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c⃝ TÜBİTAK

doi:10.3906/elk-1604-260

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Fuzzy support vector machine based on hyperbolas optimized by the

quantum-inspired gravitational search algorithm

Feng NI1,∗, Yuzhu HE1, Fei JIANG2

1Department of Instrument and Meter Engineering, Faculty of Instrumentation Science and
Opto-electronics Engineering, Beihang University, Beijing, P.R. China

2PLA No. 5715 Factory, Luoyang, China

Received: 21.04.2016 • Accepted/Published Online: 07.12.2016 • Final Version: 30.07.2017

Abstract: Fuzzy support vector machines (FSVMs) are known for their excellent antinoise performance, but there is

no general rule when the fuzzy membership function (FMF) is set up. A novel FSVM based on hyperbolas optimized

by the quantum-inspired gravitational search algorithm (QGSH-FSVM) is proposed to handle this question. In the

proposed QGSH-FSVM, the FMF is defined by two disparate hyperbolas, whose eccentricities are optimized by the

quantum-inspired gravitational search algorithm. A variable called diversity, revealing the percentage of a sample in

different classes, is proposed to distinguish outliers or noises from valid samples. Experimental results confirm that the

QGSH-FSVM is able to provide the best solutions to different situations by optimizing its eccentricities. The traditional

support vector machine and the FSVM based on affinity or the distance between a sample and its cluster center, however,

can only succeed in some particular problems while failing in others.
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1. Introduction

A support vector machine (SVM) is an effective machine learning method, powerful for problems characterized

by small samples, nonlinearity, high dimensions, and local minima [1,2]. However, when the optimal classification

plan is constructed, all the samples have the same effect. Since the noises and outliers are often located near the

classification surface, the optimal classification plan usually is not the real one [3]. To make SVMs more robust,

Lin et al. [4] presented the fuzzy SVM (FSVM), applying fuzzy technology to the SVM. The performance of

FSVMs is critically dependent on the fuzzy membership function (FMF) [5].

At present, there are many kinds of methods constructing the FMF without a unified criterion. When

dealing with actual data, we need to establish reasonable FMFs according to the experience for the specific

problem. The authors in [6–8] introduced a design for FMFs based on the distance between a sample and its

cluster center, but this method has to depend on the geometry of samples. The support vectors and noise will

all be assigned small membership for their long distance from the cluster center. It can obtain ideal results

for the samples distributed in the spherical area rather than the samples distributed along the planar area. To

reduce the dependence on the geometry, the authors in [9] used the hyperplane of the cluster instead of its

center. This method, however, fails in effectively distinguishing outliers from valid samples. In [10], the authors

proposed a FSVM based on border vector extraction. They identified noises and outliers at first, and then they

∗Correspondence: 13161105445@163.com

3073



NI et al./Turk J Elec Eng & Comp Sci

made the FMF increase with the distance of a sample to its cluster center. This method is able to enhance

the importance of support vectors. However, the noises and outliers are difficult but crucial to identify, and a

wrong decision will reduce the classification accuracy. The authors in [11] presented a fast FSVM. By removing

the data that are considered as nonsupport vectors based on the geometric distribution of the dataset, it can

improve the training efficiency more or less. However, the efficiency is at the expense of the training accuracy.

In [12,13], the FMF was defined by not only the relation between a sample and its cluster center, but also those

among samples. Before the FMF is worked out, a smallest hypersphere must be obtained. The memberships of

samples outside the hypersphere are smaller than those inside it, but when the noises and outliers exclude the

hypersphere, the support vectors are also ruled out, which decreases the classification precision. In addition,

this algorithm relies on the samples’ sparsity degree, and so it is not suitable for the situation of sparseness.

Aiming at providing a generally applicable method, we propose a novel FSVM based on hyperbolas

optimized by the quantum-inspired gravitational search algorithm (QGSH-FSVM). In addition, we define

diversity to make this algorithm more robust. This paper is organized as follows. In Section 2, the theory

of FMF in FSVM is described. The proposed QGSH-FSVM is introduced in Section 3. The experimentation

and the results obtained are given in Section 4. Finally, the paper is concluded in Section 5.

2. Theory of fuzzy membership function

In this section, according to [14], we briefly summarize the theory of FMF in FSVM. Compared with the

traditional SVM, the FSVM adds a fuzzy membership to every training sample. Assume the dataset takes the

form of:
(y1, x1, µ(x1)), (y2, x2, µ(x2)), · · · , (yn, xn, µ(xn)), (1)

where xi ∈ Rd denotes the characteristic of a training point, yi ∈ {+1,− 1} is the class label, and 0 < µ(xi) ≤ 1

is the FMF. The final optimal classification plan of the SVM is:

f(x) = sgn

{
n∑

i=1

αiyiK(xi · x) + b

}
s.t.0 < αi ≤ C

, (2)

where C represents the error penalty, αi ≥ 0 is a Lagrange multiplier, and K (xi, xj) is the kernel function.

The final optimal classification plan of the FSVM is:

f(x) = sgn

{
n∑

i=1

αiyiK(xi · x) + b

}
s.t.0 < αi ≤ µ(xi)C

. (3)

Comparing the results, we can find that the only difference is the constraint condition. In Eq. (2), αi is

constrained to the condition of 0 ≤ αi ≤ C and α∗ is the optimal solution. If α∗ meets the condition of

0 < α∗ ≤ C , the corresponding vector is a support vector, and if α∗ meets the condition of α∗ = 0, the

corresponding vector is not a support vector. The support vectors can be further divided into two kinds:

boundary support vectors and general support vectors. The former are the samples near the classification line,

meeting the condition of 0 < α∗ < C . The latter are the inseparable samples, meeting the condition of α∗ = C .

The classification plan of the SVM is only related to the boundary support vectors.

When C is given a large value, more samples meet the condition of 0 < α∗ < C . That is to say, only a

small part of the samples are wrongly classified. On the contrary, if C is given a small value, more samples will
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meet the condition of α∗ = C . This means that more vectors can be misclassified and the classification risk
will increase, resulting in more samples being overlooked by the SVM. All the samples are assigned the same

C in the C-SVM, so the classes of all the support vectors will be adjusted if C is altered.

However, in Eq. (3), each sample of the FSVM can be assigned a different µ(xi)C according to its

contribution to classification. If xi is a support vector, it will be assigned a larger membership, meeting the

condition of 0 < αi < µ(xi)C , but if xi is a outlier or noise, a small membership will be allocated by using some

membership function, reducing its impact on SVM training. In this way, the outliers or noises are effectively

suppressed. Thus, the FMF is the key of the FSVM and it must be able to reflect the uncertainty of a sample

in the system objectively and precisely.

3. Designing the fuzzy membership function

In order to put the FSVM to wide use in various conditions and improve its antinoise performance, we have to

analyze the distribution characteristics of support vectors, noises, and outliers. This is because of the similar

distribution characteristics of locating at the edge of the sample set such that the noises can decrease the

classification accuracy. The samples distributed on the edge are not only close to their own class but are also

close to the opposite class.

3.1. The disparate hyperbolas

The first step of this work is to obtain the class centers. We take the average value of two kinds of samples as

the centers, which can reduce the dependence on the geometry. Assume that ϕ (•) is the mapping function,

N+ is the number of positive samples, and N− is the number of negative samples.

Definition 3.1: The class centers mi, i ∈ {+,−} are:

mi =
1

Ni

Ni∑
j=1

ϕ (xj). (4)

Then we define the straight line including m+ and m− as the x-axis. m+ is defined as the right focus of

positive hyperbola, and the straight line that is parallel to the y-axis and includes the left-most point is defined

as the right hyperbolic line. According to the second definition of hyperbola, eccentricity e+ is the distance

from a point in the hyperbola to the focus point over the distance from the point to the hyperbolic line. Then

we can get positive hyperbola g (x). In a similar way, m− is defined as the left focus of negative hyperbola, and

the straight line that is parallel to the y-axis and includes the right-most point is defined as the left hyperbolic

line. Then we can get negative hyperbola h (x).

As shown in Figure 1, the two hyperbolas are disparate from each other with different eccentricities. By

optimizing the eccentricities, the hyperbolas can achieve the best result of various kinds of samples. The FMF

of inner points are decided by the minimum distance between them and the related hyperbola, and the outer

points of hyperbolas are abandoned to save computing space.

3.2. The quantum-inspired gravitational search algorithm

To obtain the optimal ei, i ∈ {+,−} , we use the quantum-inspired gravitational search algorithm (QIGSA)

to optimize them. The QIGSA is a novel intelligent optimization algorithm [15], inspired by the classical

gravitational search algorithm. In the quantum time-space framework, the quantum state of an individual
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Figure 1. Situation of the hyperbolas.

is depicted by wave function (ψ) instead of position. According to [15], the procedure for implementing the

QIGSA is given by the following steps:

Step 1. Randomly initialize a population in the D-dimensional problem space, where the position is

defined as follows:

Xi =
(
x1i , x

2
i , · · · , xki , · · ·xdi

)
; i = 1, 2, · · · , N. (5)

Step 2. Evaluate all agents’ fitness.

Step 3. Select kbest and update pbest . kbest , a function of time, is the set of first K agents with the

best fitness value and biggest mass [16]. pbest represents each agent’s best fitness. In order to update it, we

compare each agent’s fitness with the agent’s pbest . If the current value is better than pbest , then change the

pbest value equal to the current value and the pbest location equal to the current location in D-dimensional
space.

Step 4. Update Mbesti using Eq. (6):

Mbesti =

∑K
j=1

1
di,j

· kbestj∑K
l=1

1
di,l

, (6)

where di,l = ∥Xi − kbestl∥ represents the Euclidean distance between two masses.

Step 5. Update the masses’ position. Change the position of the mass using Eq. (7), where c1 and c2

are two random numbers distributed in the range [0, 1]:

Bestdi =
c1Mbestdi + c2pbest

d
i

c1 + c2
. (7)

By using the Monte Carlo method, we get the iterative equation for the masses moving:{
Xi(t+ 1) = Besti + σ · |Besti −Xi(t)| · ln

(
1

rand

)
S ≥ 0.5

Xi(t+ 1) = Besti − σ · |Besti −Xi(t)| · ln
(

1
rand

)
S ≤ 0.5

, (8)

where σ is a design parameter called the contraction-expansion coefficient, and rand and S are random values

in the range [0, 1].

Step 6. Loop Steps 2 to 5 until a stop criterion is reached.

3.3. The variable of diversity

In order to improve the QGSH-FSVM antinoise performance, we propose diversity η , revealing the percentage

of a sample in different classes. The vectors xi and xj represent positive and negative samples and they are
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mapped to the feature space Z by ϕ (•). Then the Euclidean distance between the two vectors is:

d (xi, xj) =
√
ϕ(xi, xi)− 2ϕ(xi, xj) + ϕ(xj , xj), (9)

and the Euclidean distance between xi and the positive hyperbola’s point xg is:

d (xi, xg) =
√
ϕ(xi, xi)− 2ϕ(xi, xg) + ϕ(xg, xg). (10)

The Euclidean distance between xj and the negative hyperbola’s point xh is:

d (xj , xh) =
√
ϕ(xj , xj)− 2ϕ(xj , xh) + ϕ(xh, xh). (11)

Definition 3.2: d+min is the minimum distance between a positive sample and the positive hyperbola. It can be

obtained by solving: {
min

√
ϕ(xi, xi)− 2ϕ(xi, xg) + ϕ(xg, xg)

s.t. g (xg) = 0
. (12)

d−min is the minimum distance between a negative sample and the negative hyperbola. It can be obtained by

solving: {
min

√
ϕ(xj , xj)− 2ϕ(xj , xh) + ϕ(xh, xh)

s.t. h (xh) = 0
. (13)

For each sample inside the hyperbolas, it acts as the center of the sphere and its minimum distance d+min or

d−min acts as the radius. Then we can get a hypersphere. Inside the hypersphere, the number of positive samples

is sum+ and the number of negative samples is sum− . We define diversity η as:

η+ =

{
sum+

N+
+ sum−

N−
if sum+

N+
≥ sum−

N−
sum+

N+
− sum−

N−
if sum+

N+
≤ sum−

N−

η− =

{
sum−
N−

+ sum+

N+
if sum−

N−
≥ sum+

N+
sum−
N−

− sum+

N+
if sum−

N−
≤ sum+

N+

. (14)

As shown in Figure 2, sum−/N− of noise point a is smaller than sum+/N+ , so η− is a negative number. The

η− of boundary support vector point b is a large positive one because its sum−/N− and sum+/N+ are both

large values and sum−/N− is larger than sum+/N+ . The sum−/N− of point c is very small and its sum+/N+

equals zero. Thus, η− is a small positive number, and point d is most likely an outlier. Its sum−/N− is very,

very small and its sum+/N+ is zero. Thus, the η− of the outlier point is almost zero. In conclusion, we can

see that η well reveals the sample’s importance for classification.

3.4. The fuzzy membership function

According to the basic idea of the SVM, the sample closest to the classification hyperplane is the support vector,

and the samples subclose to the classification hyperplane are also of importance. Fuzzy membership shows the

importance of obtaining support vectors, so we should make the support vector’s membership be close to 1.
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Figure 2. Theory of the affinity.

The smaller role a sample plays in solving classification, the smaller its membership is. In this way, the FMF

is given as follows:

µ (xi) =


d+
min+5×η+

max(d+
min)+max(5×η+)

yi = +1

d−
min+5×η−

max(d−
min)+max(5×η−)

yi = − 1
. (15)

In conclusion, the procedure for implementing the QGSH-FSVM is given by the following steps:

Step 1. Work out the class centers by using Eq. (4).

Step 2. Optimize the parameters of ei, i ∈ {+,−} .

(a) Initialize a population of masses with random positions. Every mass represents a group of parameters

(e+, e−).

(b) Solve the range of the masses’ position iterations and step-size according to the characteristics of the

hyperbola.

(c) Evaluate the fitness value.

(d) Select kbest and update pbest .

(e) Update the masses’ position by using Eq. (6).

(f) Loop to (b) until a stop criterion is met.

Step 3. Get the hyperbolas g (x) and h (x) according to the second definition, and map them to the

space Z .

Step 4. Calculate the minimum distance of every sample inside the hyperbolas.

Step 5. Make a hypersphere with radius of dmin and count out
∑

+ and
∑

− .

Step 6. Calculate the diversity η by using Eq. (14).

Step 7. Calculate the membership by using Eq. (15).

4. Experimental results

To evaluate the performance of the proposed algorithm, a series of experiments are conducted. The obtained

results are compared with the traditional SVM, the FSVM algorithm based on the distance between a sample

and its cluster center [4], the FSVM algorithm based on border vector extraction (BVE-FSVM) [10], and the

FSVM based on affinity (AAS-FSVM) [12]. For comparison, the four algorithms use the same Gaussian kernel
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function: K (x, z) = exp(−∥x− z∥2
/
2σ2). The penalty parameter C and the Gaussian kernel parameter σ

are optimized by 10-fold cross-validation method. All the experiments are performed in MATLAB (R2008a) on

a personal computer with a 2.26 GHz Celeron CPU, 1 GB memory, and Microsoft Windows XP.

4.1. Statistic of memberships

First we record the memberships of the key samples shown in the Figure 1 with the four FSVM methods.

The randomly generated dataset belongs to a two-class classification problem, and it contains 196 samples (98

samples belonging to each class). Statistical results are given in Table 1.

Table 1. Membership values of key points in Figure 1.

Algorithm a b c d e
FSVM 0.03 0.36 0.71 0.14 0.11
AAS-FSVM 0.30 0.50 0.73 0.41 0.27
BVE-FSVM 0.51 0.85 0.64 0.98 0
QGSH-FSVM 0.12 0.97 0.31 0.16 0

As can be seen from the results, the fuzzy membership of noise point a is the smallest among the recorded

samples by all the methods, so the four algorithms can suppress noise effectively. In the QGSH-FSVM, although

a is far from the negative hyperbola, its membership is still very small owing to the negative η− . Point b is the

boundary support vector. Its membership is nearly equal to 1 because its d−min and η− are both close to the

largest value in the proposed method. The BVE-FSVM can also assign it a large value while the AAS-FSVM

and FSVM fail. Although point c is close to the cluster center, it plays a minor role in classification, but

only the proposed method can allot it a small membership. Point d is most probably outliers. It gets a small

membership because of the short distance to the negative hyperbola and the small diversity. The outside points

like e are abandoned because they make no difference for classification.

Sometimes the samples are distributed as in Figure 3, and the memberships are recorded in Table 2.

Point a is nearest to the class center, but it is most probably outliers. When the FMF is defined by the FSVM

and AAS-FSVM, it gets the largest value. Points b , c , d , and e get the same membership by using the present

algorithms for their same distance to the class center, but apparently b and d are more important than c and

e . When we use the algorithm proposed in this work, c is abandoned, a gets a small membership, b is assigned

a large one, and the rest of the samples get their memberships according to their importance.
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Figure 3. Specific sample situation with outliers.

The memberships are also of importance for fuzzy clustering algorithms. We use the classical fuzzy c-

means algorithm (FCM) [17], possibilistic c-means (PCM) [18], and possibilistic fuzzy c-means (PFCM) [19] to
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Table 2. Membership values of key points in Figure 3.

Algorithm a b c d e
FSVM 0.76 0.44 0.44 0.44 0.44
AAS-FSVM 0.64 0.40 0.40 0.40 0.40
BVE-FSVM 0.72 1 0 1 1
QGSH-FSVM 0.34 0.98 0 0.85 0.47

calculate the memberships of the key points to the negative cluster shown in the Figure 1. The computational

protocols are as follows: ε = 0.00001, Tmax = 100, m = η = c = 2, and a = b = K = 1. The membership

value and clustering error rates are recorded in Table 3. It reveals that the three algorithms give memberships

to points inversely related to the relative distance to the cluster centers. Point c gets the largest membership

but plays a small role in classification. The proposed algorithm, however, assigns memberships according to

their importance for classification, which is quite useful for the FSVM.

Table 3. Membership values and error rates by fuzzy clustering algorithms.

Algorithm a b c d e Error rates
FCM 0.09 0.51 0.96 0.77 0.81 11.61
PCM 0.36 0.52 0.85 0.45 0.33 9.28
PFCM 0.08 0.53 0.96 0.75 0.80 8.07

Since the BVE-FSVM has to determine the noises and outliers in advance, we do not compare it with

the other algorithms in the next experiments.

4.2. Classification experiments

In order to test the classification performance of the proposed algorithm, we randomly generate five sets of two-

dimensional data with different geometry and sparsity degrees as Figure 4 shows. They all belong to two-class

classification problems. The first four sets of experiments are linear cases and the last set is a nonlinear case.

The datasets adopted in the experiments are described in detail as follows:

1. This dataset is spherical-shape closely distributed, and it is made up of 184 samples (92 samples belonging

to each class).

2. This dataset is also spherical-shape distributed, but it is much more sparse than the first set. It consists

of 65 samples with 35 samples belonging to the positive class and 30 samples belonging to the negative

class.

3. This dataset is long-shape closely distributed. In order to obtain the desired shape, the samples are

randomly generated two times. The positive class contains 101 samples and the negative class contains

94 samples.

4. This dataset is long-shape sparsely distributed, and it is also generated two times. It is made up of 56

samples with 30 samples belonging to the positive class and 26 samples belonging to the negative class.

5. This dataset is produced for the nonlinear classification model. The positive class consists of 20 samples

distributed along an ellipse and a noise sample near the center. The negative class contains 16 randomly

generated samples and two artificially added noise samples.
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(a) Samples of close spherical shape
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(b) Samples of sparse spherical shape
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(c) Samples of close long shape
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(d) Samples of sparse long shape
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(e) Samples of specific situation

Figure 4. Experimental results of the four algorithms: a) samples of close spherical shape, b) Samples of sparse spherical

shape, c) samples of close long shape, d) samples of sparse long shape, e) samples of specific situation.

According to the classification results, as Figures 4a–4e show, we can see that the FSVM improves the

antinoise performance of the SVM algorithm to a certain degree. However, if the FMF is chosen improperly, the

FSVM may also reduce the classification accuracy. The traditional FSVM suits samples with spherical-shape

distribution, such as those shown in Figures 4a and 4b. The AAS-FSVM suits samples closely distributed, as

Figures 4a and 4c show. However, the QGSH-FSVM can provide the best solutions for all situations, particularly

for the nonlinear samples distributed as in Figure 4e.

4.3. Application experiments

To verify the performance of the QGSH-FSVM further, we simulate a circuit model by using OrCAD 10.5

software. The tolerance of the resistors and capacitors is set to 5% and 10%, respectively. After analyzing

sensitivities of all components, we select R1, R7, R10, C1, and C2 as the potential faulty components. The fault

kinds are shown in Table 4, where ↑ and ↓ mean that the fault value is more or less than the normal value.
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Table 4. Nominal and fault values of 11 faults.

Fault ID Faults Normal values Fault values
F1 NF – –
F2 R1↑ 10k 14k
F3 R1↓ 10k 6k
F4 R7↑ 280k 370k
F5 R7↓ 280k 180k
F6 R10↑ 150k 200 k
F7 R10↓ 150k 100 k
F8 C1↑ 0.18u 0.25u
F9 C1↓ 0.18u 0.1u
F10 C2↑ 1.5u 2.3u
F11 C2↓ 1.5u 1u

In order to generate the simulation fault data, a Monte Carlo analysis method is used. In the Monte

Carlo analysis, the number of runs and use distribution are set to 500 and Gaussian, respectively. Then we add

10% Gaussian noise to the collected data. Therefore, we get 550 sets of data. The target feature extraction

adopts five layers of wavelet packet decomposing method. We increase the training samples from 20 to 160, and

the remaining samples are used for testing.

Figure 5 displays the experimental results of the four methods. In general, the three FSVM algorithms

can achieve higher classification accuracy than the traditional SVM when dealing with samples with noises. We

can also see that the traditional FSVM and the AAS-FSVM have very similar performances. The AAS-FSVM

is better than the traditional FSVM in most cases but worse when the number of training samples is 50 or

60. However, the QGSH-FSVM has a satisfactory advantage over the other three algorithms on classification

accuracy and convergence speed, especially when the number of training samples is less than 90.
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Figure 5. Error rate of the four algorithms.

Table 5 gives the training time statistics. Except for the traditional SVM, the time for the other algorithms

consists of two parts. The first is the cost for training and the second is the cost for setting fuzzy memberships.

Comparing the training time, the training speed of the QGSH-FSVM is much faster than the other methods

due to its abandoning some samples [11]. Because the AAS-FSVM has to solve the quadratic problem twice

and the QGSH-FSVM has to optimize the eccentricities, the two algorithms spend much time on setting fuzzy

memberships. Although the QGSH-FSVM needs a few steps, it is still much easier to achieve than solving the

quadratic problem after the eccentricities have been optimized.
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Table 5. Training time of the four algorithms.

Training sets SVM FSVM AAS-FSVM QGSH-FSVM
40 0.37 0.34+0.01 0.32+0.38 0.22+0.53
80 0.92 0.87+0.01 0.88+0.52 0.74+0.77
120 2.14 2.03+0.02 2.02+0.88 1.72+1.04
160 2.86 2.77+0.02 2.74+1.01 2.06+1.18

5. Conclusion

In this paper, we introduce a design for the FMF by using hyperbolas and diversity to suppress outliers or noises.

It can be seen from the statistics of memberships results that only the QGSH-FSVM can assign memberships

to the samples according to their contribution to the classification without knowing the noises and outliers in

advance. The noises and outliers will get small memberships and the support vectors can obtain the maximum

memberships in the proposed method. It shows encouraging performances further in all the classification

situations tested while the traditional FSVM and the AAS-FSVM can only succeed in some particular problems.

Compared with other FSVM algorithms, this algorithm is independent of the geometry and sparsity degree of

samples. The proposed method also performs best in terms of classification accuracy and convergence speed in

the application experiment.

When it comes to the training times of all the algorithms, the QGSH-FSVM still has priority if the time

of setting the fuzzy membership is not taken into account. However, much time is spent on optimizing the

eccentricities. In future work, it would be interesting to investigate the methods of optimizing the eccentricities

to improve the training efficiency and classification accuracy. In addition, there is no support vector whose

membership is 1 and we will continue to research this. We hope that the QGSH-FSVM can be applied to many

real-world applications.
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