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Department of Electrical & Electronics Engineering, Faculty of Engineering, Middle East Technical University,
Ankara, Turkey

Received: 25.03.2016 • Accepted/Published Online: 23.12.2016 • Final Version: 30.07.2017

Abstract: Changes in weather conditions such as temperature and humidity, miscommunication between the control

center and circuit breaker transducers and tap changers, and inaccurate manufacturing data may cause parameter

errors. Because of incorrect parameters, the state estimator may provide biased state estimates, which may lead to

many serious economic and operational results. In order to prevent that, one must identify and correct those parameter

errors. This work proposes a local parameter estimator based on the least absolute value (LAV) estimator, which is

known to be robust against bad measurements, i.e. measurements with gross error. Considering the increasing number

of phasor measurement units (PMUs), as well as their fast refresh rate and high accuracy, the proposed method will

employ PMU measurements in local parameter estimation. In general, a PMU measures the current phasor flowing

through a branch and the voltage phasor of the sending bus of that branch. However, those two measurements are

not sufficient to estimate the parameters of the considered branch. Therefore, multiple measurements taken at different

time instants will be used in the parameter estimation process for measurement redundancy, assuming that the line

parameters and transformer taps are constant. The proposed method also assumes that the state estimates are available.

The LAV estimator is computationally expensive, but it provides unbiased state estimates even in the presence of bad

data, provided that enough measurement redundancy is available. This deficiency will be eliminated by performing local

parameter estimation.

Key words: Phasor measurement units, least absolute value estimator, robust parameter estimation, local parameter

estimation

1. Introduction

State estimation (SE) in power systems is one of the most essential functions of energy management systems

(EMS) in maintaining the reliability of the whole system operation [1]. SE assumes a true model of the power

system [1–4], and hence the knowledge of system topology and true values of the line and transformer parameters

are extremely important for SE accuracy [1–7]. However, system parameters such as line series impedance and

shunt admittance values, as well as the transformer taps, may be inaccurate [8], which may bias the estimates.

Those biased state estimates may yield serious results, since EMS applications and decision routines depend

on those estimates. This paper proposes a local parameter estimation method that uses phasor measurement

unit (PMU) measurements. The parameter estimation problem is solved using a robust least absolute value

(LAV) (or least absolute deviations, LAD) estimator, which enables unbiased estimates to be obtained without

performing a bad data process.
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Performance of programs that run on the EMS depends strongly on the parameters. Topological errors

can be identified easily in SE, which may be treated as parameter errors, while the small errors in the parameters

such as branch impedance will create reliability problems [9]. Parameter estimation methods in the literature

can be separated into two subgroups, namely off-line methods [5–13] and online methods [14–19]. Those methods

depend on the well-known least squares (LS) estimator [1]. However, LS is a nonrobust estimator, such that

even a single bad measurement in the data set may skew the parameter estimates. Therefore, one needs to

run a bad-data detection process, such as normalized residual test [20], in order to detect and identify bad

data, which will add extra computation time. This paper proposes using the LAV estimator, which is robust

against measurements with gross error and yet computationally competitive with the LS estimator [21,22].

The LAV estimator, which is defined in Section 2 in detail, can be expressed as a linear programming (LP)

problem. Reformulating the problem as a LP provides the state estimator the advantage of noise filtering as

well as bad-data elimination. The LP problem can be solved using the simplex method, which can improve the

computational performance.

The LAV estimator, which is an L-1 norm estimator, is computationally expensive for nonlinear problem

formulations due to the iterative solution scheme, though it is robust against bad measurements in the presence

of enough measurement redundancy [23]. However, performing local parameter estimation can compensate for

this deficiency, which is a very small problem compared to the state estimation problem. Note that, although

the system states and the PMU measurements are linearly related, the parameter estimation problem is a

nonlinear problem, since the vector to be estimated consists of not only the parameters of the considered

branch or transformer, but also the bus voltages of the sending and the receiving ends of the considered branch

or transformer. Therefore, for computational efficiency, the size of the problem should be kept at a minimum.

Once the parameter estimation problem is localized, the size of the problem decreases significantly, and hence

the computational burden becomes insignificant. Note that if a LAV estimator is employed, a bad-data processor

becomes unnecessary.

Considering the increasing number of PMUs in power grids, this paper proposes using PMU measure-

ments in local parameter estimation. PMUs take synchronized bus voltage phasor and line current phasor

measurements 30 times per second with respect to the global positioning system [24]. However, those two

measurements are not sufficient to estimate the parameters of that branch or transformer. Therefore, multiple

measurements taken in different time instants will be used in the parameter estimation process for measurement

redundancy, assuming that the state estimates are also available.

This paper introduces a local parameter estimator that employs the robust LAV estimator. The developed

method is capable of performing unbiased parameter estimation, even in the presence of gross errors associated

with measurement data.

The paper is organized as follows: in Section 2, the proposed parameter estimation method will be

explained in detail and in Section 3, simulations and the results of the comparison between LAV and LS

estimators in terms of accuracy and computational performance will be presented. Section 4 concludes the
paper.

2. Proposed method

EMS estimates either all parameters of a given power system or a subset of the system parameters, i.e. local

parameter estimation [1]. Since estimating all system parameters has a high computational burden, local

parameter estimation is preferred. Consider the two-bus system given in the Figure, where g12 is the series
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conductance, b12 is the series susceptance, and b11 is the charging-susceptance, which is assumed to be equal

to b22, of the transmission line between buses 1 and 2. The relation between the system parameters and the

voltage and current phasor measurements taken by a PMU can be expressed as below, where Vk is the voltage

phasor of bus k and Imeas
ij is the measured current phasor between buses 1 and 2. Re{y}+ jIm{y} represents

the real and imaginary parts of phasor y .

V1 V2
I12

jb11

g12 jb12

jb22

Figure. Two-bus sample system.

Imeas
ij = Re

{
Imeas
ij

}
+ jIm

{
Imeas
ij

}
Re

{
Imeas
ij

}
= gij (Re {Vi} −Re {Vj})− (bij + bii) Im {Vi}+ bijIm {Vj}

Im
{
Imeas
ij

}
= gij (Im {Vi} − Im {Vj}) + (bij + bii)Re {Vi} − bijRe {Vj}

(1)

As seen in Eq. (1), the number of measurements is not enough to estimate the three unknown parameters.

Considering the fast refresh rate of PMU measurements (30 times/s) [25] and that system parameters remain

the same for short durations, this paper proposes to use multiple PMU scans taken from the same measurement

unit at consecutive time instants to solve the parameter estimation problem. Although at least 3 measurements

are required for the solution of the parameter estimation problem, for a robust estimation at least 4 redundant

measurements are needed [23]. Therefore, this work proposes the use of at least 7 measurement scans for single

bad-data robustness. Thanks to the small size of the parameter estimation problem, the computational burden

of the method is very small.

Despite being more accurate compared to the conventional measurements, PMUs may provide bad data.

Using only the voltage and current phasor measurements obtained by a PMU makes the parameter estimation

vulnerable. In order to improve the robustness of the parameter estimation, the state estimates of the system

from the EMS state estimator are also employed as measurements.

The relation between the observations and the system states is formulated below.

z = h (x) + e (2)

In Eq. (2), measurement vector z with size of 8n× 1 is defined as below, where measurements are taken at n

different time instants:

zT =
[
V m,r V m,i V e,i V e,i Im,r Im,i

]
(3)

V m,r = vector of the real parts of the voltage phasor measurements taken at the sending end of the branch (1

×n), V m,i = vector of the imaginary parts of the voltage phasor measurements taken at the sending end of the

branch (1 ×n), V e,r = vector of the real parts of the voltage phasor estimates at the sending and receiving ends

of the branch (1 × 2n), V e,i = vector of the imaginary parts of the voltage phasor estimates at the sending

and receiving ends of the branch (1 × 2n), Im,r = vector of real parts of the current phasor measurements

from the sending end to the receiving end of the branch (1 ×n), and Im,i = vector of the imaginary parts of

the current phasor measurements from the sending to the receiving end of the branch (1 ×n).
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The state vector x with size (4n + 3) × 1 is defined as follows:

xT =
[
V r V i gij bij bii

]
(4)

V r = vector of the real parts of the voltage phasors of the sending and receiving ends of the branch (1 × 2n),

V i = vector of the imaginary parts of the voltage phasors of the sending and receiving ends of the branch (1

× 2n), gij = series conductance of the branch (1 × 1), bij = series susceptance of the branch (1 × 1), bii =

charging susceptance of the branch (1 × 1), z is nonlinearly related to the state vector x defined in Eq. (4)

via the function h(x).

The state estimation problem is linear if the considered system is measured solely by PMUs. However,

the parameter estimation problem is a nonlinear problem due to the relation between the states and parameters,

and observations, as seen in Eq. (1). Therefore, an iterative solution should be employed. Although LS is a

well-known and widely used method for state estimation [1], it is not a robust estimator, i.e. even a single piece

of bad data may distort the estimates. If LS estimation is employed, postprocessing of measurement residuals

for bad-data analysis should be carried out. Note that bad-data processing is computationally expensive.

This paper proposes the use of a robust LAV estimator. Although the iterative LAV estimator is

computationally expensive [21], thanks to the small size of the proposed parameter estimation problem, the

extra computational time will be negligible.

The objective function of the LAV estimator is defined as below for a system with m measurements and

n states to be estimated, where ri is the ith residual.

m∑
i=1

|ri| (5)

The LAV optimization problem can be expressed as an equivalent LP problem by rearranging the equations

and defining some new strictly nonnegative variables [1,21], as formulated below.

min cT y

s.t. My = b

y ≥ 0

cT = [ Zn Om ], y = [ ∆XT
a ∆XT

b UT V T ], M = [ H −H I −I ], b = ∆z

(6)

In Eq. (6), Zn is the 1 × 2n vector consisting of zeros and Om is the 1 × 2m vector consisting of ones, where

m is the number of measurements and n is the number of states. H is the Jacobian matrix, which is defined as

the partial derivative of h(.) with respect to the states. ∆Xa and ∆Xb are 1 ×n , and U and V are 1 ×m

vectors, where

∆x = ∆XT
a −∆XT

b

UT − V T = z − h
(
xk

)
−H

(
xk

)
∆xk = ∆zk −H

(
xk

)
∆xk

(7)

In Eq. (7), superscript k indicates the iteration number. The iterative solution procedure is summarized as: 1)

initialize x0 , 2) solve the LP problem given in Eq. (6), 3) check if ∆xk < ε . If so, finish the iterative solution,

otherwise xk+1 = xk +∆xk and go to 1.

The LP estimation problem in Eq. (6) can be interpreted geometrically as minimizing the sum of

moduli of distances of the solution to the measurement hyperplanes [26]. The resulting estimates lie on a
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point of intersection of n hyperplanes in n -dimensional space. Therefore, the LP-based LAV uses the set of n

hyperplanes from the m available observations, where the objective function is minimized. Bad measurements

are rejected provided that there are fewer than m − n of them. The LAV estimation therefore combines

automatic bad-data rejection with a useful degree of noise filtering [26].

3. Simulations and results

In this section, the 2-bus system given in Figure is employed for the simulations. For the simulation, g12 is

assigned as 5.2246 pu, b12 is assigned as –15.646 pu, and b11 is assigned as 0.0528 pu. All case studies are

conducted in MATLAB. In all scenarios, Gaussian error with zero mean and a standard deviation of 0.001 was

added to the measurement sets and the simulations were conducted 1000 times.

3.1. Comparison of LS and LAV

In this scenario, no bad data were introduced into the measurement set. As seen in Table 1, both estimators

converged to the true values in comparable durations. Note that no special effort is spent for estimator

optimization. If bad data were associated with the measurement set, the computational time of the LS estimator

would increase, while that of the LAV estimator would remain nearly the same [23]. This situation is visualized

by the following scenario. It is assumed that the measurement set includes a bad measurement. A measurement

is randomly selected as bad during the run of 1000 simulations. As also seen in Table 1, the estimates of LS are

highly biased. If unbiased estimates are obtained by postprocessing the results, the solution time will increase

significantly. Mean squared error (MSE) and estimator bias (EB) are defined as follows, where superscript e

indicates an estimate.

Table 1. Comparison of LS and LAV.

No bad data With bad data

LS

MSE of g12 0 7.62
MSE of b12 0 6.86
MSE of b11 0 0.067
EB of g12 0 –4.905
EB of b12 0 28.44
EB of b11 0 0.1052
Mean duration 0.025 s 0.04 s

LAV

MSE of g12 0 0
MSE of b12 0 0
MSE of b11 0 0
EB of g12 0 0
EB of b12 0 0
EB of b11 0 0
Mean duration 0.050 s 0.045 s

*Values smaller than 1e-6 are assumed to be 0.

MSE =
1

n

n∑
k=1

(xe
k − xk)

2
(8)

EB =
1

n

n∑
k=1

xe
k − xk (9)
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3.2. Performance evaluation with bad parameter data

In this scenario, it is assumed that the given parameter information is incorrect, such that the series susceptance

was assumed to be 3 times larger than the true value. The simulation results are presented in Table 2. As seen

in Table 2, the proposed method converged to the true values in acceptable duration with acceptable accuracy.

Note that the increase in simulation duration and decrease in accuracy are caused by the incorrect initial values

of the parameter estimation problem.

Table 2. Performance of the method with incorrect parameter values.

LAV

MSE of g12 0.1655
MSE of b12 0.2527
MSE of b11 0.0151
EB of g12 0.0319
EB of b12 0.0604
EB of b11 –0.00011
Mean duration 0.34 s

3.3. Performance evaluation with bad measurement

It is assumed that the given parameter information is correct and state estimation results are unbiased, but

PMU provides bad data for both voltage and current. Table 3 presents the results for different amounts of

bad data. As seen in Table 3, if the size of the observation matrix increases, i.e. more measurement scans

are employed for parameter estimation, the robustness improves and the proposed method provides unbiased

parameter estimates with larger number of bad measurements.

Table 3. Performance of the method with bad data.

Number of bad voltage and current measurement pair 1 2 2
Number of observation instants 7 7 8

LAV

MSE of g12 0 10.219 0
MSE of b12 0 24.974 0
MSE of b11 0 0.8114 0
EB of g12 0 104.42 0
EB of b12 0 623.70 0
EB of b11 0 0.6583 0
Mean duration 0.400 s 0.370 se 0.399 s

*Values smaller than 1e-6 are assumed to be 0.

3.4. Performance evaluation with bad state estimates

In this case, it is assumed that the given parameter information is correct, but the state estimator used in the

system gives one a biased estimated of the bus voltage where the PMU is located (sending end voltage), i.e.

the estimated value is identically equal to 0. Then the same scenario is applied to multiple biased estimates.

As seen in Table 4, the proposed method maintains robustness until 6 biased estimates are employed in the

parameter estimation problem. The last column of Table 4 presents the MSE results of the same observation set

with 6 biased estimates; however, the observation set receives 8 measurement instants instead of 7. As seen in

Table 4, if the number of observations is increased, the parameter estimation maintains robustness with larger

amounts of bad data.
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Table 4. Performance of the method with biased state estimates.

Number of biased estimates 1 2 3 4 6 6
Number of observation instants 7 7 7 7 7 8

LAV

MSE of g12 0 0 0.014 0.45 23.653 0.014
MSE of b12 0 0 0.029 0.15 16.896 0.019
MSE of b11 0 0 0.011 0.15 1.4015 0.011
EB of g12 0 0 0.00019 0.20 559.05 0.00019
EB of b12 0 0 0.00085 0.023 285.48 0.00037
EB of b11 0 0 0.00012 0.024 1.943 0.00013
Mean duration 0.273 s 0.263 s 0.301 s 0.304 s 0.338 s 0.267 s

*Values smaller than 1e-6 are assumed to be 0.

3.5. Transformer tap estimation

In this case, the parameters of a transformer, namely the transformer tap and leakage inductance in pu, are

estimated. It is assumed that the given parameter information is correct, but the state estimator used in the

system gives one a biased estimated of the bus voltage where the PMU is located (sending end voltage), i.e.

the estimated value is identically equal to 0. Then the same scenario is applied to multiple biased estimates.

As seen in Table 5, the proposed method maintains robustness until 6 biased estimates are employed in the

parameter estimation problem. The last column of Table 5 presents the MSE results of the same observation

set with 6 biased estimates; however, the observation set receives 8 measurement instants instead of 7.

Table 5. Performance of the method with biased state estimates.

Number of biased estimates 1 2 3 4 6 6
Number of observation instants 7 7 7 7 7 8

LAV

MSE of b12 0 0 0 0 1.8641 0
MSE of a 0 0 0 0 0.4103 0
Mean duration 0.345 s 0.352 s 0.346 s 0.347 s 0.341 s 0.351 s

*Values smaller than 1e-6 are assumed to be 0.

As seen in Tables 4 and 5, if the number of observations is increased, the parameter estimation maintains

robustness against larger amounts of bad data. Note that if the biased estimates are associated with the

receiving end voltage, the tolerance of the proposed method will be lower. However, increasing the observation

vector size will also make the proposed method robust against larger amounts of biased estimates. Considering

the small size of the parameter estimation problem, the increased number of observations will not significantly

affect the estimation performance.

4. Conclusion

This paper introduces a parameter estimator based on a robust LAV estimator. In order to increase computa-

tional performance, the estimation problem is developed locally, i.e. the estimation is applied to a single line

measured by a PMU. Note that compared to LS, the LAV estimator is computationally expensive. However,

considering the small size of the estimation problem as well as the performance of the LAV estimator under bad

data and incorrect parameter conditions, the computational performances of both methods become competi-

tive. The required measurement redundancy for the robustness is maintained using state estimates and multiple

PMU scans.

The developed method can be used at the control center for each branch or transformer separately. Note

that parameter estimation is not required to be performed as frequently as state estimation. Therefore, for

computational ease, parameter estimation of each branch and transformer can be performed one at a time.
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Parameter errors are generally flagged as bad measurements in state estimation. Using a reliable

parameter estimator will increase trust in the measurements and enable a more reliable system operation.

The simulations and the numerical results show that as the size of the observation set increases, i.e. using

more time scans instead of 7 scans, the robustness of the proposed method improves, which does not add a

significant computational burden to the proposed method.

The preliminary results of this work were presented in [27], which compares LS and the proposed method,

assuming unbiased state estimates. This work analyzed the proposed method with biased state estimates.

Moreover, performance with transformer taps and the effect of increasing the sample size were also introduced.
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