike detection

affect the accuracy of the subsequent spike sorting analysis.

In analyzing the spike content of extracellular recording data, which is represented by the variable x in

Wave clus, two separate bandpass-filtered versions of the recording are generated by Wave clus. One filtered

signal, xf detect, is used for spike detection, whereas the other, xf, is used for spike sorting. Spike timestamps are

determined in xf detect, and the waveforms are extracted from xf at those timestamps for subsequent sorting.

The detection threshold is computed using the robust median estimator of the standard deviation [4,23]:

σ̂ = median (|xf detect|)
(
Φ−1 (0.75)

)−1
(1)

Here, Φ−1 (·) is the inverse of the standard normal cumulative distribution. The spike detection threshold, thr,

is then determined using Eq. (2), where stdmin is a user-defined parameter, which is set to 4 [4].

thr = stdmin× σ̂ (2)

Wave clus provides the user with the choice of using a positive (thr) or negative (–thr) spike detection threshold,

or both at the same time. The results of Quiroga et al. that are considered here were obtained using the positive

threshold (see the first table in [4]). Whereas the simultaneous use of positive and negative thresholds reduces

the number of misses by about a factor of two, it increases the number of false positives by about a factor of

eight in the present data set (results not shown). Perhaps because of this reason, either the positive or the

negative threshold alone is used in virtually all studies that use Wave clus for spike sorting [6,13,24]. Because

a positive threshold may be used instead of a negative one simply by using the negative of x as the input data,

the algorithms considered here will be explained under the assumption that the positive threshold is used for

spike detection.

Wave clus starts by finding all samples in xf detect that exceed thr and then processes each suprathreshold

sample in the order of increasing timestamp to perform the following operations:

1. If the sample is within the refractory period of the last spike, then continue to the next sample.

2. Otherwise, find the timestamp of the peak value of xf in the interval that starts with the current sample

and that lasts half a refractory period.

3. Accept the peak found in Step 2 as a spike and go to Step 1 to process the next suprathreshold sample.

Initially the time of the last spike is taken as 0. After all spikes are found using the algorithm described

above, spikes that exceed a threshold called thrmax are considered to be noise and rejected:

thrmax = stdmax× σ̂ (3)

Here, stdmax is another user-defined parameter. The results of Quiroga et al. [4] could be replicated here by

setting the value of this parameter to 27 and the refractory period to 2 ms, or 48 samples.
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2.3. Proposed spike detection algorithm: the Taller Peaks algorithm

This section describes the operation of the proposed algorithm by citing the associated code lines in the relevant

MATLAB .m files. The proposed algorithm starts by finding all local peaks in xf that exceed thr in xf detect

(line 15 in taller peaks.m). These peaks form the set of candidate spikes. Next, for each peak, the temporally

next peak is rejected if it occurs within a refractory period of the current peak and its amplitude is smaller

(lines 22–29 in taller peaks.m). Finally, for each remaining peak, the temporally previous peak is rejected if it

occurs within a refractory period of the current peak and its amplitude is smaller (lines 32–40 in taller peaks.m).

Because the taller peaks survive this pruning, this algorithm is henceforth referred to for convenience as the

Taller Peaks algorithm. The surviving peaks that exceed thrmax are considered noise and rejected by Wave clus

(performed in Wave clus’ amp detect.m after the insertion point of taller peaks.m). The remaining peaks are

accepted as spikes.

2.4. Performance measurement method

This section explains the performance measurement method that is used for counting the number of missed spikes

and false positive detections. The timestamps of the spikes that are contained in the simulated extracellular

recordings are found in the variable spike times in each data file. The cross-correlogram of the spike trains

associated with these timestamps and the event trains detected by Wave clus reveal that the detected events

tend to lag behind the actual spikes. Based on this observation, it is assumed that the spike with timestamp

n is missed by Wave clus if no event is detected in an interval I+(n) = [n+a , n+b ], 0 < a < b . Otherwise

the spike is not considered missed, and all of the detected events that fall in I+(n) are labeled so that they are

not matched with any other spike. The results of Quiroga et al. [4] could be replicated here by using a= 12

samples (0.5 ms) and b= 42 samples (1.75 ms), where the values of a and b have been determined by trial and

error. Similarly, it is assumed that the detected event with timestamp n is a false positive if no spike timestamp

exists in the interval I−(n) = [n -b , n -a ], using the same values as above for a and b . Otherwise the event is

not considered a false positive, and all the spikes that fall in I−(n) are labeled so that they are not matched

with any other event.

The number of missed spikes and false positives is determined only for nonoverlapping spikes for clarity.

The index for nonoverlapping spikes is found in the variable spike class in each data file.

The same criteria are used for measuring the spike detection performance of both algorithms.

2.5. Performance as a function of detection threshold

Spike detection thresholds are usually set to a value between 3σ̂ and 5σ̂ [4,12,25]. Here, the multiplier of

σ̂ is selected depending on the researcher’s preferences. Recently a pair of spike detection thresholds, called

truncation thresholds, were introduced and these thresholds are computed using an entirely data-driven method

that does not depend on the researcher’s preferences [26]. Briefly, truncation thresholds are a pair of voltage

values that are defined on the basis that they are as far away from each other as possible and that the samples that

are contained between them obey a truncated probability distribution according to the Kolmogorov–Smirnov

test. Truncation thresholds have been computed for the data files used here under the truncated normal

distribution as the noise model, and the average positive truncation threshold is found to be approximately

1.78σ̂ . Therefore, to compare the spike detection performance of the two algorithms at different detection

thresholds, including the positive truncation threshold, the numbers of false positive detections and missed

spikes are determined at thresholds between σ̂ and 5σ̂ with steps of σ̂/10, where σ̂ is defined in Eq. (1). The
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total numbers of false positives and missed spikes are obtained separately for Wave clus and the Taller Peaks

algorithm. The percentage decrease achieved by using the Taller Peaks algorithm instead of Wave clus’ native

spike detection algorithm is plotted separately for false positives and missed spikes using Eq. (4).

Reduction (%) =
NumWave clus −NumTaller Peaks

NumWave clus
× 100 (4)

Here, NumWave clus and NumTaller Peaks denote the total number of missed spikes or false positives for the

indicated algorithm at a given threshold across all 16 data files.

2.6. Difference in computation time

To determine whether the two algorithms differ in terms of computation time, the average time it takes for the

algorithms to process the data files used here is measured using the tic and toc functions of MATLAB. This

analysis is performed at all thresholds considered here.

2.7. Performance as a function of refractory period duration

The analyses explained in Sections 2.5 and 2.6 are performed for refractory period durations of 2.5 ms, 50/24

ms, 2 ms, 46/24 ms, 1.5 ms, 1 ms, and 0.5 ms, where the values 50/24 ms and 46/24 ms are used to probe the

change in performance in the immediate vicinity of 2 ms.

3. Results

The comparison of the two algorithms starts by graphically examining some of the waveforms that are falsely

classified as spikes by Wave clus (Figures 1A and 1B). These waveforms also illustrate how Wave clus misses

subsequent spikes that occur within the refractory period. It is explained that the Taller Peaks algorithm

successfully rejects those waveforms and claims the missed spikes. Next, Wave clus and the Taller Peaks

algorithm are compared in terms of their spike detection performance (Table; Figures 2A and 2B). The two

algorithms are also compared in terms of their computation time (Figure 2C).

3.1. Valid spikes that are missed due to preventable false positives

Figures 1A and 1B show two instances of how a preventable false positive causes a subsequent spike to be

missed. False positives may be due to noise (Figure 1A) or suprathreshold parts of action potential waveforms

(Figure 1B). In either case, Wave clus ignores any spike that occurs within the next refractory period (2 ms in

Figures 1A and 1B). This may also cause subsequent spikes to be missed, as shown in Figures 1A and 1B. Note

that the amplitude of the false positives shown in Figures 1A and 1B is smaller than the amplitude of their

immediate neighbor(s), where an immediate neighbor is defined here as the nearest peak of the same polarity

that is within ±1 refractory period. The Taller Peaks algorithm rejects peaks whose amplitude is smaller than

the amplitude of their immediate neighbors. As a result, false positives such as those shown in Figures 1A and

1B are prevented and smaller numbers of false positives and missed spikes are achieved by the Taller Peaks

algorithm (Table; Figures 2A and 2B).

3.2. Comparing the spike detection performance of the two algorithms

Wave clus and the Taller Peaks algorithm are first compared in terms of their spike detection performance

using the method described in Section 2.4. In this analysis, the spike detection threshold is set to 4 σ̂ and the
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Figure 1. Spikes missed due to preventable false positives. (A) Noise fluctuation that exceeds the detection threshold

(thr) is detected as a spike by Wave clus in file C Difficult1 noise005.mat at sample number 1201358 (false positive).

Wave clus ignores any spikes that occur within the next refractory period, which is 2 ms in this figure (Step 1 in the

algorithm). This causes an action potential that happens to occur in that time window to be missed (missed). The Taller

Peaks algorithm eliminates the false positive since its amplitude is smaller than its immediate neighbor’s. The true spike

survives the pruning and is detected by the Taller Peaks algorithm. (B) A postaction potential rebound is detected as

a spike by Wave clus in file C Easy1 noise005.mat at sample number 1438158 (false positive). An action potential that

happens to occur within the next refractory period is ignored by the algorithm (missed). The Taller Peaks algorithm

eliminates the false positive since its amplitude is smaller than its immediate neighbor’s. The true spikes survive the

pruning and are detected by the Taller Peaks algorithm. Note that the false positive is detected by Wave clus as soon

as the 2 ms refractory period triggered by the preceding spike expires (Steps 1 and 2 of Wave clus algorithm). (C) The

central 2 s window showing xf for the file C Easy1 noise005.mat is provided here to illustrate an example of a spike train

waveform.

duration of the refractory period is set to 2 ms. The number of false positives and missed spikes is shown in

the Table for Wave clus. The software that generates these results from the underlying publicly available data

set is available at scicrunch.org under RRID: SCR 014652. These numbers are equal to or slightly lower than

the results reported by Quiroga et al. [4].

The same performance measurement method is used for determining the number of false positive detec-

tions and missed spikes for the Taller Peaks algorithm. Compared to Wave clus, the Taller Peaks algorithm

misses fewer spikes in five cases (Table). It misses more spikes than Wave clus in only one case (Example 3

[0.20]), and the difference is only 1 spike. Overall, the Taller Peaks algorithm misses about 1.22% fewer spikes

than Wave clus.

The performance increase achieved by the Taller Peaks algorithm in the number of false positives is more

substantial. As shown in the Table, compared to Wave clus, the Taller Peaks algorithm detects substantially

fewer false positives in eight cases. It detects more false positives than Wave clus in only one case (Example

3 [0.20]), and the difference is only 1 spike. Overall, the Taller Peaks algorithm detects 64.56% fewer false

positives than Wave clus.
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Figure 2. Dependence of performance improvement and computation time on threshold and refractory period. (A) The

Taller Peaks algorithm detects fewer false positives than Wave clus at all thresholds tested, except for a refractory period

of 2.5 ms, where it detects more false positives for a range of threshold values between about 3 σ̂ and 4.5 σ̂ . Performance

improvement is highest for refractory periods that are near 2 ms. (B) The Taller Peaks algorithm misses fewer spikes than

Wave clus at all thresholds tested when the refractory period is smaller than or equal to 2 ms. Performance improvement

is highest for refractory periods that are near 1–2 ms. For refractory periods that exceed 2 ms, the performance of the

Taller Peaks algorithm is lower than that of Wave clus’ native spike detection algorithm at high thresholds. (A, B)

The curves are obtained using Eq. (4). The vertical line indicates the average positive truncation threshold across all

data files. (C) Below the average positive truncation threshold, both algorithms take approximately the same time to

complete spike detection. The computation times quickly diverge above the average positive truncation threshold: the

Taller Peaks algorithm takes a longer time than the spike detection algorithm of Wave clus. The durations tend to

decrease with increasing threshold, since there are fewer suprathreshold peaks and samples at higher thresholds. The

same color code applies to parts (A), (B), and (C).

The Taller Peaks algorithm misses one more spike than Wave clus in ‘Example 3 [0.20]’, because the

missed spike is not taller than its immediate neighbor (not shown). The latter, which is due to noise, survives

the pruning performed by the Taller Peaks algorithm and constitutes the single additional false positive that is

detected by this algorithm in the same case.

3.3. Dependence of spike detection performance on detection threshold and refractory period

duration

By performing the analysis in Section 3.2 for thresholds between σ̂ and 5σ̂ , as explained in Sections 2.5 and

2.7, the curves in Figures 2A and 2B are obtained. Figures 2A and 2B show that the performance improvement
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Table. Comparison of the spike detection performance of Wave clus and the Taller Peaks algorithm. The cases where

the Taller Peaks algorithm performs better than Wave clus are shown in boldface. The case where it performs poorer is

shown with thick borders.

Example number (noise level)
Wave clus Taller Peaks
Misses False positives Misses False positives

Example 1 [0.05] 16 705 0 172
[0.10] 2 56 0 30
[0.15] 145 14 145 11
[0.20] 714 10 712 8
Example 2 [0.05] 0 0 0 0
[0.10] 0 2 0 2
[0.15] 10 1 10 1
[0.20] 376 5 376 5
Example 3 [0.05] 1 63 0 59
[0.10] 0 10 0 8
[0.15] 8 6 7 4
[0.20] 184 2 185 3
Example 4 [0.05] 0 1 0 1
[0.10] 0 5 0 4
[0.15] 3 4 3 4
[0.20] 262 2 262 2
Total 1721 886 1700 314

achieved by the Taller Peaks algorithm depends on both the spike detection threshold and the refractory period

duration used. The performance improvement is maximal at a refractory period duration of 2 ms. The Taller

Peaks algorithm performs better than Wave clus at all thresholds tested if the refractory period does not exceed

2 ms. At low thresholds, Wave clus misses a lot more spikes than the Taller Peaks algorithm. For a refractory

period of 2 ms, Wave clus misses about 22% of all spikes at the lowest threshold tested, and virtually every

spike that is missed by Wave clus is captured by the Taller Peaks algorithm. At the same time, the Taller

Peaks algorithm detects fewer false positives. When the positive truncation threshold is used as the detection

threshold, using the Taller Peaks algorithm in place of Wave clus’ native spike detection algorithm reduces

the number of missed spikes and false positives by about 98% (refractory periods near 1–2 ms) and 6% (all

refractory periods tested), respectively. At the highest thresholds tested, both algorithms miss about the same

number of spikes, yet the Taller Peaks algorithm detects fewer false positives. For the unusually long refractory

period duration of 2.5 ms, the Taller Peaks algorithm detects more false positives for threshold values between

about 3 σ̂ and 4.5 σ̂ , and it misses more spikes for threshold values above about 3 σ̂ .

3.4. Computation time

To determine the computational cost of the Taller Peaks algorithm’s higher spike detection performance, the

average time it takes to process the data files considered here is measured for each algorithm at all thresholds

and refractory periods tested (Figure 2C). Interestingly, the computation times of the two algorithms are about

the same when the threshold is at or below the average positive truncation threshold, but the computation

times quickly diverge above the average positive truncation threshold. For both algorithms, the computation

time tends to decrease with increasing threshold. At high thresholds, the Taller Peaks algorithm takes about

twice the time Wave clus takes to detect spikes.
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4. Discussion

Spike sorting is an indispensable step in the investigation of the information encoded in the spike trains of

individual neurons when such activity is recorded extracellularly. For this reason, spike sorting has been and

continues to be a central problem in computational neuroscience. Freely available spike sorting software and

data sets, such as Wave clus and its associated simulated data set, are valuable resources that help the field of

computational neuroscience move forward [27].

The present study used Wave clus and the data set generated by Quiroga et al. [4] to address the question

of how Wave clus misses spikes or detects false positives. The answer to this question led to an improvement of

Wave clus’ spike detection algorithm. It is found that Wave clus treats some preventable false positive events

as spikes and that this also causes some spikes to be missed (Figures 1A and 1B). The improvement of the

spike detection algorithm is therefore directly based on rejecting those identifiable false positives. The latter

are identifiable because their amplitude is smaller than the amplitude of their immediate neighbor (Figures 1A

and 1B). Therefore, the proposed improvement to the spike detection algorithm of Wave clus has been to reject

a spike candidate if its amplitude is smaller than the amplitude of one of its immediate neighbors. Because

taller peaks survive this pruning, the proposed algorithm is called the Taller Peaks algorithm. If a false positive

and one or both of its immediate neighbors have the same amplitude, then the algorithm cannot discriminate

between them based on their amplitudes and they survive the pruning. In the intact Wave clus, however, a

false positive causes a subsequent immediate neighbor to be deleted regardless of the amplitude comparison,

thereby resulting in a higher number of missed spikes.

The Taller Peaks algorithm outperforms Wave clus over the entire range of spike detection thresholds that

are used in the literature and for refractory periods not exceeding 2 ms (Table; Figures 2A and 2B). Optimal

performance improvement is obtained for a refractory period of 2 ms (Figures 2A and 2B). This is consistent

with the fact that the simulated spike trains analyzed here were generated with a refractory period of 2 ms.

Because the simulated data that are used here are quite realistic in terms of the noise and the spike waveforms

they contain, the Taller Peaks algorithm is expected to outperform Wave clus in real data analysis situations as

well. The software that is made available here makes it possible to switch between the Taller Peaks algorithm

and Wave clus’ native spike detection algorithm to assess the differential impact of using one algorithm versus

the other for any data. One real data analysis application that could be used to assess the performance of the

algorithm is spike train decoding [14,25]. If the Taller Peaks algorithm reduces both type I and type II errors

of Wave clus in real data, then quantities that are decoded using spikes sorted with the Taller Peaks algorithm

would be expected to be more accurate. This could be tested by replicating an experimental study with and

without turning the Taller Peaks algorithm on, and then comparing the results.

The Taller Peaks algorithm misses substantially fewer spikes and detects a lot fewer false positives than

Wave clus in the Example 1 data set compared to other data sets (Table). The reason for this is that a spike

waveform that is present in that data set has a suprathreshold postaction potential rebound, which is shown

in Figure 1B. Those rebounds trigger false positives and missed spikes, as shown in the same figure. Because

these are successfully prevented by the Taller Peaks algorithm, the performance improvement is substantially

higher in the Example 1 data set. Spike waveforms with such rebounds are not found in the other data sets

considered here.

An important question concerning the performance of the Taller Peaks algorithm is whether it can detect

spikes in bursts. Because the present data set consists of Poisson spike trains, this issue could not be directly

addressed in the present analysis. However, both Wave clus’ intact spike detection algorithm and the Taller

Peaks algorithm should detect bursting spikes as long as the refractory period is set such that consecutive spikes
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in a burst do not become immediate neighbors. Since even the intraburst interspike intervals are not expected

to be shorter than 1–2 ms, the performance improvement achieved by the Taller Peaks algorithm would be

expected to apply to bursting spike detection as well (Figures 2A and 2B). Setting the refractory period to even

lower values, however, would decrease the performance improvement, as shown by the curves that are obtained

for a refractory period of 0.5 ms in Figures 2A and 2B.

Unlike the biophysical spiking threshold, which depends on such activity characteristics as the rate of

depolarization, firing rate, and short-term synaptic depression [28–30], the spike detection threshold used in

amplitude thresholding is a fixed threshold. Making the latter depend on local activity characteristics of

extracellular recording data may further improve spike detection accuracy.

When the data are grouped per noise level, the Taller Peaks algorithm is found to miss fewer spikes and

detect fewer false positives than Wave clus in each group (Table). The Taller Peaks algorithm missed one more

spike than Wave clus in only one instance (Example 3 [0.2]), and that was due to a noise-triggered immediate

neighbor whose amplitude was larger than the amplitude of the missed spike. Because this was in one of the

cases with the highest noise level, this suggests that the performance of the Taller Peaks algorithm may be

further improved at high noise levels by considering the waveform features of the immediate neighbors before

deciding to reject a suprathreshold event as noise.

The improved spike detection performance of the Taller Peaks algorithm comes at a computational

cost that depends on the spike detection threshold, which is reasonable since the latter controls the amount of

suprathreshold data processed. Below or at the average positive truncation threshold, the Taller Peaks algorithm

takes about as much time as Wave clus for spike detection (Figure 2C), but it misses at least 98% fewer spikes

(for refractory periods near 1–2 ms) and detects approximately 4%–6% fewer false positives than Wave clus in

that threshold range (for all refractory periods tested) (Figures 2A and 2B). Samples that are below the average

positive truncation threshold can safely be assumed to represent noise since they obey the noise distribution

according to the Kolmogorov–Smirnov test (P ≥ 0.05) [26]. Therefore, a detection threshold that is below

the average positive truncation threshold is expected to be of little practical use. Above the average positive

truncation threshold, the computation times quickly diverge with increasing threshold (Figure 2C). There is

no apparent reason why the computation times should sharply differ below and above the positive truncation

threshold, other than the explanation that truncation thresholds serve as effective boundaries between the signal

and the noise in these recordings [26].

Because samples that exceed the positive truncation threshold are not likely to reflect noise, using the

positive truncation threshold as the spike detection threshold may maximize the amount of spike information

extracted from extracellular recordings. At that threshold value, the number of spikes missed by the Taller

Peaks algorithm is only about 2% of the number missed by Wave clus (Figure 2B; for refractory periods near

1–2 ms) at no additional computational cost (Figure 2C).

A spike validation method proposed in an earlier study bears similarities to the Taller Peaks algorithm

[31] and was used in combination with Wave clus to prevent duplicate detection of multiphasic spikes [32].

However, that algorithm has more rules than the Taller Peaks algorithm [31], and a quantitative analysis of its

spike detection performance does not seem to have been documented in the literature.

Overall, the results provided here suggest that the Taller Peaks algorithm is likely to increase the spike

detection and classification performance of Wave clus in real data analysis applications. This improvement is

expected to benefit both experimental and computational studies that use Wave clus as a data analysis tool or

benchmark.
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