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Abstract: Temporal preconditioners to stabilize the marching-on-in-time (MOT)-based time domain integral equation

(TDIE) solvers are proposed. Exponentially decaying functions are used as temporal preconditioners and the proposed

scheme is applied to analyze scattering from perfect electrically conducting objects using the second-order formulation.

The effectiveness of the proposed scheme is demonstrated via numerical examples. It is shown that the temporal

preconditioners stabilize the MOT system and the solution. In addition, the initial condition problem of TDIEs is

investigated by extending the second-order formulation of the time domain electric field integral equation to the time

domain magnetic and combined field integral equations.

Key words: Marching-on-in-time method, time domain integral equations, stability, time domain analysis, transient

analysis

1. Introduction

Marching-on-in-time (MOT)-based time domain integral equation (TDIE) solvers are plagued with stability

problems. In the literature, many methods have been developed to enhance the stability of MOT-based solvers.

These methods are mainly based on semianalytical calculation of MOT matrix elements [1–4], development

of specially tailored temporal basis functions [5,6], use of high-order temporal Galerkin testing [7,8], and time

domain Calderon projector-based preconditioners [8–10]. Some of these methods increase the computational

cost because either they were initially developed in the frequency domain and then extended to the time domain

or they require high-order discretization.

One of the problems of the MOT-based solvers is the initial condition problem, i.e. the solution might

have linearly increasing or constant components. This problem is not related to low-frequency breakdown

[5,11] or inner resonance [12] problems, and it is speculated that these components are caused by improper

imposition of the initial conditions [13] or static loops formed in the geometrical mesh [14]. To remedy this

problem, a method was proposed in [13] that uses an intermediate variable to formulate and solve the temporal

integration of the time domain electric field integral equation (TD-EFIE) for perfect electrically conducting

(PEC) scatterers. As a result, the current density function, which is the unknown of interest, is free of linearly

increasing or constant components, whereas the intermediate variable, which is the direct solution of discretized

MOT matrix system, still contains them. Therefore, these components can corrupt the intermediate variable,

especially when a large number of time steps is required.
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In this paper, second-order formulation of the TD-EFIE [13] is extended to time domain magnetic and

combined field integral equations (TD-MFIE and TD-CFIE) and the concept of temporal preconditioning of

MOT-based TDIE solvers is introduced to obtain a nonincreasing and vanishing solution for the intermediate

variable. Exponentially decaying functions are used as right and left temporal preconditioners for the MOT

matrix system. The proposed temporal preconditioning scheme is applied to the MOT solution of the second-

order formulation of the TD-MFIE, TD-EFIE, and TD-CFIE for PEC scatterers. Because of exponentially

decaying functions, the solution, i.e. the intermediate variable, vanishes with time, as well as the stability of the

MOT matrix system are guaranteed. The proposed preconditioning scheme can be applied directly in the time

marching stage without modifying the MOT matrices, and the speed of decay can be controlled by a parameter

known as the relaxation coefficient. The effectiveness of the temporal preconditioning is demonstrated via

numerical examples. In addition, the effect of the initial value on the MOT solution is investigated and it is

shown that the order of the temporal derivative in the integral equation causes linearly increasing and constant

contributions.

The rest of the paper is organized as follows: in Section 2.1, the MOT formulation of temporal integration

of the TD-CFIE using an intermediate variable is shown. In Section 2.2, temporal preconditioning of the MOT

system using exponentially decaying functions is formulated. In Section 3 numerical examples are presented,

and in Section 4 conclusions are drawn.

2. Formulation

2.1. Marching on in time

The TD-CFIE for PEC scatterers residing in a linear, nonmagnetic, lossless, and nondispersive homogeneous

background medium is traditionally given in terms of current density J(r, t), and the derivative of the equation is

discretized and solved using the MOT method to find the unknown J(r, t) [12]. The temporal derivative cancels

the temporal integration in the scalar potential and hence all MOT matrix elements have finite interaction

duration depending on the size of the spatial basis function and duration of the temporal basis function.

On the other hand, in the method presented in [13], temporal integration of the TD-EFIE is discretized

and an intermediate variable P(r, t) is defined to cancel out the temporal integrations in the TD-EFIE as

J(r, t) = ∂2
tP(r, t), where ∂t denotes the temporal derivative. J(r, t) and P(r, t) are expanded as

J(r, t) =
N∑

n=1

Nt∑
i=1

{Ji}nTi(t)fn(r), (1)

P(r, t) =

N∑
n=1

Nt∑
i=1

{Pi}nTi(t)fn(r), (2)

where Ji and Pi are unknown coefficient vectors at the ith time step, Ti(t) = T (t−i∆t) is shifted interpolation

functions, ∆t denotes time step size, and fn(r) is the spatial basis function. Substituting Eq. (2) in the temporal

integration of TD-CFIE, applying point testing in time at t = j∆t , and Galerkin testing in space to the resulting

equation yield the MOT system in terms of the intermediate variable P(r, t):

Z0Pj = Vj −
j−1∑

i=max{1,j−Ng}

Zj−iPi, (3)
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where Ng = ⌊Dmax/(c0∆t) +Ntemp⌋ [15], Dmax is the maximum distance between observation and source

points, Ntemp is the duration of T (t) in time steps to past (T (t) is assumed to be causal), and c0 is the speed

of light in the surrounding medium. The elements of the tested incident field vector Vj and the MOT matrices

Zj−i are

{Vj}m = α
⟨
fm(r), ∂−1

t Einc(r, t)
⟩
t=j∆t

+(1− α)η0
⟨
fm(r), n̂(r)× ∂−1

t Hinc(r, t)
⟩
t=j∆t

, (4)

{Zj−i}m = (1−α)η0

2 ⟨fm(r), ∂tTi(t)fn(r)⟩t=j∆t

+α ⟨fm(r),L{Tifn, r, t}⟩t=j∆t

−(1− α)η0 ⟨fm(r), n̂(r)×K{Tifn, r, t}⟩t=j∆t

, (5)

where ⟨fm(r),b(r, t)⟩ =
∫
Sm

fm(r) · b(r, t)dr , Einc(r, t) and Hinc(r, t) are the band limited incident electric

and magnetic field intensities, α is the combination factor of the TD-CFIE, η0 is the intrinsic impedance of

the surrounding medium, and n̂(r) is the unit normal vector with respect to observation point r . ∂−1
t denotes

temporal integration. In Eq. (5), the TD-EFIE and TD-MFIE operators, L{·, ·, ·} and K{·, ·, ·} , are defined as

L{Tifn, r, t} =
∫
Sn

µ0

4πR fn(r
′) ∂2

t Ti(t
′)
∣∣
t′=t−R/c0

dr′

−∇
∫
Sn

1
4πε0R

[∇′ · fn(r′)]Ti(t−R/c0)dr
′
, (6)

K{Tifn, r, t} = ∇×
∫
Sn

[
Ti(t−R/c0)fn(r

′)

4πR

]
dr′, (7)

where R = |r− r′| is the distance between source and observation points, and ε0 and µ0 are the permittivity

and permeability of the surrounding medium. Once the MOT system in Eq. (3) is solved for Pi , i = 1, . . . , Nt ,

unknown coefficients for the current density Ji can be determined using the numerical derivative, e.g., using

central difference:

Ji = [Pi+1 − 2Pi +Pi−1]/∆t2. (8)

2.2. Temporal preconditioning

The discretized unknown vector of the intermediate variable Pi can be scaled with the decaying exponential

functions P̃i = exp[−σti]Pi = exp[−σi∆t]Pi to enforce the vanishing behavior, where σ is the relaxation

coefficient. The exponential decay guarantees the convergence of the solution P̃i to zero even if Pi is linearly

increasing. To compensate the effect of the exponential scaling, MOT matrices should be scaled with exp[σti] .

This process can be regarded as right preconditioning of the MOT matrix system. To prevent the growth in

MOT matrix elements, the resulting equation should be scaled with exp[−σtj ] = exp[−σj∆t] , which can be

regarded as left preconditioning. As a result, the temporally preconditioned MOT system is given as

Z̃0P̃j = Ṽj −
j−1∑

i=max{1,j−Ng}

Z̃j−iP̃i, (9)
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where Ṽj = exp[−σj∆t]Vj and Z̃j−i = exp[−σ(j − i)∆t]Zj−i . Since j ≥ i , the MOT matrix elements Z̃j−i

always decay with time and the eigenvalues of the companion matrix of the MOT system [16] move inside

towards the unit circle through the center. This guarantees the stability of the MOT system as well as the

solution P̃i . The relaxation coefficient σ can be chosen considering the electrical size of the problem, numerical

precision, and total time step size Nt , e.g., σ ∝ c0/(DmaxNt) or σ ∝ 1/(∆tDmaxNt).

There are several ways to implement the temporal preconditioner. First, exponential functions can be

multiplied by the matrix elements during the matrix filling stage. This requires O(N2) additional simple

multiplication operations. Second, the MOT matrices can be updated after the matrix filling via multiplying

the matrix elements by the exponential functions. This multiplication operation is applied once, and since the

MOT matrices are sparse, the computational cost of it is O(N2). In both cases the computational cost of

the temporal preconditioner, i.e. O(N2), is negligible compared to the computational complexity of the MOT

scheme, i.e. O(N2Nt). It is also possible to fill a precomputed table for the exponential functions exp[−σk∆t] ,

k = 0, . . . , Nt , to reduce the cost of the temporal preconditioning further.

3. Numerical results

This section demonstrates the effectiveness of the temporal preconditioning of the MOT scheme via numerical

examples. In all examples Rao–Wilton–Glisson (RWG) [17] functions and third-order Lagrange interpolation

functions [18] are used as spatial and temporal basis functions, respectively. Unless it is specified, the electric field

component of the incident plane wave is Einc(r, t) = x̂G(t + r · z/c0), where G(t) = cos(2πf0[t − t0]) exp([t −
t0]

2/2γ2) is a modulated Gaussian pulse signature with f0 modulation frequency, fbw essential bandwidth,

γ = 7/(2πfbw) duration, and t0 delay. The MOT matrix elements are determined via the semianalytical

method described in [1–3] and algebraic stability analysis is carried out as described in [16]. In all figures the

intermediate variables are normalized with c20 (i.e. P̃i/c
2
0).

3.1. TD-MFIE

In this example, a unit sphere discretized with N = 750 RWG basis functions is analyzed to investigate the

effects of the temporal derivative, the initial condition, and the temporal preconditioner proposed in Section 2

on the MOT-TD-MFIE systems. Combination factor α = 0, the incident field has f0 = 70 MHz, fbw = 30

MHz, and unless otherwise specified t0 = 3.5γ . Time step size ∆t = 1 ns.

In Figure 1, one of the current density coefficients obtained by the MOT solution of the TD-MFIE (MFIE),

derivative of the TD-MFIE (∂tMFIE), derivative of the TD-MFIE with delay t0 = 3.5γ + 50∆t in incident

field (∂tMFIEdelayed), and temporally preconditioned-temporal integration of the TD-MFIE (TP-∂−1
t MFIE)

is shown. For TP-∂−1
t MFIE, relaxation coefficient σ = 0.004∆t−1 . Figure 2 shows the eigenvalues of the

companion matrices for the associated MOT systems. The observations on the results given in Figures 1 and

2 can be listed as follows: 1) Comparing the ∂tMFIE and MFIE results in Figure 1 shows that they agree

very well for early time but the ∂tMFIE result has a constant component whereas the MFIE one vanishes

with time. This shows the temporal derivative to be the source of the constant component in the result, as

discussed in [13]. Figure 2 supports this conclusion, since some of the eigenvalues of the companion matrix of

the MOT-∂tMFIE system are located at z = 1, whereas the MOT-MFIE system does not have any. 2) The

∂tMFIE and ∂tMFIEdelayed results in Figure 1 show that the constant levels are on same level with the initial

value of the solutions, although they solve for the same MOT matrix system (only the delay of the incident
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fields is different). For the delayed incident field, the constant level is lower. It can be concluded that the initial

value of the solution is directly related to the incident field at the first time step. Therefore, usually the delay of

the incident field is chosen to be very large, which results in a very smooth rise and small constant component

levels. 3) In Figure 1, the TP-∂−1
t MFIE result agrees very well with the MFIE and ∂tMFIE results, and it

does not have any constant component, as expected.
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Figure 1. Coefficient of an RWG basis function of the current density for MOT-TD-MFIE systems.
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Figure 2. Eigenvalues of the companion matrix of the MOT-TD-MFIE systems.

Figure 3 plots one of the coefficients of the normalized intermediate variables for different relaxation

coefficients (σ = {0, 0.004, 0.01}∆t−1). In Figure 3 intermediate variable P̃i for σ = 0 (no temporal precondi-

tioning) still has a constant component but it will be removed on Ji because of the relation given in Eq. (8). For

σ = 0.004∆t−1 and σ = 0.01∆t−1 intermediate variable P̃i also does not have any constant component and

results are decaying depending on σ . The eigenvalues of the MOT system for TP-∂−1
t MFIE (σ = 0.004∆t−1)
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in Figure 2, move inside the unit circle and none of the eigenvalues are located at |z| = 1. This guarantees the

stability of the MOT system and demonstrates the effectiveness of the temporal preconditioning.
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Figure 3. Coefficient of an RWG basis function of the intermediate variable for different relaxation coefficients.

3.2. TD-EFIE

Next the same unit sphere in the previous subsection is analyzed to investigate the effect of temporal precon-

ditioning on the MOT-TD-EFIE system. In this example combination factor α = 1, the incident field has

f0 = 70 MHz, fbw = 30 MHz, t0 = 3.5σ , and time step ∆t = 1 ns. For the temporal preconditioner relaxation

coefficient, σ = 0.01∆t−1 .

Figure 4 plots one of the current density coefficients obtained by the MOT solution of the temporal

derivative of TD-EFIE (∂tEFIE) and the temporally preconditioned-temporal integration of the TD-EFIE

(TP-∂−1
t EFIE), and the coefficient of the associated intermediate variable for TP-∂−1

t EFIE. In Figure 4, the

∂tEFIE result has linearly increasing and constant components in the solution due to the improper imposition

of the initial conditions [13]. It was also mentioned in [14] that this increasing behavior can be nonlinear due

to the iterative solution process. On the other hand, the intermediate variable, as in the solution of the MOT-

TP-∂−1
t EFIE system, has a decreasing behavior, and the current density does not have any linearly increasing

or constant components. Figure 5 shows the eigenvalues of the MOT-TP-∂−1
t EFIE matrix system for different

relaxation coefficients. It can be seen that for σ = 0 (no temporal preconditioning) there are eigenvalues located

at z = 1, and for σ ̸= 0 these eigenvalues move inside.

This example clearly shows that the proposed method remedies the linearly increasing and constant

component problems in the TD-EFIE and improves the stability of the MOT system.

3.3. TD-CFIE-1

In this example a unit sphere discretized with N = 2430 RWG basis functions is analyzed to investigate the

effect of temporal preconditioning on the MOT-TD-CFIE system. In this example combination factor α = 0.5,

the incident field has f0 = 120 MHz, fbw = 40 MHz, t0 = 3.5σ , and time step ∆t = 0.625 ns. For the temporal

preconditioner relaxation coefficient, σ = 0.01∆t−1 .

Figure 6 plots one of the current density coefficients obtained by the MOT solution of temporal derivative

of the TD-MFIE and TD-CFIE (∂tMFIE and ∂tCFIE), temporally preconditioned-temporal integration of the
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Figure 4. Coefficient of an RWG basis function for MOT-TD-EFIE systems.
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Figure 5. Eigenvalues of the companion matrix of the MOT-TD-EFIE systems for different relaxation coefficients.

TD-CFIE (TP-∂−1
t CFIE), and coefficient of the associated intermediate variable for TP-∂−1

t CFIE. It can be

seen that the ∂tMFIE result coincides very well with both CFIE results until 225 ns, but then it has an

oscillating behavior due to the inner resonance problem, and the ∂tCFIE result has a constant component even

when it is resonance-free, whereas the TP-∂−1
t CFIE result does not have any linearly increasing or constant

components and vanishes until the numerical accuracy of the MOT scheme. The intermediate variable also

decays and vanishes due to temporal preconditioning.

This example shows that the resonance-free TD-CFIE also has a constant component problem, and can

be remedied by the proposed method in Section 2.
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Figure 6. Coefficient of an RWG basis function of the current density for MOT-TD-CFIE and MFIE systems.

3.4. TD-CFIE-2

As the last example, the flower-shaped scatterer described in [6] is analyzed. The scatterer is modeled with

N = 873 RWG basis functions. In this example combination factor α = 0.5 and the electric field component of

the incident field is given as

Einc(r, t) = x̂

3∑
k=1

Gk(t+ r · z/c0), (10)

where Gk(t) = cos(2πf0[t − tk]) exp([t − tk]
2/2γ2) is a modulated Gaussian signature with delay tk . The

incident field has f0 = 75 MHz, fbw = 25 MHz, t1 = 3.5γ , t2 = 3.5γ + 250∆t , t3 = 3.5γ + 500∆t , and time

step ∆t = 1 ns. For the temporal preconditioner relaxation coefficient, σ = 0.01∆t−1 .

Figure 7 plots one of the current density coefficients obtained by the MOT solution of the temporal

derivative of the TD-EFIE and TD-CFIE (∂tEFIE and ∂tCFIE), and temporally preconditioned-temporal
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Figure 7. Coefficient of an RWG basis function of the current density induced on the flower-shaped scatterer.
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integration of the TD-EFIE and TD-CFIE (TP-∂−1
t EFIE and TP-∂−1

t CFIE). As expected, the ∂tCFIE and

TP-∂−1
t CFIE results coincide very well, except the constant contribution in the ∂tCFIE result. The TP-

∂−1
t EFIE result coincides reasonably well with CFIE results for main responses; however, for the rest it shows

an oscillating behavior due to the inner resonance problem. On the other hand, the ∂tEFIE result is increasing

linearly and does not match the both CFIE results.

This example shows the superiority of the temporal preconditioning and the second-order formulation,

especially for the MOT solution of the TD-EFIE.

4. Conclusion

The concept of temporal preconditioning of MOT-based TDIE solvers is introduced and the effectiveness of it

is demonstrated by the MOT solution of the TD-MFIE, TD-EFIE, and TD-CFIE for PEC scatterers using the

second-order formulation described in [13]. The proposed method does not require any update in the MOT

matrix element calculation and can be applied directly to the time-marching part of the MOT solver. It is

shown that the temporal preconditioning improves the stability properties of the MOT systems by pushing the

eigenvalues of the companion matrix to inside of the unit circle. Note that the temporal preconditioning does

not remedy the inner resonance [12] or low-frequency breakdown problems [5,11], and applying it without a

postprocessing technique (e.g., filtering or using a second-order formulation) might not be effective.
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