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Abstract: This paper introduces an optimal control strategy of model-based predictive control (MPC) based on

multiobjective particle swarm optimization (MOPSO) for a sensorless vector control induction motor, which is used

in a fuel cell electric vehicle drive system. The proposed MPC-MOPSO algorithm is implemented to tune the weighting

parameters of the MPC controller to tackle all the conflicting objective functions. The paper handles the following

fitness functions: minimizing the speed error, minimizing the torque ripple, minimizing the DC-link voltage ripple, and

minimizing machine flux ripple. Computer simulations studies have been completed utilizing MATLAB/Simulink with a

specific end goal of assessing the dynamic performance of the proposed MPC-MOPSO optimal controller and comparing

it with single-objective particle swarm optimization and traditional PI controllers. The simulation results demonstrate

the good dynamic response of the proposed MPC-MOPSO optimal tuning strategy over the traditional PI controllers for

more accurate tracking performance through the whole speed range, especially at starting conditions and load change

disturbances.

Key words: Electric vehicle, fuel cell, sensorless vector control, multiobjective particle swarm optimization, model-based

predictive control

1. Introduction

Concern about air contamination, global warming, and the quick consumption of fossil fuels such as oil, gas,

and coal has prompted the proposition of fuel cell electric vehicles (FC-EVs) to replace traditional vehicles

[1]. Usually, batteries are utilized for all types of EVs as a second rechargeable energy source to implement

good acceleration and regenerative braking while the main energy source such as the FC is utilized to give

extended driving range [2]. In spite of the fact that FCs show great power ability in steady-state operation,

the technical restrictions of FCs such as low productivity in a low load request, moderate power transfer rate

in transient operation, and high cost for each watt make the reaction of the FC in transient and momentary

crest power requests generally poor. In this way, batteries and/or superconductors are utilized with the FC.

However, the batteries introduce a few downsides, such as short lifecycle, long charging time, and low power

densities, despite giving noteworthy high-energy density potential, and they might be enormously influenced by

high current discharges [3]. The induction motors that are used in the EVs could be controlled by field-oriented

control (FOC) to operate at their optimum efficiency, torque, and speed. In the last few years, FOC drives have
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been widely utilized for induction motor optimal speed control [4]. Because of their simple control structure

and inexpensive cost, PID and hysteresis current controllers are commonly used in traditional FOC to achieve

smooth transient operation of the induction motor drive [5]. In any case, the PI controller demonstrates poor

transient reaction against system parametric variety and sudden load change influence, particularly during low-

speed operations. The trend in industrial applications is to implement sensorless vector control techniques to

estimate the motor speed and flux using computational methods instead of using speed sensors to strengthen

the drive system reliability [6]. The generally utilized strategies for speed observation are the model reference

adaptive system [7,8], neural networks [9], extended Kalman filter [10,11], and nonlinear observer [12]. A

comprehensive literature review of optimal control of induction motor drives based on sensorless vector control

was given in [13]; however, new solutions should be suggested to overcome a few issues connected with sensorless

vector control [14]. Current research works focus on wide speed ranges, especially very low speed ranges [15], or

inaccuracy and IM parameter variations [16]. Intelligent techniques such as neural networks, fuzzy control, and

genetic algorithms have been utilized to handle the nonlinearities and uncertainties of the IM parameters [17–20].

Model-based predictive control (MPC) has become a major control technology due to its ability to deal with a

dynamic optimization problem with physical constraints that come from the industrial applications and control

process [21]. MPC relies on the dynamic models of the process to compute a vector of optimal control signals by

solving an optimization problem online considering the process constraints to minimize the future signal error,

which is the difference between the desired signal and the future outputs predicted by the process model. At that

point, the first signal of the optimal input vector is connected to the plant and this strategy from the prediction

and optimization with new optimal input is repeated in the following sampling interval [22]. Comparing the

performance of MPC to conventional PID controllers, the main disadvantage of MPC is that it is a generally

more perplexing controller and it requires more time for online prediction, particularly when constraints exist.

However, the literature has shown that the performance usually indicates obvious MPC predominance [23].

MPC has been utilized in optimal speed/torque control for induction motor drive systems [24] and joined with

speed/flux estimators [25]. Recently, FLC control and PSO approaches have been implemented in the automatic

tuning of model predictive control parameters [26–28]. In this paper, the MPC-multiobjective particle swarm

optimization (MOPSO) optimal control approach is implemented to control the speed, torque, flux, and DC

voltage for a sensorless vector control IM drive, which is intended to be implemented in a FC-EV drive system.

The proposed MPC-MOPSO algorithm is implemented to tune the weighting parameters of the MPC controller

to handle the following fitness functions: minimizing the speed error, minimizing the torque ripple, minimizing

the DC-link voltage ripple, and minimizing machine flux ripple while considering the provided drive system

constraints. The control signal is predicted by MPC based on the current control variables, the actual signal

error, and the predicted future output of the model. The dynamic performance of the MPC-MOPSO controller

is tested with different speed tracks and load disturbance and compared using MATLAB/Simulink with the

traditional PI controller and single-objective particle swarm optimization (SOPSO). SOPSO and MOPSO can

be utilized to figure out this multiobjective optimization problem. In SOPSO, a single weighted objective

function may be formed from all fitness functions to obtain a single solution, while MOPSO finds a set of

acceptable trade-off optimal solutions, which is called the Pareto front. The main point of interest in MOPSO

is that it does not need a priori knowledge about the relative significance of the targets [29–32]. This paper is

organized as follows: Section 2 introduces the dynamic model of the induction motor. Section 3 outlines the

fundamental structure of the model-based predictive control. Section 4 presents the system arrangement of a

typical fuel cell/supercapacitor/battery EV. Section 5 demonstrates the proposed MOPSO and SOPSO optimal
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algorithms. Section 6 shows the dynamic simulations using MATLAB/Simulink. Finally, particular important

conclusions are presented in Section 7.

2. The sensorless control of the IM

The dynamic state-space model of the IM can be represented using the d− q reference frame as follows [33]:

d

dt


ids

iqs

λdr

λqr

 =


−γ ωs ηµ ωrµ

−ωs −γ −ωrµ ηµ

ηLm 0 −η ωsl

0 ηLm −ωsl −η
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 , (1)

Te =
3PLm

4Lr
(iqsλdr − idsλqr) , (2)

where:
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σLs

(
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L2
m

L2
r
Rr

)
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η = Rr

Lr
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σLsLr
; ωsl = ωs − ωr

(3)

vds and vqs are d−q stator voltage components, ids and iqs are d−q stator current components, λdr and λqr are

d−q rotor flux linkage components, ωs is stator angular speed, ωr is mechanical rotor speed, ωsl is slip angular

speed, Te is the electromagnetic torque, P is the number of pole pairs, Rsand Rr are stator and rotor resistance

referred to the stator, and Ls , Lr , and Lmare stator, rotor, and mutual inductances referred to the stator.

The speed can be evaluated by the model referencing adaptive system, which primarily comprises the reference

and adaptive models. The adjustment strategy creates the assessed speed where the calculated values of the

reference model are compared with the output of the adjustable model until the difference between the two

models reaches zero. The reference model represents the stator voltage equation in the stator reference frame,

which can be composed as:

d

dt

[
λs
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λs
qr

]
=

Lr

Lm

[
vsds

vsqs

]
− Lr

Lm

[ (
Rs + σLs
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0

0
(
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d
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) ] [
isds

isqs

]
. (4)

The adaptive model represents the rotor voltage equation of the IM in the stator reference frame, which can be

written as:

d

dt

[
λ̂s
dr

λ̂s
qr

]
=

[
− 1

Tr
−ω̂r

ω̂r − 1
Tr

][
λs
dr

λs
qr

]
+

Lm

Tr

[
isds

isqs

]
, (5)

where Tr is the rotor circuit time constant, ω̂r is the adaptive rotor speed, and λ̂s
dr and λ̂s

qr are the estimated

d− q rotor flux linkages in the stationary reference frame.

The signal of the speed tuning error εcan be calculated as:

ε = λ̂s
drλ

s
qr − λ̂s

qrλ
s
dr. (6)

With the correct estimated rotor speed, the two flux linkages calculated by the two models should coordinate.

An adjustment calculation with the PI control can be utilized to tune the speed until the two flux values
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coordinate:

ω̂r =

(
Kp +

Ki

S

)(
λ̂s
drλ

s
qr − λ̂s

qrλ
s
dr

)
. (7)

3. Model-based predictive control

MPC is a type of control that utilizes the accurate model of the plant to predict the future performance of a

process. The control action is obtained by solving a constrained optimization problem at every sample interval

to minimize the difference between the estimated future outputs and the reference value through the use of

minimum control energy and satisfying the constraints of the plant, as shown in Figure 1. There are mainly

four available components:

Figure 1. General structure of model predictive controller.

1. The process model: for each instance k, the system model is utilized to predict the future response of the

controlled plant (y (k), y (k + 1), y (k + 2), . . . , y (k + NP – 1)) over a specified prediction horizon NP .

In MPC it is assumed that the model can be formed as a state-space model, as shown in the following

equation:

xk+1 = Axk +Buk

yk = Cxk +Duk

. (8)

1. The cost function: for each iteration k, the MPC controller calculates a sequence of future control actions

(u (k), u (k + 1), u (k + 2),. . . , u (k + Nc – 1)) over a specified control horizon Nc such that the objective

function is optimized (minimized or maximized) subject to the specified constraints. The objective function

is generally a combination of weighted sum of square predicted errors and square future control values.

2. The optimizer to optimize the future plant behavior by computing at each time instance k the optimal

value u (k) of the control vector, which is implemented to the system: at the next sample time k + 1, the

whole process of prediction and optimization will be repeated.
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3. Process constraints: constraints can be either on the control variable or on the input control signals. The

first-order Euler approximations can be utilized to derive the discrete model of the IM as follows:

Ts
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where Ts is the sampling time. The control variables for the (k + 1)th sampling moment can be predicted

as follows:
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Similarly, for the second sampling moment, (k + 2), the control variables can be predicted using the following

equations:


ids (k + 2)

iqs (k + 2)

λdr (k + 2)

λqr (k + 2)

 =


ids (k + 1)

iqs (k + 1)

λdr (k + 1)

λqr (k + 1)

+Ts


−γ ωs ηµ ωrµ

−ωs −γ −ωrµ ηµ

ηLm 0 −η ωsl

0 ηLm −ωsl −η




ids (k + 1)

iqs (k + 1)

λdr (k + 1)

λqr (k + 1)

+


1
σLs

0

0 1
σLs

0 0

0 0




vds (k + 2)

vqs (k + 2)

0

0

 ,

(12)
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4. System configuration

A combination of different energy sources, a primary energy source such as the FC stack and one or more

secondary energy sources such as batteries and supercapacitors, is used to supply the EV drive system as shown

in Figure 2. The essential reason for using batteries and supercapacitors with the FC stack is to satisfy the

different energy requirements, especially the start-up and transient energy requirements. Figure 3 presents

the configuration of the proposed sensorless vector control based on the MPC-MOPSO controller including a

voltage source inverter, hysteresis current controller, coordinate transformers, and flux and speed estimator. In

this drive system, only the three-phase motor current should be measured and the motor speed and flux are

calculated by a closed-loop estimator. The three-phase currents are measured and expressed by two coordinates,

iα andiβ , using the Clarke transformation module. The Park transformation is applied to transform (α, β) in

the rotating reference frame (d, q). Four estimated and measured variables (ω , T, λ , VDC) are compared with

the reference values and fed to the MPC-MOPSO controller in order to produce the d−q current commandsi∗ds
and i∗qs .
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Figure 2. The configuration of the proposed FC/supercapacitor/battery EV.
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Figure 3. Structure of the proposed sensorless vector control of the IM using MPC-MOPSO.
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5. Proposed MPC-MOPSO controller

The MPC-MOPSO control strategy has been suggested to regulate the stator flux, the speed, the torque of

the IM, and the DC-link voltage. All these control objectives can be combined in a single weighted objective

function as follows:

1) To minimize the speed error:

J1(k) =

NP∑
k=0

(ωref (k)− ω(k))
2
. (14)

2) To minimize the torque ripple:

J2(k) =

NP∑
k=0

(Tref (k)− T (k))
2
. (15)

3) To minimize the harmonic content of the DC voltage:

J3(k) =

NP∑
k=0

(VDC−ref (k)− VDC(k))
2
. (16)

4) To minimize the error on the stator flux:

J4(k) =

NP∑
k=0

(λref (k)− λ(k))
2
. (17)

Subject to:

|Te(t)| ≤ Tmax, (18)

√
i2ds + i2qs ≤ Is,max, (19)

√
v2ds + v2qs ≤ Vs,max, (20)

0 ≤ VDC ≤ VDC,max, (21)

where Is;max and Vs;max are the limits of the stator current and voltage, Vdc;max is the physical limit of

the DC-link voltage, and Tmax is the limit of the electromagnetic torque. To obtain minimum solutions for

this complex optimality search problem, a single combined weighted objective function could be applied

to aggregate the features of all the stated objective functions as follows:

Jo = k1 J1 + k2 J2 + k3 J3 + k4 J4, (22)

where k1 , k2 , k3 , and k4 are the weighting parameters. Therefore, the decision variables can be defined

as a vector, i.e. x = {K1 , K2 , K3 , K4} . SOPSO is utilized to find the optimal weighting coefficients

x = {K1 , K2 , K3 , K4} to optimize the single aggregate objective function. Improper selection of the

weighting coefficients will result in solutions that would not satisfy all the objectives. Therefore, MOPSO

is utilized to produce a set of trade-off optimal solutions (Pareto front), which give more ability to the

user to see a wide range of optimal solutions.
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5.1. The SOPSO algorithm

The main procedure of the SOPSO algorithm and the determination process is characterized as follows:

1. Assign the maximum and minimum values of the four weighting variables (k1 , k2 , k3 , k4), the quantity of

particles (swarm size = 20 particles), and the maximum number of iterations as end basis (100 iterations).

k1min ≤ k1 ≤ k1max

k2min ≤ k2 ≤ k2max

k3min ≤ k3 ≤ k3max

k4min ≤ k4 ≤ k4max

(23)

2. The particles’ solutions, velocities, and best positions Pbest are initialized by assigning a population of

random values and all particles start to fly in all dimensions.

3. These initial values for the weighting parameters are sent to the MPC to assess the dynamic performance

of the drive system. For each solution, P (k1 , k2 , k3 , k4), the single objective weighted function of Eq.

(22) is calculated.

4. Each particle’s solution is compared with the previous best solution, pbest. If the particle’s solution is

better than the previous best solution, pbest is assigned as the particle’s solution. All particles’ best

solutions are compared with each other and the global best solution gbest is assigned as the best solution.

5. Update the velocity v of each particle for each dimension using the following equation:
vi1(t+ 1)

vi2(t+ 1)

vi3(t+ 1)

vi4(t+ 1)

 = ω ×


vi1(t)

vi2(t)

vi3(t)

vi4(t)

+ c1 × r1 ()×


pbesti1 (t)− ki1 (t)

pbesti2 (t)− ki2 (t)

pbesti3 (t)− ki3 (t)

pbesti4 (t)− ki4 (t)

+ c2 × r2 ()×


gbesti1 (t)− ki1 (t)

gbesti2 (t)− ki2 (t)

gbesti3 (t)− ki3 (t)

gbesti4 (t)− ki4 (t)


where : i = 1, 2, ..., n = 20

.

(24)

6. The maximum and minimum limits of the velocity of each particle for each dimension are checked using

the following equation:

ifvid (t+ 1) ≥ vmax
d thenvid (t+ 1) = vmax

d

ifvid (t+ 1) ≤ vmin
d thenvid (t+ 1) = vmin

d
. (25)

7. Update the solution of each particle using the following equation:
ki1(t+ 1)

ki2(t+ 1)

ki3(t+ 1)

ki4(t+ 1)

 =


ki1(t)

ki2(t)

ki3(t)

ki4(t)

+


vi1(t+ 1)

vi2(t+ 1)

vi3(t+ 1)

vi4(t+ 1)

 , (26)

Xid=Xid+Vid

where : kmin
1 ≤ k1i (t+ 1) ≤ kmax

1

kmin
2 ≤ k2i (t+ 1) ≤ kmax

2

kmin
3 ≤ k3i (t+ 1) ≤ kmax

3

kmin
4 ≤ k4i (t+ 1) ≤ kmax

4

. (27)
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8. Steps 3 to 7 are repeated until the convergence criterion is met and the optimal weighting parameters are

generated by the latest gbest.

5.2. The MOPSO algorithm

The main strategy of the MOPSO algorithm and the selection practice is characterized as follows:

1. Initialize all particles’ positions and velocities with random solutions satisfying all constraints and limits

shown in Eqs. (23) and (25).

2. These population solutions are sent to the MPC to simulate the drive system behavior utilizing the

objective functions as shown in Eqs. (14)–(17) and are saved in pbest vector form.

3. Calculate the multiobjective fitness values of each particle and store all nondominated solutions in the

Pareto archive.

4. The velocity of each particle is updated using the following equation:
vi1(t+ 1)

vi2(t+ 1)

vi3(t+ 1)

vi4(t+ 1)

 = ω ×


vi1(t)

vi2(t)

vi3(t)

vi4(t)

+ c1 × r1 ()×


pp1 (t)− ki1 (t)

pp2 (t)− ki2 (t)

pp3 (t)− ki3 (t)

pp4 (t)− ki4 (t)

+ c2 × r2 ()×


pr1 (t)− ki1 (t)

pr2 (t)− ki2 (t)

pr3 (t)− ki3 (t)

pr4 (t)− ki4 (t)


where : i = 1, 2, ..., n = 20

,

(28)

where Pid,PgdPr,d and Pp,d are randomly chosen from the Pareto archive.

5. The solution of each particle is updated using Eq. (26). The particles’ values are kept in the allowable

range shown in Eq. (27).

6. Evaluate the multiobjective function value of each particle and store the nondominated particles in the

Pareto archive.

7. Two particles’ solutions are selected randomly from the Pareto archive for Pr,d , P i,d .

8. Repeat Steps 3 to 7 until the convergence conditions are reached.

6. Simulation results

Computer simulations have been completed utilizing MATLAB/Simulink programming to validate the per-

formance of the IM, which is optimally controlled using the proposed MPC-MOPSO control approach. The

nominal parameters of the induction motor are as follows: rated power = 3.75 kW, rated voltage = 380 V,

rated frequency = 60 Hz, stator resistance Rs = 1.235 Ω, stator inductance Ls = 0.1175 H, rotor resistance

Rr = 0.857 Ω, rotor inductance Lr = 0.0964 H, mutual inductance Lm = 0.0635 H, pole pairs = 4, inertia

= 0.058 kgm2 . The suitable selection of prediction horizon (Np) and control horizon (Nc) will enhance the

system dynamic performance and increase the accuracy of the predicted values. In the proposed system, these

values are selected as Np = 70 and Nc = 5. The dynamic system performance of the proposed MPC-MOPSO

control strategy is compared with MPC-SOPSO and the conventional PI controller to show the effectiveness of

MOPSO-MPC. The parameters of the PI controller have been selected as Kp = 9 and K i = 25. The parame-

ters of the PI controller were tuned using Skogestad’s model-based method with smaller integral time for faster
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Figure 4. Transient response of the IM drive using MOPSO-MPC controller for the first speed track assuming load

torque disturbance. The load torque is stepped up from 0.0 Nm to 50 Nm at t = 2 s.

disturbance compensation [34]. In the first speed trajectory, the speed of the IM is kept at zero for 0.1 s and

then the speed increased to 500 rpm in 0.5 s, and then the motor speed is kept constant at this value during

the next 2.5 s. The load torque is stepped up from 0.0 Nm to 50 Nm at t = 2 s. It has been observed that the

speed command and actual motor speed are adjusted and good tracking performance has been accomplished

utilizing MOPSO-MPC. A small speed plunge is seen at the moment of load disturbance; however, the motor

speed is reestablished very rapidly. Figures 4–6 illustrate the dynamic performance of the MPC-MOPSO con-

trol strategy and the MPC-SOPSO versus the conventional PI controllers. Clearly, the PI controller has poor

dynamic performance, particularly during the starting condition, and it is significantly influenced when a load

disturbance is implemented. The MPC-MOPSO has been tried likewise at different speed commands, including

negative speed, very low speed, and zero speed. In the second speed trajectory, the machine starts from zero

speed increased straight to 500 rpm at time t = 0.6 s, and then the speed is kept constant until t = 1 s. At that

point the speed of the IM is decelerated back to zero at t =1.6 s and then the speed is kept steady at zero until

t = 2 s, and then the speed is accelerated in the reverse direction straight to –500 rpm at t = 2.6 s. The speed is
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Figure 5. Transient response of the IM drive using PID controller for the first speed track assuming load torque

disturbance. The load torque is stepped up from 0.0 Nm to 50 Nm at t = 2 s.
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Figure 6. Comparison of speed dynamic responses for the first speed track with step load disturbance (the load torque

is stepped up from 0.0 Nm to 50 Nm at t = 2 s) based on the proposed MOPSO-MPC, SOPSO-MPC, and PI controllers.

Zooming for different instances at 0.5 and 2.0 s.

then kept constant at –500 rpm until t = 3 s. The load torque is suddenly applied from zero to 50 Nm at t = 2

s. Figures 7–9 demonstrate the comparison of the dynamic performance utilizing the MPC-MOPSO, MPC-
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Figure 7. Transient response of the IM drive using MOPSO-MPC controller for the second speed track assuming load

torque disturbance. The load torque is stepped up from 0.0 Nm to 50 Nm at t = 2 s.
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Figure 8. Transient response of the IM drive using PI controller for the second speed track assuming load torque

disturbance. The load torque is stepped up from 0.0 Nm to 50 Nm at t = 2 s.
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Figure 9. Comparison of speed dynamic responses for the second speed track with step load disturbance (the load

torque is stepped up from 0.0 Nm to 50 Nm at t = 2 s) based on the proposed MOPSO-MPC, SOPSO-MPC, and PI

controllers. Zooming for different instances at 0.6, 1, 1.6, and 2.6 s.
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Figure 10. Transient response of the IM drive using MOPSO-MPC controller for the third speed track assuming load

torque disturbance. The load torque is stepped up from 0.0 Nm to 50 Nm at t = 2 s.
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Figure 11. Transient response of the IM drive using PI controller for the third speed track assuming load torque

disturbance. The load torque is stepped up from 0.0 Nm to 50 Nm at t = 2 s.
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Figure 12. Comparison of speed dynamic responses for the third speed track with step load disturbance (the load

torque is stepped up from 0.0 Nm to 50 Nm at t = 2 s) based on the proposed MOPSO-MPC, SOPSO-MPC, and PI

controllers. Zooming for starting and step load instances at t = 2 s.
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SOPSO, and PI controllers. It has been demonstrated that the proposed MPC-MOPSO controller has better

dynamic performance and has accomplished the steady-state value very rapidly. Although there is some speed

variety, the speed comes back to its typical level rapidly when the step-load torque is applied, showing solid

effectiveness against load torque disturbance while the PI controller showed a bad performance particularly at

starting conditions and at the moment of load disturbance or speed change. Additionally, the dynamic response

of the proposed MPC-MOPSO controller has been tested using MPC-MOPSO and PI controllers utilizing a

sinusoidal speed trajectory with 500 rpm amplitude and the load torque is suddenly increased from no load to

50 Nm at t = 2 s. Figures 10–12 demonstrate that an excellent tracking response has been accomplished using

the MPC-MOPSO control strategy in spite of the load torque disturbance. The results illustrate the capacity

of MPC-MOPSO to accurately follow the sinusoidal speed track and to handle the load torque disturbance.

Interestingly, unmistakably poor transient performance is connected with the PI controller in the beginning

period and when load aggravation is connected at t = 2 s. A THD and error performance comparison is given

in the Table for the proposed MOPSO-MPC controller, SOPSO-MPC controller, and conventional PI controller.

From the results given in the Table, it is evident that the proposed MOPSO-MPC can improve the performance

of the IM and lessen the effects of load and speed disturbances. It is clear that the THD of the stator current is

reduced from 7.76% (using the conventional PID controller) and 3.65% (using the SOPSO-MPC controller) to

1.79% (using the MOPSO-MPC controller), which is below the mark of 5% specified in the IEEE-519 standard.

The proposed MOPSO-MPC controller has yielded the lowest THD (1.79%) and has better performance as

compared with the other controllers.

Table. System performance comparison.

Control technique
Conventional PID

SOPSO-MPC MOPSO-MPC
controller

Speed error (%) 7.76% 3.65% 1.79%
THDi (stator current) 6.18% 2.93% 1.24%
Torque ripple (%) 7.26% 3.75% 2.59%
THDv (inverter voltage) 5.16% 3.02% 1.16%
THD DC bus voltage 8.12% 4.08% 2.14%
DC bus voltage error % 5.76% 4.05% 2.09%

7. Conclusion

This paper has effectively exhibited the utilization of a new control approach based on MPC-MOPSO for

optimal control of constrained sensorless vector control of an induction motor, which is utilized as a part of a

FC-battery-superconductor EV. A set of multiobjective functions has been handled using the proposed MPC-

MOPSO while respecting the provided drive system constraints appointed to the load torque, the magnetic

flux, the DC voltage, and the motor speed. The effectiveness of the proposed MPC-MOPSO optimization

control approach has been assessed at different operating speeds and load torque conditions such as forward,

reverse, very low, high speed, and sinusoidal speed track and a load torque disturbance was applied for each

speed command with machine parameter variations. The simulation results carried out by MATLAB/Simulink

demonstrated that the proposed MPC-MOPSO controller has a better dynamic response and better tracking

of speed trajectory at all speeds than both the SOPSO and PI controllers. The proposed MPC algorithm can

achieve satisfactory performance when appropriate parameters are chosen and tuned using MOPSO and hence

this can be applied to large fields of industrial process controllers.
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