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Abstract:To provide a reliable and efficient service, load balancing plays an important role in wireless sensor networks

(WSNs). There is a need to maximize the network lifetime for WSNs applications with periodic generation of data. Due

to the relationship between energy consumption and network sensor node lifetime, energy consumption in a network

should be minimized and balanced in order to increase network lifetime. Energy-efficient load-balancing techniques are

needed to solve this problem. In this paper, a particle swarm optimization (PSO)-based energy-efficient load-balancing

technique is proposed, in which the required number of routing paths and energy consumption of different nodes and

paths are calculated. Based on maximum residual energy, paths are selected and further PSO-based load balancing is

performed among all the paths for data transfer at a particular point of time. The performance of the proposed technique

is evaluated using real testbed and experimental results and shows that the proposed technique performs better than

existing techniques in terms of network lifetime, energy consumption, throughput, number of alive nodes, number of

data packets received, execution time, and convergence rate.

Key words: Wireless sensor networks, load balancing, energy efficiency, network lifetime, clustering, particle swarm

optimization

1. Introduction

A wireless sensor network (WSN) is an isle of a large number of sensing nodes deployed in a region of interest

for specific applications. They are usually small and have computational, communicational, and environment-

sensing capabilities. However, these nodes have limited resources such as bandwidth, power, memory, processing

resources, and network lifetime [1].

Limited energy availability in WSNs is an unavoidable design problem, as charging batteries in WSNs

is not viable. WSN network lifetime is an important performance criterion and it depends on the energy

consumption of sensors [2]. Load balancing is tremendously vital for network lifetime, as scarce energy is

consumed rapidly if all of the traffic is redirected towards a single path [3,4].

Therefore, a particle swarm optimization (PSO)-based energy-efficient load-balancing (PSO-EELB) tech-

nique is proposed, in which the required number of routing paths and energy consumption of different paths

are calculated. Paths are selected based on optimal residual energy, and further PSO-based load balancing is

performed for data transfer.

This paper outlines an energy-efficient load-balancing technique for the efficient transfer of data that

considers energy consumption as an optimization parameter. The main contributions of this research are: (i) to
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propose an energy-efficient load-balancing technique in which the required number of routing paths and energy

consumption of different paths are calculated, (ii) to select different routing paths based on residual energy, with

further PSO-based load balancing performed for data transfer, (iii) to optimize network lifetime, throughput,

number of alive nodes, number of data packets received, execution time, and energy consumption and to perform

operations in optimal execution time, (iii) to implement and perform evaluation using real testbed. Therefore,

a PSO-EELB technique is proposed.

The rest of the paper is organized as follows: Section 2 presents related work on existing load-balancing

techniques. Section 3 presents existing energy-efficient load-balancing techniques. In Section 4, a PSO-EELB

technique is proposed. Section 5 presents the experimental setup used for performance evaluation and results.

Section 6 presents conclusions and future scope.

2. Related work

A number of load-balancing algorithms have been proposed by researchers for WSNs. A review of such works

based on heuristic and metaheuristic approaches is presented here. The main emphasis is on the metaheuristic

approaches, as the proposed PSO-EELB algorithm is based on a metaheuristic approach. There are chances of

failure or delay if the same coordinator receives data from a large number of nodes simultaneously, due to regular

variations in large-scale topology without effective load balancing [5,6]. By distributing the traffic uniformly

across the network, the tradeoff between power consumption and communication efficiency can be solved [7].

Swarm intelligence (SI)-based routing protocols, along with their applications and research issues related

to the application of scientific methodological analysis, have been explored in [8]. Further, Muhammad et al.

identified important features of routing protocols, such as minimal computational and memory requirements,

autonomicity, energy efficiency, and in-network data aggregation. A general model for SI-based routing is

discussed.

Kuila and Jana presented a min-heap–based energy-efficient load-balanced clustering algorithm [9] that

focuses on load balancing and energy efficiency based on clusters’ cardinality. The number of nodes allotted

to the cluster head (CH) is used to construct a min-heap. In the second proposed approach, i.e. parameter-

based clustering algorithm, the communication load of the CHs is incorporated with respect to the base station

(BS). An energy-efficient fault-tolerant clustering and routing algorithm has been proposed in [10], in which

distributed run-time recovery of the nodes is used to handle sudden failure of the CHs. The proposed clustering

algorithm runs on every node simultaneously. CH forms a time division multiple access (TDMA) schedule after

cluster formation for member nodes. It balances energy consumption of the CHs.

A clustering algorithm based on differential evolution has been proposed in [11] to improve network

lifetime by avoiding quicker failure of highly loaded CHs. An efficient vector-encoding scheme is used to derive

the fitness function for prolonging network lifetime. The generation of the initial population is restricted by

considering the connectivity between nodes and their CHs. Based on the genetic algorithm (GA) approach,

only children chromosomes that balance the load are generated, and hence the proposed algorithm converges

faster than a basic GA.

PSO-based linear/nonlinear programming formulations have been presented for energy-efficient clustering

and routing, in which multiobjective fitness function and an efficient particle-encoding scheme are used [12].

A trade-off between number of relays and transmission distance for the particle-encoding scheme, along with

a routing solution, is also presented. It efficiently balances the load to save energy and performs efficiently in

terms of delivery of total data packets to the BS and network lifetime.
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Zungeru et al. explored existing routing protocols in WSNs and categorized them based on path

establishment, energy efficiency, network structure, and computational complexity [13]. Further, SI-based and

classical routing protocols are compared. Different standard performance metrics have been presented for future

comparisons. An energy-efficient clustering approach based on multiobjective particle swarm optimization is

presented in [14] to reduce energy consumption, improve network lifetime, and optimize the number of clusters.

Hamid et al.’s proposed approach considers intercluster, power of transmission, and degree of nodes. CH

manages intracluster and intercluster traffic. A GA-based clustering algorithm [15] is proposed for efficient load

balancing, in which communication between CH and nodes is considered to generate initial population. This

approach generates children chromosomes to select a mutation point instead of random selection. Performance

metrics, such as rate of convergence, number of active CHs and nodes, energy consumption, and execution time,

are used to evaluate the proposed approach.

Yao et al. proposed an energy-efficient delay-aware lifetime-balancing data collection technique in which

the centralized heuristic is designed to decrease its computational overhead and the distributed heuristic is

designed for large-scale network operations to make the proposed solution scalable [16]. Further, the proposed

technique is integrated with compressive sensing to decrease total traffic cost for gathering sensor readings

under loose delay bounds. A load-balancing clustering algorithm [17] is presented that performs efficiently with

nodes having equal load and runs in O(n logn)time for n nodes. Further, a polynomial time 2-approximation

algorithm in which nodes have variable load is presented to test the performance in terms of execution time

and network lifetime.

Fatma et al. investigated the consumption of energy while balancing traffic and proved that multiple-

paths–based traffic generation is effective in energy consumption as compared to single path [18]. Further, the

analytical model for load balancing is expanded and it is concluded that efficient management of traffic reduces

the network lifetime. Ipek [19] proposed a load-balancing technique based on a bee pheromone propagation

mechanism, which solves the tradeoff between service availability and energy consumption, in which individual

nodes locally decide their execution process.

A hybrid differential evolution and simulated annealing (DESA) approach is proposed in [20], which

performs clustering to select CH and prevents the early death of CHs (due to improper selection of CHs)

and subsequently improves network lifetime. DESA includes a fitness function that takes into consideration the

residual energy and distance between the CH and the nodes. Ashok and Kumar proposed a clustering technique

based on modified artificial bee colony for load balancing clusters, in which there is quick convergence and

improved search area in choice of CHs [21]. The fitness value is taken as the inverse of the energy consumption

for a round.

An artificial bee colony (ABC)-based data collection technique that performs three functions is proposed

in [22]: mobile sink path-planning optimization, routing the path from node to CH, and then CH selection.

It permits a small data latency to identify the mobile sink balance: network reliability optimization, mobile

path length optimization, and data collection maximization. Abdolreza and Gharavian proposed an ant colony

optimization (ACO)-based routing technique [23] to reduce energy consumption. The energy consumption and

hop count are integrated with routing choice by designing a new pheromone update operator. Link cost is

defined as a function of node remaining energy and the required transmission energy using that link.

An ACO-based load-balancing routing algorithm (ACOLBR) is presented in [24], in which a spanning

tree is used for intracluster routing and intercluster routing is performed by improved ACO that finds optimal

and suboptimal paths. The message’s positive feedback is utilized to consider transmission delay, residual
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energy, and propagation distance as the heuristic factor. An ant-colony–based multipath routing algorithm

(ACMRA) is presented in [25], in which disjoint multipaths between nodes and CH are identified. The traffic is

distributed over identified multipaths. ACMRA is an on-demand multipath algorithm. It works in two phases:

constructing a route and transmitting data. Abdelmoniem et al. improved the ad hoc on-demand distance

vector (AODV) [26] protocol by proposing two techniques: AODV- and ACO-based multipath routing protocol,

namely multiroute AODV ant-routing and load-balanced multiroute AODV ant-routing algorithms. Data are

transmitted using identified paths simultaneously, which reduces energy consumption, end-to-end delay, buffer

overflow, and routing overhead.

A GA-based construction of load-balanced connected dominating set to reduce the number of participant

nodes in communication to improve network lifetime is presented in [27]. Further, workloads of all the dominators

are balanced by allocating dominatees to improve network lifetime. A load-balanced clustering algorithm

(LBCA) [28] is proposed to balance the load among different clusters. In this, a gateway is used to control the

network instead of the CH, which controls different cluster of nodes.

Kumar and Kumar [29] proposed an energy-efficient multiobjective fractional artificial bee colony algo-

rithm to select the CH optimally. Delay, distance, and energy-consumption–based fitness function are designed

to control to convergence rate. Raha et al. proposed a GA-inspired protocol for congestion control in WSNs

using trust-based routing (GACCTR) [30] for balancing traffic among different nodes between the source and

BS according to the trust values of different routes. GAs are utilized to model data transmission through

the various alternate route. A general self-organized tree-based energy balance (GSTEB) routing protocol is

presented in [31], in which an ABC is utilized to investigate the shortest path between source and sink, based

on clustering. The proposed algorithm works in four phases: the initial phase, the tree construction phase, the

self-organized data collection and transmission phase, and the information exchange phase. A further intelligent

approach can be incorporated to improve the clustering process.

Apart from these techniques, dynamic power management techniques [32–35], LSRA [36], HLBS [37],

EEOM [38], ELBS [39], and several other techniques [40–44] have been proposed for load balancing in order

to enhance network lifetime. The proposed technique in this research paper addresses several issues, with the

following advantages over most of the existing algorithms:

1) It is more energy-efficient and load-balanced.

2) It performs efficiently in terms of active sensor nodes, and it is more reliable, as it performs routing over

multiple paths (based on energy consumption) using erasure coding [45] along with clustering.

3) It has optimal time complexity, i.e. O(npx) (n denotes number of nodes, prepresents number of paths,

and x denotes number of iterations), in contrast to other existing techniques. Moreover, a deterministic

PSO is utilized for faster convergence.

3. Energy-efficient load-balancing technique

A data packet is routed from a source node to the BS via a number of intermediate nodes that act as forwarder

nodes in single-path routing. In a multipath routing scheme, the same packet is routed via multiple paths

discovered between the source and the destination. In single-path routing, there is a probability of failure of

intermediate nodes, due to which the reliability of data transmission is decreased. In multipath routing, a packet

is divided intonnumber of subpackets of equal size with some added amount of redundancy and is communicated
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over n disjoint paths. Only a small number of subpackets are required to reconstruct the original packet at the

destination.

Let Sn be a random variable that represents the number of successful data-delivering paths. Sn is upper

bounded by n ; that is, Sn ≤ n . The process of transmitting a data packet is considered a Bernoulli experiment.

For theith path, if the transmission process is successful, 1 is assigned to subrun; otherwise, 0 is assigned. The

value of Sn is the sum of the values assigned to the nsubruns for ndisjoint paths. Thus, the expected number

of successful data delivering paths can be calculated as Eq. (1):

E (Sn) =
∑n

i=1
Pi, (1)

where Pi is the probability of successfully delivering a packet to the destination node path i , and α is an upper

bound for required probability of successfully reconstructing the sent message at the destination. In order to

compute the value of En for a given α bound by a standard distribution N(µ , σ), the mean is given by Eq.

(2):

µ = E (Sn) =
∑n

i=1
Pi (2)

and the standard deviation is calculated as Eq. (3):

σ2 =
∑n

i=1
Pi (1−Pi) (3)

The degree of multipath routing ndetermines the total number of subpackets . A given pair (k , { p1 , . . . ,

pn } ) generates a different normal distribution, N(µ(n), σ (n)). Therefore, to address this issue, the random

variable Sn is transformed into Sn * = (Sn− µ) / σ , which is normally distributed. However, the values of the

bound xα are given for any given α such that P (Sn * ≥ xα) ≥ α is satisfied. As a result, S∗
n = (Sn − µ ) /

σ ≥ xϵ implies Sn ≥ xα ×σ + µ , and hence probability is given in Eq. (4):

P (Sn≥xα ×σ + µ) ≥ α (4)

By equating this probability with P (Sn ≥ En) ≥ α , an estimation of En can be obtained for a given bound α

using Eq. (5):

En = max(⌊xα × σ+µ⌋, 1) (5)

By using the values of Eqs. (2) and (3), En is obtained from Eq. (6):

En = max

(
⌊xα ×

√∑n

i=1
Pi (1 − P i) +

∑n

i=1
Pi, 1

)
, (6)

which represents an estimated number of paths successfully delivering data for a given value of α, and data are

sent over the multiple paths using erasure coding.

By using above energy model, the proposed technique creates different paths to transfer data, and further

energy consumption is calculated as the amount of energy used to transfer the total load (Ltotal). Different

sensor activities need to be scheduled in an efficient manner to improve residual energy. Thus, TDMA is used

to schedule the tasks of a subset of nodes into different groups with successive time slots. In the proposed

technique, the entire WSN is divided into a number of different groups. Each group consists of parent nodes
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Figure 1. Selection of path with maximum residual energy.

(CHs) and children nodes (cluster members). Parent nodes collect the data from the children nodes and transfer

that data to a BS for further processing (Figure 1). In this network model, load (Li) is calculated for every

group (Gi) as given in Eq. (7) for efficient load balancing:

Li =
∑n

[j =1] εGi

Lj . (7)

Here n represents the total number of nodes used in a network. Load at particular sensor (j) is Lj , calculated

using Eq. (8):

Lj =
rSn + Lpc

Pn
, (8)

where rSn represents the packets that are generated by the sensors of the group (Gi), Lpc represents the

number of packets received from the child nodes of the group (Gi), and Pn is the total number of packets

transferred in one time slot. Ltotal is the total amount of load transferred in the entire network using TDMA,

as in Eq. (9):

Fitness = Ltotal =
∑n

i=1
Li (9)

Energy consumption is calculated as the amount of energy consumed to transfer the total load (Ltotal). In this

technique, the residual energy is improved to transfer all the data in assigned time slots.

Network lifetime is defined as the time until the first node or group of nodes in a network runs out of

energy, or the time (in terms of number of rounds) it takes for network disconnection to occur due to the failure

of one or more nodes, as given by Eq. (10):

NLn
n= min v ∈ V NLv (10)

where NLn
n is the network lifetime, with NLv is the lifetime of node v , and V is the node set excluding the

BS.

4. Proposed PSO-EELB

PSO is a very popular metaheuristic approach due to its implementation simplicity, as only a few parameters

need tuning, and it has a faster convergence rate than other metaheuristic approaches. It is also very cheap in
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terms of computation in updating an individual, as it only needs two simple equations, as compared to GAs. To

attain a quicker and efficient solution of clustering and routing problem, a metaheuristic approach such a PSO

is highly desirable. In this section, the pseudocode of a PSO-EELB algorithm is presented for load balancing

in WSNs.

This heuristic may lead the search into an infeasible state, because any node may be unselected. To lead

the search back into its feasible state, the node must be released after data are transferred, so that if it still has

more residual energy than the threshold value (considered as average residual energy), then it can move into

the next iteration. The pseudocode of the proposed PSO-EELB algorithm is depicted in Figure 2.

A node list is then obtained from the participating nodes by selecting only nodes that fulfill node selection

criteria. Once the node list has been obtained, a random feasible solution is initialized. The process of choosing

the best heuristic from low-level heuristics is initiated. Each particle represents a node identifier with an initial

solution in the solution space along with the evaluation function. A low-level heuristic is selected at each

particle location and its fitness function (i.e. Fitness (LBP )) is computed. If Fitness (LBP ) is better than

Fitness (GBP ),then GBP takes the value of LBP . The fitness value of the particle at the best global position

is calculated next. The velocity and position of the selected particle is updated using Eq. (13). Then the fitness

value is calculated for the new position and is compared with its previous calculated position. If it is better

than the local best value, then the particle’s current position is assigned to the local best value.

In the proposed PSO-EELB technique, an effective and efficient deterministic variant of the PSO algo-

rithm is utilized, assuming limited computational resources. Basic PSO utilizes random coefficients to maintain

swarm dynamic variety and needs extensive numerical computations to attain statistically convergent outcomes

that are too computationally expensive. Therefore, an efficient deterministic approach has been utilized [46].

4.1. PSO formulations of PSO-EELB

As the proposed PSO-EELB algorithm is based on PSO formulations, a general model of PSO formulations

utilized in this research work is presented below.

4.1.1. Basic formulation of PSO algorithm

The basic formulation of the PSO algorithm, as presented by Shi and Eberhart [47], is vk+1
i = wvki + c1r1

(
Xi,pb −Xi

k

)
+ c2r2(Xgb − Xi

k)

Xk+1
i = Xk

i + vk+1
i

(11)

The above equations represent the speed and position of the ith particle at the k th iteration, respectively; w

is the inertia weight; c1 and c2 represent the social and cognitive learning rate, respectively; r1 and r2 denote

two random numbers in the range [0, 1]; Xi,pb is the personal best position ever found by the ith particle; and

Xgb is the global best position ever found among all particles. The use of the constriction factor χ is necessary

to ensure convergence of PSO [47–50]. Accordingly, the system in Eq. (11) is amended as follows:
vk+1
i = χ [v

k
i + c1r1

(
Xi,pb − Xi

k

)
+ c2r2 (Xgb − Xi

k)]X
k+1
i = Xk

i + vk+1
i

χ =
2∣∣∣∣√2 − φ − √

φ2 − 4φ

∣∣∣∣ whereφ = c1 + c2, φ > 4 (12)

Typically, when the constriction method is used, φ value is set to 4.1, with χ = 0.729, c1 = c2 = 1.494.
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Figure 2. PSO-based energy-efficient load-balancing algorithm.
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4.1.2. Deterministic formulation

In order to make the overall PSO more efficient for CPU-time expensive analyses, a deterministic algorithm is

formulated by suppressing the random coefficients in Eq. (12), which becomes

 vk+1
i = χ [v

k
i + c1

(
Xi,pb −Xi

k

)
+ c2(Xgb −Xi

k)]

Xk+1
i = Xk

i + vk+1
i

(13)

The complexity of the proposed PSO-EELB algorithm is O(npX) for p number of paths having n number of

nodes, and X denotes the number of iterations running on sink. The initialization of particle location and speed

is performed using a deterministic and homogeneous distribution, according to Hammersley sequence sampling

[51]. PSO parameters and their values for the proposed PSO-EELB are listed in Table 1.

Table 1. PSO parameters.

Parameter Value
Np 60
C1 1.4962
C2 1.4962
χ 0.7968

5. Cluster formation in the PSO-EELB approach

The cluster is formed by the BS on the basis of centralized clustering. For clustering, BS broadcasts an

information collection message to all the nodes. After receiving the message, a node starts to send its information

such as node id, location (distance from the BS in X and Y position), energy loss and energy loss ratio (velocity),

and current energy to BS. Then BS initiates the clustering process steps as follows:

Step 1. Conversion of problem into the PSO space, in which the PSO particle has two dimensions such

as position and velocity.

Step 2. Estimation of fitness value using fitness function:

The proposed fitness function for PSO-based clustering is to optimize the average distance and average

energy of the member nodes and distance from the current CH and headcount. The fitness value is calculated

for the particle by using Eq. (14):

Fitness value = Fv = α1 ×

n∑
i=0

d(current node, member i)

n
+ α2 ×

n∑
i=0

E(member i)

n

+(1− α1 − α2) × 1

No.of members covered by current node
, (14)

where α1 and α2 are weighting parameters (normalized values) and n denotes the number of members covered

within the cluster.

Step 3. Generation of new particles from the initial solution. The formation of new particles from the

old one is the generation of a new particle.

Step 3.1. Estimation of the new velocity. The current velocity of a taken particle is considered the rate at
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which the particle’s position changes. Based on Eq. (13), the new velocity is calculated in Eq. (15) as follows:

new velocity = χ[old velocity + w1 (localbestposition− currentbestposition) (15)

+w2(global best position current best position)]

where χ denotes constriction factor, and w1 and w2 are basic PSO tuning parameters denoting social and

cognitive learning rates, respectively.

Step 3.2. Based on Eq. (13), estimation of the new position of the particle is calculated in Eq. (16) as

follows:

new position = old position + new velocity (16)

Finally the new particle (new velocity and new position) arrives.

Step 4. Calculation of fitness value for new particles.

The fitness value of the new particles is estimated by using the fitness function in Step 2 with the new

velocity and new position.

Step 5. Fitness values of the old and new particles are compared and the best one is selected for the next

iteration.

Step 6. For each iteration, one best solution is selected as a local best solution. The particle that has

maximum fitness value in the current iteration is selected as lbest solution.

Step 7. The local best solutions from all iterations of the particle that have optimal values among all

solutions are selected as a global best solution gbest. The final solutions are decoded into clusters. The BS

forms the cluster using PSO and broadcasts a cluster-announcement message to nodes that contains cluster

information.

5.1. CH selection in the PSO-EELB approach

After clustering, each sensor node maintains a cluster list. It includes current cluster id, velocity, location and

energy. Then the round procedure is initiated to perform CH selection by implementing a PSO algorithm.

Step 1. The members covered by the current node communicate with each other to select a CH, following

the steps mentioned below.

Step 2. Estimation of fitness value using fitness function:

Fitness value = Fv = α1 ×

m∑
i=0

d(current node, member i)

n
γ + α2 ×

m∑
i=0

E(member i)

n
γ

+ (1− α1 − α2) × 1

No.of members covered by current node
, (17)

where γ =

{
1, if member i is covered by current node
0, else

}
, m is the number of members in the current

cluster, α1 and α2 are weighing parameters (normalized values), and n denotes the number of members

covered within the competition range.

Repeat steps 3 to 7 of cluster formation for CH selection (as discussed in Section 4.2). Finally, the particle

that has a global best solution is chosen as a current CH.
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5.2. Multihop intracluster and intercluster data transmission

Based on TDMA, the tasks of data collection from cluster members are scheduled by the CH, and data collection

from CHs is scheduled by the BS for different groups/clusters within successive time slots. CHs gather the data

from the cluster members and transfer that data to the BS for further processing. As the BS already carries

every node’s information, such as location, cluster id, cluster members, location, residual energy, and its CH,

it creates disjoint multiple paths for each node towards its destination (CH or BS) using PSO, based on the

fitness value given by Eq. (18):

Fitness function =
d(si , sj)

2
+ d(sj, SN)

2

max(d (si, sj)
2
+ d (sj, SN)

2
)
+ (1 − ω)×max(E(j))E (j)

max (E (j))
, ω ∈ [0, 1] (18)

where ω is a randomized tuning parameter and si and sj are the source and destination nodes. After that,

the sink assigns a TDMA time slot to each cluster, and the CHs in turn assign a TDMA time slot to each node

in the cluster to send packets to it. Without waiting for the delivery of packets, the node is turned off and goes

into sleep mode to minimize the energy consumption, as given by Eq. (19).

TDMAtime slot duration for each node =
ClusterTDMAtime slot duration

Number of clustermembers
(19)

A source node follows certain rules in order to send its data to the destination: let the distance limit for source
and destination be d0 , as calculated in Eq. (20). If d(actual distance between source and the destination) is less

than d0 , then data can be transmitted in a single hop from the source to the destination, in the form of direct

communication. If d > d0, a PSO-based algorithm presented as Algorithm 1 is utilized for data transmission

to minimize energy consumption and to enhance the network life cycle.

d0 =

√
s√
n

(20)

Here s is the area of the cluster and n denotes the number of nodes in the cluster.

5.3. Energy model

An energy model designed in the physical layer is used for calculating energy loss in each sensor node while

communicating with other nodes [52]. The two channel-propagation models used are the free space model (d2

power loss) for the purpose of one-hop or direct transmission and the multipath fading channel model (d4 power

loss) for packet transmission via multihop. Thus, the energy exhausted for this kind of transmission of n -bit

packet over distance d is calculated using Eq. (21):

ETX (l, d)

{
lEelec + lϵfsd

2, d < d0, or
lEelec + lepsilonmpd

4, d ≥ d0,
(21)

where ϵfs is free space energy loss, ϵmp is multipath energy loss, d is the distance between a source node and

a destination node, and d1 is the crossover distance given by Eq. (22):

d1 =

√
ϵfs
ϵmp

(22)
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The energy spent for the radio to receive this message is

ERX (l) = lEelec (23)

Thus, the transmission power and receiving power energy levels are designed in physical and MAC layer of the

WSN.

6. Experimental setup and results

The performance evaluation of proposed PSO-EELB is done through the real test bed Coalesenses iSense

network. The hardware is arranged around the iSense CoreModule3 with an IEEE 802.15.4 compliant radio,

a 32-bit RISC (JN5148) controller running at 16 MHz, 512 KB of flash, and 128 kb of memory, with a highly

accurate clock (typ. 6 ppm) and a switchable power regulator. The iSense hardware is augmented with modular

operating and networking firmware based on object-oriented programming. The software components needed

for programming iSense modules are Cygwin, ba-elf2 compiler, iSense firmware, iShell, Eclipse for C/C++, and

iSense Gateway Module USB Driver for Windows. The modules included Zigbee-ready radio, which offers high

data rates at ranges of up to 60 m while providing hardware AES encryption. Within a network, the 6LoWPAN

protocol suite transmits IPv6 datagrams over the IEEE 802.15.4 radio interface. The various PSO parameters

and their values for proposed approach are shown in Table 1. The parameters for the experimental setup are

listed in Table 2. The BS is assumed to be situated in the center of the region.

Table 2. Experimental parameters and their values.

Parameters Values
Number of nodes 100
Area of deployment 200 m × 200 m
Frequency 2.4 GHz
Initial energy of sensor nodes 2.0 J
Number of execution iterations 100
Communication range of node 60 m using Lucent WaveLan DSSS radio
Eelec 50 nJ/bit
εfs 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

Data packet size 4000 bits
Protocol used 802.11 MAC protocol
Traffic source type Constant bit rate (CBR) sources
Sending rate 1–4 packets per second

Evaluation time
Periodic sample time 100 s to analyze the changes, 800 s for
general performance analysis and energy consumption analysis.

6.1. Validation of the proposed technique

To validate the proposed PSO-EELB technique, some existing approaches (DESA [20], ACOLBR [24], GACCTR

[30], and GSTEB [31]) that also perform energy-based load-balancing based on other metaheuristic methods,

as discussed in Section 2, are selected. These techniques have been implemented in the above environment and

the results are compared in terms of different parameters: energy consumption, throughput, convergence rate,

number of data packets received, execution time, network lifetime, and number of active nodes to prove the

effectiveness of the proposed technique.

Test case 1: Energy consumption versus number of nodes.
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Energy consumption is calculated for the proposed PSO-EELB technique and the existing DESA, GSTEB,

ACOLBR, and GACCTR techniques with different numbers of nodes (20–100). Each node consumes energy

for communication and computation. Thus, as the increase in the number of nodes, energy consumption also

increases. Energy consumption is calculated on the basis of the energy model presented in Section 4.5 and the

parameter values are shown in Table 2. Energy consumption in PSO-EELB is lower than the other techniques at

different number of nodes (Figure 3). The minimum value of energy consumption is 7.52 J at 20 nodes in PSO-

EELB. Average energy consumption in PSO-EELB is 6.34%, 9.721%, 10.54%, 12.64%, and 16.66% less than

ACOLBR, GSTEB, GACCTR, and DESA, respectively. The rationale behind this difference in performance is

that in ACOLBR, a minimum spanning tree (MST) is used for intracluster routing, and so each time cluster

reformation takes place, a MST must be generated. As the number of nodes increases, there is huge energy

consumption due to network structure formation. In GACCTR, parent selection is performed based on the GA.

For ensuring reliability, a trust function is calculated for every path through message exchange, which results

in energy dissipation. Although GLBCA and GSTEB consume more or less the same amount of energy, it can

still be claimed that the proposed algorithm performs better.
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Figure 3. Energy consumption versus number of nodes.

Test case 2: Network lifetime versus number of nodes.

The value of network lifetime has been calculated for PSO-EELB, HLBS, and ELBS with different number

of nodes based on Eq. (10). In the existing techniques, network lifetime decreases with increasing number of

nodes (20 to 100). The rationale behind this performance is the communication overhead involved during

topology formation. Network lifetime in PSO-EELB is longer than GACCTR, GSTEB, ACOLBR, and DESA

at different numbers of nodes (Figure 4). Maximum network lifetime is 130 s at 20 nodes. Average network

lifetime in PSO-EELB is 12.63%, 13.71%, 15.12%, and 18.75% longer than DESA, ACOLBR, GSTEB, and

GACCTR, respectively.

Test case 3: Number of active nodes versus number of iterations.

The number of active nodes was calculated for PSO-EELB, GACCTR, GSTEB, ACOLBR, and DESA

with an increasing number of iterations (1 to 100). A node is termed as active if its current remaining energy

is above zero and there is at least one CH within its radius. As the number of iterations increases, the

number of active nodes decreases due to energy dissipation. Network lifetime in PSO-EELB was longer than

in GACCTR, GSTEB, ACOLBR, and DESA for different values of energy consumption with an increasing

number of iterations (Figure 5). The maximum number of active nodes is 85 at 20 iterations. The number of

active nodes in PSO-EELB is 15.98%, 14.22%, 12.97%, and 10.16% greater than GACCTR, ACOLBR, DESA,

and GSTEB, respectively.
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Figure 4. Network lifetime versus number of nodes. Figure 5. Number of active nodes versus number of

iterations.

Test case 4: Received data packets versus residual energy.

Residual energy with respect to received data packets was calculated for PSO-EELB, GACCTR, GSTEB,

ACOLBR, and DESA. As shown in Figure 6, the receiving rate of data packets decreases with decreasing

residual energy. Initially, the maximum number of packets transfers at 8 J energy residual, but PSO-EELB,

DESA, and ACOLBR receive almost the same number of data packets. At 7.5 J energy residual, PSO-EELB

receives 1.87%, 16.11%, 17.39%, and 17.62% more data packets than ACOLBR, GACCTR, GSTEB, and DESA

respectively. The maximum number of data packets received in PSO-EELB is 7.93 at 8 J energy residual, and

the minimum number of data packets received in PSO-EELB is at 4 J. The average number of received data

packets in PSO-EELB is 2.76%, 11.67%, 14.71%, and 21.59% more than ACOLBR, GACCTR, DESA, and

GSTEB, respectively.
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Figure 6. Received data packets versus residual energy.

Test Case 5: Throughput. Throughput is a ratio of the total amount of successfully transferred data to

the total amount of time required to transfer data. It is calculated using Eq. (24).

Throughput=
Total amount of data transferred successfully(D)

Total amount of time required to transfer data (T )
(24)

The value of energy consumption was calculated for PSO-EELB, GACCTR, GSTEB, ACOLBR, and DESA

with different numbers of nodes (20 to 100). Figure 7 shows the comparison of throughput of PSO-EELB,

GACCTR, GSTEB, ACOLBR, and DESA, and it is clear that PSO-EELB performs better than the selected

existing techniques. The maximum value of throughput at 20 nodes in PSO-EELB has 6.41%, 9.17%, 17.66%,

and 18.22% more throughput than GSTEB, DESA, GACCTR, and ACOLBR, respectively.
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Test case 6: Convergence curve.

Figure 8 plots the convergence rate for total load transmitted by GACCTR, GSTEB, DESA, ACOLBR,

and the proposed PSO-EELB over a number of iterations; the proposed algorithm clearly demonstrates a faster

convergence rate. Initially, the load is equal and randomly initialized. Therefore, the total initial load is very

high at the 0th iteration. As the algorithm progresses, convergence is drastic and achieves global minima very

quickly. The number of iterations required for the convergence ranges from 27 to 100.
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Figure 7. Throughput versus number of nodes. Figure 8. Convergence curve of load.

Apart from these test cases, the proposed PSO-EELB algorithm also performs well in terms of algorithmic

complexity, as compared to GSTEB, GACCTR, DESA, and ACOLBR. The overall run-time complexity of the

existing ACOLBR is n(logn) + nk 2 , wheren ≤ k in every case. In this case, for intracluster routing operations,

the complexity is nk 2 and intercluster routing operations are n(logn), where k is the number of nodes in the

cluster and n is the number of clusters. In the case of GACCTR, the overall complexity is k(2n 2 g + ln + l +

n 2), where g denotes the number of generations in the population, n represents the number of nodes in the

grid, and k is the number of iterations. In DESA, the worst-case complexity is O (kn 2); here k is the number of

iterations of simulated annealing and O(n)2 is the worst-case complexity of differential evolution. In GSTEB,

the overall complexity of the algorithm is [n2p+ Hkmn + s(Tnkm + H(H+ nkm + nkC ) + np 2 ]. Here s is

the number of iterations, H is the number of employed bees or food sources,n is the number of data objects

in the dataset X , k is the number of clusters, m is the number of attributes, and p is the total number of

categories for all attributes. The complexity of the proposed PSO-EELB algorithm is O(npX) for p number of

paths having n number of nodes, and X denotes the number of iterations running on sink, which proves that

PSO-EELB performs far better as compared to the other techniques.

6.2. Statistical analysis

Coefficient of variation (Coff. of V ar)[53] is used to analyze the statistical significance of the results. It is a

statistical measure used to analyze data dispersion about the mean value and for comparing different means. It

also provides an overall performance analysis of the technique being used for generating the statistics. It defines

the data deviation as a proportion of its mean value, and is calculated using Eq. (25):

Coff. of V ar. =
SD

M
× 100, (25)
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where SD is standard deviation and M is mean. Coff. of V ar of energy consumption has been evaluated

in the proposed load-balancing technique (PSO-EELB) and in the existing techniques (GACCTR, GSTEB,

ACOLBR, and DESA) (Figure 9).
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Figure 9. CoV for execution time of various load-balancing techniques.

Coff. of V ar is calculated for the energy consumption results attained by PSO-EELB, GACCTR,

GSTEB, ACOLBR, and DESA. In PSO-EELB, Coff. of V ar ranged from 0.52% to 1.55%, proving its stability

(Figure 9). A small value of Coff. of V ar indicates that PSO-EELB is more efficient at load balancing

in situations where the number of nodes vary. Coff. of V ar decreases as the number of nodes increases.

Statistical analysis illustrates that the PSO-EELB outperforms existing load-balancing techniques for large

numbers of nodes.

7. Conclusions and future scope

A PSO-EELB technique for WSNs has been proposed in this paper. The main objective of this proposed work is

to minimize energy consumption and improve network lifetime and throughput. In the proposed technique, the

number of routing paths is identified and energy consumption of different nodes and paths is calculated. Based on

PSO, multiple paths are selected and load balancing is performed by sending a packet (divided into subpackets)

using erasure coding for data transfer at particular point of time. The effectiveness and usefulness of the

proposed technique are determined based on the metrics designed. For real testbed evaluation, the Coalesenses

iSense network was used for experimental performance evaluation. The results of real testbed evaluations

demonstrate that PSO-EELB is effective in terms of energy consumption, throughput, network lifetime, number

of active nodes, convergence rate, execution time, and number of packets received, as compared to existing load-

balancing techniques (GACCTR, GSTEB, ACOLBR, and DESA) with different numbers of nodes and numbers

of iterations. Further, statistical analysis demonstrates that PSO-EELB outperforms existing load-balancing

techniques for large numbers of nodes. In the future, weight-based data aggregation schemes based on PSO-

EELB using multiple sinks can be designed and implemented to further reduce energy consumption.
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