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Abstract: In this paper, a combination of dynamic constrained control allocation with terminal sliding mode control is

proposed for a general class of overactuated nonlinear systems with actuator faults/failures. First, the terminal sliding

mode control is designed to converge the system tracking error to zero in a finite-time. Then a control allocation

strategy is developed and will be solved by a Lyapunov method, which leads to a dynamic update law with finite-time

convergence. This strategy satisfies input limits and when faults/failures occur in some of the actuators, the control

signals are automatically redistributed among the healthy actuators. Simulation results on a near space vehicle show the

effectiveness of the proposed approach.
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1. Introduction

Actuator faults and failures might have serious damaging effects on the performance of engineering systems

if they are not well handled. To maintain specified safety performance of these systems when unexpected

faults/failures occur, fault-tolerant control (FTC) is a very valuable control technology. Many FTC methods

have been introduced in recent years. Liao et al. [1] used a linear matrix inequality method to design a robust

FTC and Yang et al. [2] designed an H∞ controller for linear systems with sensor and actuator failures.

Moreover, adaptive feedback control schemes were developed in [3,4] for linear systems with actuator failures.

Adaptive fault tolerant controllers were presented in [5,6] for nonlinear systems with actuator failures. However,

in [5,6], input limits were not taken into account, whereas if the actuators reached their constraints, every effort

to increase the actuators’ output would create no variation in the output and would result in system instability.

To reduce the effects of faults/failures and to achieve FTC, an important factor is the availability of

redundant actuators. This is because of more freedom regarding controller design. Control allocation (CA) is

an approach that can effectively manage overactuated systems, especially when some of the actuators become

damaged and CA redistributes the control signals into the healthy actuators. There has been much study

of CA problems, and methods like pseudoinverse [7], linear programming [8], direct CA [8], daisy chain [9],

constrained quadratic programming [10], and constrained nonlinear programming [11] have been previously

introduced. They all, independently of the dynamic control problem, solve the control problem as a static

optimization problem. Unlike the above approaches, Johansen [12] designed an optimal CA scheme in the shape
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of a dynamic update law with infinite-time convergence for nonlinear systems, and Benosman [13] designed an

optimal CA for a class of nonlinear systems with unstable internal dynamics, but methods in [12,13] do not

consider actuator faults/failures.

Sliding mode control (SMC) schemes have an inherent capability to reject matched disturbances and

uncertainties. Therefore, their combination with CA seems to have great potential for the development of FTC

[14]. However, robustness in conventional SMC schemes can only be achieved after the sliding phase [14]. To

eliminate the reaching phase, an integral sliding mode control (ISMC) was proposed in [14]. To deal with fault,

combinations of the CA with ISM are used in [15,16] for linear systems. The integral action has deficiencies,

like large overshoot and long settling time. Terminal sliding mode control (TSMC) has improved characteristics

such as finite-time convergence and higher control accuracy compared with ISMC [17,18].

This paper investigates a combination of dynamic CA and TSMC according to Figure 1 for a general

class of nonlinear systems. The main contributions of this paper are as follows:

Figure 1. Block diagram of the proposed method.

• The CA problem will be solved by a Lyapunov method, which leads to a dynamic update law with

finite-time convergence.

• The proposed CA method can satisfy control constraints in the presence of faults/failures in actuators.

• A TSMC with nonlinear sliding surface will be proposed that can guarantee the finite-time convergence

of the system tracking error to zero.

2. Problem formulation

This paper focuses on a class of MIMO nonlinear systems represented by

ẋ = f (x)+g (x)uf (t)

y = h (x) , (1)

where x∈Rn is the state vector; f(x)∈Rn and g(x) ∈Rn×na are smooth nonlinear functions of

x ; uf (t) =
[
uf1 , . . . ,ufna

]T ∈Rna is the control signal whose components may be failed during operation; and

y∈Rm is the output vector.

Assumption 1 Eq. (1) has a relative degree r1, . . . ,rm such that
i=m∑
i=1

ri = n .

Assumption 2 Eq. (1) has more actuators than controlled outputs, i.e. na>m .
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At the beginning, the system is healthy and devised to track a desirable output yd . Afterward, faults or

failures might occur in some of the actuators in tf> 0. In this case, output of the actuator ρ , ρ∈ {1, . . . ,na

can be modeled as follows [6]:

ufρ (t) = (1−σρ) δρuρ (t)+σρũρ, (2)

where ũρ shows the failure in the ρth actuator, 0 ≤δρ≤ 1 shows the amount of the remaining effective section

of the actuator ρ , and

σρ =

{
1 if the ρth actuator is failed

0 otherwise
(3)

If the actuator ρ is healthy, ufρ(t) =uρ(t). When a fault or failure happens at the actuator ρ at t≥tf , multiple

usual fault/failure models could exist [5].

I. Loss of effectiveness: in this case, ufρ = δρuρ .

II. Lock in place or stuck-type: in this case, ufρ = ũρ = constant .

III. Float fault: in this case, ufρ= 0.

IV. Hard over fault: in this case, ufρ = ūρ or ufρ = uρ .

Now we can express the input vector uf (t) in Eq. (1) as follows [6]:

uf (t) = (I−σ) δu (t)+σũ, (4)

where u(t) is the applied control vector and{
σ = diag(σ1,σ2, . . . .,σna)
δ = diag(δ1,δ2, . . . .,δna)

(5)

Here our aim is to develop a combination of TSMC and CA based on the Lyapunov method for Eq. (1) with

the actuator faults from Eq. (4) such that the output y(t) tracks a desired smooth trajectory yd(t), and at the

same time all actuators satisfy control constraints:

u (t)∈ G =
{
u = [u1. . .una ]

T −uρ≤uρ≤uρ,ρ= 1, . . . ,na

}
, (6)

where u =
[
u1. . .una

]T
and u = [u1. . .una ]

T
are lower and upper control constraints.

Assumption 3 There exists Bdi > 0 such that
∥∥∥(ydi,y(1)di , . . . ,y

(ri)
di

)∥∥∥≤Bdi .

Under assumption 1, there exists a local coordinate transformation:

z = T (x) =
[
z1 (x)

T
, . . . ,zm (x)

T
]T

(7)

zi (x) = [zi1 (x) , . . . ,ziri (x)]
T
=
[
hi (x) , . . . ,L

ri − 1
f hi (x)

]T
(8)
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that converts Eq. (1) to the following form [19]:

żi1 = zi2

...

żi(ri − 1) = ziri

żiri = vi(z, t)

yi = hi = zi1 (i= 1, . . . ,m) , (9)

where

vi(z, t) =bi (z)+

na∑
ρ=1

aiρ(z) [(1−σρ) δρuρ(t)+σρũρ] (10)

and where bi (z) = Lri
f hi and aiρ(z) =LgρL

ri − 1
f hi . Eq. (10) can be expressed as follows:

v (z,t) = B (z)+A (z) [(1−σ)] δu (t)+σũ (11)

where B (z) = [b1. . .bm]
T
and A (z) =

 a11 · · · a1na

...
. . .

...
am1 · · · amna

 ; u(t) = [u1. . .una ]
T ∈Rna is the real control input;

and v(z, t) = [v1. . .vm]
T ∈Rm is the virtual control effort produced by the TSMC law, which will be designed

in the next section. By considering na>m , we will not have a unique solution (i.e. u) for Eq. (11). In Section

4, a CA problem is formulated to find the best solution for Eq. (11) while satisfying the control constraints in

Eq. (6).

3. TSMC

In this section, in order to find virtual control v(z, t)∈Rm for Eq. (11), a TSMC is proposed that guarantees

the output tracking problem in a finite time. From Eq. (9), the system outputs and its derivatives can be

rewritten as

yi = hi = zi1

ẏi = żi1 = zi2

...

y
(ri)
i = vi(z, t) (i= 1, . . . ,m) (12)

By defining the ith element of tracking error as ei1 = yi−ydi , a nonlinear terminal sliding surface is set to [20]

ei2 = ėi1+αi1ei1+βi1e
pi1
qi1
i1

...

ei(ri − 1) = ėi(ri − 2)+αi(ri − 2)ei(ri − 2)+βi(ri − 2)e

pi(ri − 2)

qi(ri − 2)

i(ri − 2)

si = ėi(ri − 1)+αi(ri − 1)ei(ri − 1)+βi(ri − 1)e

pi(ri − 1)

qi(ri − 1)

i(ri − 1) , (13)
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where i= 1, . . . ,m and j= 1, . . . ,ri−1, αij> 0 and βij> 0; pij<qij are positive odd constants and si is a

nonlinear terminal sliding surface for ei1 .

The ri th derivative of ei1 becomes

e
(ri)
i1 = vi(z, t)−y

(ri)
di (14)

and the l th time derivative of eij is given by

e
(l)
ij = e

(l+1)
i(j − 1)+

d(l)

dt(l)

(
αi(j − 1)ei(j − 1)+βi(j − 1)e

pi(j − 1)
qi(j − 1)

i(j − 1)

)
(15)

In accordance with Eqs. (13) – (15), the time derivative of si becomes

ṡi = vi(z, t)−y
(ri)
di +

ri − 1∑
j =1

[
αijeij+βije

pij
qij

ij

](ri − j)

(16)

Therefore, the TSMC law is set to

vi (z,t) = y
(ri)
di −

ri − 1∑
j =1

[
αijeij+βije

pij
qij

ij

](ri − j)

−γisi−Kisign (si) (17)

where γi> 0 and Ki> 0 (i= 1, . . . ,m).

Lemma 1 ([18,21]): If there are positive definite functions V (x) , λ1> 0 , λ2> 0 and 0 <r< 1 such that

V̇ (x)≤ −λ1V (x)−λ2V
k (x) , then the equilibrium point x= 0 is finite-time stable and the convergence time ts

satisfies

ts≤
1

λ2 (1− r)
ln

λ2V
1−r (x0)+λ1

λ1
x0 = x(0) (18)

Theorem 1 For the nonlinear sliding surface (Eq. (13)) and the control law (Eq. (17)), the overactuated

system (Eq. (1)) will be stable and closed-loop signals will converge to the equilibrium point in a finite-time.

Proof By substituting Eq. (17) into Eq. (16), we have

ṡi= −γisi−Kisign(si) (19)

To prove stability of Eq. (1), we choose the Lyapunov function as

V1 =
1

2
STS, (20)

where S = [s1, . . . ,sm]
T
. Differentiating V1 and using Eq. (19) yields

V̇1 =
m∑

i=1

siṡi= −
m∑

i=1

Kisisign (si)−
m∑

i=1

γis
2
i≤ −K

m∑
i=1

|si| −γ
m∑

i=1

s2i , (21)
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where γ = {γi}> 0 and K = {Ki}> 0. Eq. (21) can be expressed as

V̇1≤ −
√
2KV

1
2
1 −2γV1 (22)

According to Eq. (22) and Lemma 1, we know that V1 converges to the equilibrium point in the finite-time

ts1≤ 1
γ ln

√
2γV

1
2

1 (S0)+K

K .

4. CA

After finding the virtual control vector v(z, t) ∈Rm in the previous section, we intend to find the law control

u(t) ∈Rna from Eq. (11) so as to satisfy the control constraints in Eq. (6). However, considering na>m , we will

not have a unique solution for Eq. (11). Therefore, a secondary objective is added to minimize the magnitude

of the control vector, or its distance from a preferred control value, u0 . Based on the above-mentioned, the CA

problem can be formulated as follows:

J (z,u,t) (23)

subject to u≤u≤ū

where J = J1 (z,u,t)+J2 (u) and

J1 (z,u,t) = ∥c1 (B (z)+A (z) [(I−σ) δu+σũ]− v(z,t))∥22 (24)

J2 (u) = ∥c2 (u−u0)∥22 (25)

where c1∈Rm×m and c2∈Rna ×na are positive definite diagonal weighting matrices. The cost function J1

minimizes the allocation error of the virtual control v into u in Eq. (11) and J2 minimizes the magnitude of

the control input u .

Now the CA problem (Eq. (23)) is converted to a quadratic problem (QP). First, let

X0 = u0−u , X = u−u , Xmax = u−u

ap(z, t) = − [B (z)+A (z) [(I−σ) δu+σũ]−v(z,t)] (26)

By substituting Eqs. (24) – (26) into Eq. (23), we have

J(z,u,t) = ∥c1 [A (z) (I−σ)δX−ap(z,u,t)]∥22 + ∥c2 (X−X0)∥22 (27)

subject to 0 ≤X≤Xmax

By extending Eq. (27), we obtain

J(z,u,t) = XT δT (I−σ)
T
AT (z)cT1 c1A(z) (I−σ) δX

−XT δT (I−σ)
T
AT (z)cT1 c1ap(z, t)−aTp (z,t) cT1 c1A (z) (I−σ) δX

+aTp (z, t)c
T
1 c1ap(z, t)+XT cT2 c2X−XT cT2 c2X0

−XT
0 c

T
2 c2X+XT

0 c
T
2 c2X0 (28)
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If we define H1 = cT1 c1,H2 = cT2 c2, C
T (z, t) = −2

[
aTp (z,t)H1A(z) (I−σ) δ+XT

0 H2

]
, R(z, t) =aTp (z, t)H1ap(z, t)+

XT
0 H2X0 , and H(z) = 2

[
δT (I−σ)

T
AT (z)H1A(z) (I−σ) δ+H2

]
, then Eq. (28) can be rewritten as follows:

J(z,u,t) =
1

2
XTH(z)X+CT (z, t)X+R(z, t) (29)

subject to 0 ≤X≤Xmax

Remark 1 R(z, t) is a constant matrix and does not affect the optimal solution (Eq. (29)).

By defining E =

 E1

...
E2na

 =

[
Ina

−Ina

]
and F =

 F1

...
F2na

 =

[
Xmax

0na × 1

]
, the optimal problem Eq.

(29) becomes a QP problem, as follows:

J(z,u,t) =
1

2
XTH(z)X+CT (z, t)X (30)

subject to EX−F≤ 0

For solving the QP problem (Eq. (30)), we consider a Lagrange function:

L (X,λ,z,t) =
1

2
XTH (z)X+CT (z,t)X+λT (EX−F ) (31)

where λ∈R2na is the Lagrange multiplier. Now we define the limiting optimal set E∗ as

E∗ =

{
(X,λ,z) | ∂L

∂X
= 0,

∂L

∂λ
= 0

}
(32)

In theorem 2, a dynamic update law is designed so as to attract (X,λ, z) to E∗ . However, before this theorem,

an important lemma is presented.

Lemma 2 ([18,21]): Suppose there are positive definite functions V (x) , λ1> 0 and 0 <r< 1 such that

V̇ (x)+λ1V
k (x)≤ 0 , then the equilibrium point x= 0 is finite-time stable. The convergence time ts satisfies

ts≤
V 1− r (x0)

λ1 (1− r)
x0 = x(0) (33)

Theorem 2 (X,λ, z) tend to E∗ in a finite-time if the following dynamic update laws are adopted:

Ẋ= −Γ1τ1 (34)

λ̇= −Γ2τ2 − τ2
(
τT2 τ2

)−1
(∆+ωV a

2 ) (35)

where Γ1∈Rna ×na , Γ2∈R2na × 2na are positive definite matrices, ω> 0 , 0 <a< 1 and

τ1 = H (z)
(
H (z)X+C (z,t)+ETλ

)
+ET (EX−F ) (36)
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τ2 = E
(
H (z)X+C (z,t)+ETλ

)
(37)

∆ =

(
∂L

∂X

T ∂2L

∂z∂X

)
ż+

∂L

∂X

T ∂2L

∂t∂X
+
∂L

∂λ

T ∂2L

∂t∂λ
(38)

Proof Consider the following Lyapunov function:

V2 (X,λ,z,t) =
1

2

(
∂L

∂X

T ∂L

∂X
+
∂L

∂λ

T ∂L

∂λ

)
(39)

The time derivative of V2 will be as follows:

V̇2 =
∂V2

∂X
Ẋ+

∂V2

∂λ
λ̇+

∂V2

∂z
ż+

∂V2

∂t

=
[(
H (z)X+C (z,t)+ETλ

)T
H (z)+ (EX−F )

T
E
]
Ẋ

+
[(
H (z)X+C (z,t)+ETλ

)T
ET
]
λ̇+

(
∂L

∂X

T ∂2L

∂z∂X

)
ż+

∂L

∂X

T ∂2L

∂t∂X
+
∂L

∂λ

T ∂2L

∂t∂λ
(40)

By substituting Eqs. (36) – (38) into Eq. (40), we have

V̇2 (X,λ,z,t) = τT1 Ẋ+τT2 λ̇+∆ (41)

Now by choosing Ẋ and λ̇ according to Eqs. (34) and (35), Eq. (41) becomes

V̇2 (X,λ,z,t)= −τT1 Γ1τ
T
1 −τT2 Γ2τ

T
2 −ωV a

2 ≤ −ωV a
2 (42)

From Eq. (42) and lemma 2, we know that (Xλz) converge to E∗ in finite-time as

ts2≤
V 1− a
2 (x0, λ0, z0, t0)

ω(1− a)
(43)

The design procedure of terminal sliding mode control allocation can be summarized in the following algorithm:

Algorithm 1

Given the nonlinear overactuated system (Eq. (1)) with the actuator faults/failures (Eq. (4)) and the input

limits (Eq. (6)), design FTC by performing the following steps:

Step 1. Given the desired trajectories ydi , obtain the virtual control using Eqs. (13) and (17).

Step 2. Given the weighting matrices c1, c2,Γ1 and Γ2 , obtain the CA result Ẋ using Eq. (34).

Step 3. According to Eq. (26), the derivative of control inputs will be u̇ = Ẋ+u̇ = Ẋ .
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5. Simulation results

The attitude dynamics of a near space vehicle (NSV) is described by [22]

γ̇ = Ξ (γ)ω

ω̇ = J−1Ω (ω) Jω+Guf (t), (44)

where γ = [µ,β,α]
T

is the attitude angle vector, ω = [p,q,r]
T

is the angular rate vector, and

uf (t) = [uf1 ,uf2 , uf3 ,uf4 ,uf5 ,uf6 ]
T
is the input vector. The matrices Ξ (γ), Ω (ω), G , and J are given by

G =

 −0.288 0.288 −0.865

−0.085 −0.085 −0.526

−0.095 0.095 0.207

0.865 0 0.002

−0.526 0.009 −0.007

−0.207 −0.004 −0.005

 , Ω =

 0 r −q

−r 0 p

q −p 0



J =

 554486 0 −23002

0 1136949 0

−23002 0 1376852

 , Ξ (γ) =

 cos(α) 0 sin(α)

sin(α) 0 −cos(α)

0 1 0

 (45)

If we define the state vector of Eq. (44) as x =
[
γT ,ωT

]T
, then Eq. (44) converts to Eq. (1), and

f (x) =

[
Ξ (γ)ω
J−1Ω(ω)Jω

]
, g (x) =

[
03× 6

G

]
and y = γ = [µ,β,α]

T
.

The initial state and the desired output are chosen as x0 = [3.5, 5, 1, 0, 0, 0] and yd = [3 cos (t)+0.5, 5, 1 + 4 sin (0.5t) ]
T
.

The bounds of control input are

uρ∈
[
−30

◦
,30

◦
]T

(ρ= 1, . . . , 6) (46)

Based on Section 4, the CA parameters are H1 = cT1 c1= diag(100, 70, 40), H2 = cT2 c2= 0.1I6× 6 , Γ1= 3I6× 6 ,

Γ2= 10I12× 12 , ω = 100, and a= 0.5.

To proceed the design of the terminal sliding mode control according to Eq. (17), the design parameters

are αij = 40, βij = 1, pij = 5, qij = 7, γi = 60, and Ki = 20 (i = 1, 2, 3 and j = 1).

The following cases are simulated to demonstrate the effectiveness of our method:

Case 1: Consider input limits (Eq. (46)) and all actuators fault/failure-free (i.e. ufρ = uρ).

Case 2: Consider all actuators fault-free and without input limits (Eq. (46)).

Case 3: Consider control constraints (Eq. (46)) and

I. For 0 ≤t< 5, all actuators are fault-free.

II. For 5 ≤t< 10, a lock in place fault happens on u1 (uf1= −20).

III. For 10 ≤t< 15, a hard-over fault occurs on u6 (uf6= −30) and loss of effectiveness fault occurs on u3

and u4 (uf3= 0.6u3 and uf4= 0.7u4).

IV. For 15 ≤t< 20, a float fault occurs on u2 (uf2= 0).

V. For 20 ≤t< 25, a lock in place fault happens on u5 (uf5= 10).
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VI. For 25 ≤t< 35, float fault occurs on u1 and u5 (uf1 = uf5= 0), uf6= 10 and loss of effectiveness fault

occurs on u3 and u4 (uf3= 0.5u3 and uf4= 0.6u4).

VII. For 35 ≤t≤ 40, all actuators are fault/failure-free.

For case 1, the results of the simulation are illustrated in Figure 2. As seen in Figure 2a, the outputs

track all the desired signals precisely. It is obvious from Figure 2b that all controls uρ (ρ= 1, . . . , 6) remain

within the control constraints (Eq. 46)).

Figure 2. NSV response for case 1. (a) Tracking performance. (b) CA outputs (u) .

For case 2, the results of the simulation are illustrated in Figure 3. By increasing the input limits (Eq.

(46)), it is obvious from Figure 3b that the inputs u2 and u5 indeed violate their bounds. This shows that the

proposed CA effectively forces the input signals to stay within their bounds. Of course, according to Figure 3a,

tracking is achieved perfectly.

Finally, the simulation results for case 3 are shown in Figure 4. In the presence of the actuator

faults/failures (I–VII), the input saturation constraints are still satisfied, as seen in Figure 4b. According

to Figure 4b, when an actuator is damaged, control allocation cuts the related control signal of this actuator

and redistributes control signals among the healthy actuators. In addition, good tracking is obtained when our

system is under actuator faults/failures (Figure 4a).

6. Conclusion

In this paper, a new TSMC allocation algorithm has been successfully designed for overactuated nonlinear

systems. The TSMC has a nonlinear sliding surface, which ensures the output tracking performance at finite-

time in the presence of actuator faults or failures. The CA problem has been converted to a QP optimization

problem and solved by a Lyapunov design approach. The derived CA law is in the form of a finite-time convergent
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Figure 3. NSV response for case 2. (a) Tracking performance. (b) CA outputs (u) .

Figure 4. NSV response for case 3. (a) Tracking performance. (b) Plant inputs (uf ) and CA outputs (u) .

dynamic update law, which satisfies control constraints and manages the actuators when faults/failures occur.

The effectiveness of the proposed method has been demonstrated by applying it to an NSV example. The
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simulation results show that in the presence of actuator faults/failures, good tracking performance is obtained

and CA redistributes control signals among the healthy actuators.
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