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Abstract:Active noise control (ANC) systems are used to reduce the sound noise level by generating antinoise signals.

M-Estimators are widely employed in ANC systems for updating the adaptive FIR filter taps used as the system controller.

Observing the state-of-the-art M-estimators design shows that there is a need for further improvements. In this paper, a

feedback ANC based on the reinforcement learning (RL) method is proposed. The sensitivity of the constant parameter

in the RL method is checked. The effectiveness of the proposed method is proven by comparing the results with previous

feedforward studies through computer simulations.
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1. Introduction

Reinforcement learning (RL) is learning what to do and how to map situations to actions so as to maximize a

numerical reward signal. Unlike most machine learning algorithms, the agent cannot decide which actions to

take; it must first discover what will yield the most reward by trying each of them [1]. In RL, an agent tries to

maximize a scalar evaluation (reward or punishment) obtained as a result of its interaction with the environment.

To solve a particular RL problem means finding an optimal policy to map the state of the environment to an

action, which in turn will maximize the accumulated future rewards [2]. In most cases, the next states are

associated with actions taken by an agent, so the immediate and future rewards are affected by those actions.

RL has been theorized based on how people or animals learn. Many RL-based control systems have been

successfully applied in robotics by several researchers [3–5].

Active noise control (ANC) systems are widely used to reduce the noise level, especially at low frequencies

[6–8]. These systems are generating noise by a loudspeaker, called antinoise, and based on the superposition rule

the primary noise level is reduced. There are two main control types of ANC systems: feedback and feedforward

[9].

In the feedforward type, the controller uses the primary noise as an input to generate the antinoise by the

loudspeaker and report the error signal using an error microphone. In the feedback type, the ANC system uses

only an error sensor and a secondary source, not using an “upstream” reference sensor [7]. The performance of

the feedback type is thus not expected to be as good as that of the feedforward, especially when dealing with

unpredictable noise.

The objective of this article is to prove the feasibility of using RL techniques when controlling ANC

systems and to investigate their performance by comparing the results with those of recently published papers.
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This paper is organized as follows: Section 2 gives an overview of the applied algorithms previously used.

The new proposed algorithm is described in Section 3. Simulation results that confirm the effectiveness of the

proposed algorithm are discussed in Section 4, and the concluding remarks are given in Section 5.

2. Previously applied algorithms

Block diagrams illustrated in Figure 1 show that ANC systems using the filtered-X (FX) least-mean-square

algorithm require a reference signal x (n) for generating the control signal y (n). To drive the control signal,

the reference signal x (n) is designed to pass through an adaptive filter W (z) to minimize the error sensor

signal e (n) [10,11]. The coefficients of W (z) are adapted using an algorithm called the least mean M-estimator

(LMME) algorithm. The M-estimator aims to reduce the effect of outliers in the data. An outlier is one that

appears to deviate markedly from other members of the sample in which it occurs [6]. Several M-estimators are

available so far, such as Huber [12], Hampel [13], FXLMP [14], SUNS [15], modified SUNS [16], and Fair [6].

These are composed of symmetric positive-definite functions that have minimums at zero [6].

Figure 1. Block diagrams of FXLMME-based ANC system: (a) feedforward type and (b) feedback type.

2.1. Fair algorithm [12]

The Fair algorithm is a slightly modified version of the Huber, smoothing its hard limitations. The Fair function

takes advantage of the L1 and L2 functions and the Huber function [6]. The parameters of adaptive filter W (z)

are updated according to the following equation [17].

W (n+1)=W (n) + µϕ (e (n)) [ŝ (n) ∗ x(n)] = W (n) + µ
e(n)

1 + |e(n)|
C

[ŝ (n) ∗ x(n)] (1)

Here, n is the time index, C indicates speed, µ is the step size, ŝ (n) is the impulse response of ŝ (z), and ∗
denotes the linear convolution. The stability, convergence time, and fluctuation of the algorithm are governed

by the step size ŝ (n) and ϕ (e (n)) [10]. The effectiveness of this algorithm in comparison to previous ones was

demonstrated by Wu and Qiu [6].

2.2. Reinforcement learning

In the machine-learning field, RL is a common algorithm that aims to acquire appropriate action-selection

policy based on environmental rewards [5]. In contrast with supervised and unsupervised learning, RL may not

use feedback for intermediate steps, but a reward (or punishment) may be given only after a learning trial has

been finished [18]. The reward is scalar and indicates whether the result was right or wrong (binary) or how

right or wrong it was (real value) [18]. This limited feedback characteristic makes it a relatively slow learning

mechanism, but attractive due to its potential to learn action sequences that are not known by a teacher [18].

The unique features of this learning are trial-and-error searching and delayed reward [1].
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3. New proposed algorithm

In the new proposed method, antinoise signals, y(n), are generated by implementing RL methods (Figure 2)

instead of combining M-estimator and adaptive FIR filters (Figure 1). In the proposed method the primary

noise signal is not used directly, but it is categorized as a feedback ANC type.

P (z) 

RL 

d(n) e(n) x(n) 

y(n) 

+ 

_

_ y’(n) 

S (z) 

Figure 2. Block diagram of proposed feedback ANC based on RL.

The bounds of signal y(n) are between 0 and 0.025, as illustrated in Figure 3. The curve in Figure 3

is obtained as follows: first, 958 random impulse-like noises are generated and implemented in the FXLMME

control algorithm (using the Fair algorithm as the LMME), and for each case the antinoise signal is calculated;

then the curve is plotted by averaging the 958 antinoise signals. This band is divided into m equal parts and

each part is considered as an action value and a corresponding action number.
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Figure 3. Average of Y(n) in 958 iterations in a FXLMME control.

Action V alue (m, p) =
0.025

m− 1
× (p− 1) p = 1, . . . , m (2)

Here, m is the number of actions and p indicates the action value index.

The rewards are assigned by a function described in the following equation. In the proposed reward

function, the agent gains a reward in any state according to the error of the system. The idea here is to use a

negative reward (punishment), increased by the system’s error.

R (n) = −Ae (n) = − [λAe (n− 1) + (1− λ) |e(n)|] (3)

Here, λ is a constant number and is set to be λ = 0.1, and e(n) is the error signal in step n illustrated in

Figure 1. As a policy, ε -greedy is chosen with different ε values. The challenge here is action selection for

minimization of the error signal, which will be described in Section 5.

2608



HOSEINI SABZEVARI and MOAVENIAN/Turk J Elec Eng & Comp Sci

4. Computer simulation

The performances of the algorithms based on the Fair, Huber, and Hampel functions were validated in a

previous study [2]. The effectiveness of the Fair algorithm in comparison to the other functions such as Huber

and Hampel was verified by Wu et al. [6]. Thus, in this section, emphasis is put on the Fair algorithm. Computer

simulations were carried out to verify the effectiveness of the proposed algorithms by taking the Fair algorithm

as a reference. All computer simulations in this study were performed using a PC running a MATLAB software

code implemented by the authors.

4.1. Noise model

One of the most famous noise models using probability density functions is the Gaussian mixture model (GMM):

f (x) = (1− γ)G (x) + ε I(x) (4)

Here, γ is a small constant number and G (x) and I(x) are Gaussian probability functions. The variance of

I(x) should be much larger than G (x).

4.2. Performance comparison

To compare the performance of algorithms, most studies have used average noise reduction (ANR), defined as

follows:

ANR (n) = 20 log10
Ad (n)

Ae (n)
(5)

Ae (n) = λAe (n− 1) + (1− λ) |e (n)| Ad (n) = λAd (n− 1) + (1− λ) |d (n)| (6)

Here, λ is set to be λ = 0.999 and d (n) and e (n) are disturbance and error signals respectively, which are

illustrated in Figure 1.

4.3. Parameter value

All the constant parameters are chosen to be the same values used by Wu and Qiu [6] in order to be able

to compare the results. S (z), P (z), and W (z) are modeled by FIR filters with 250, 800, and 350 taps,

consequently. The γ in the GMM is chosen as 0.05.

5. Results and discussion

In this section, the effectiveness of RL methods compared with the Fair algorithm is investigated in three

different GMMs, as are shown in Table 1. The distributions of G (x) and I (x) are chosen to be normal with

averages equal to zero. When increasing the number of cases, the impulsiveness of generating noise increases

(case3 > case2 > case1).

Table 1. Different conditions for the GMM.

Noise model Case1 Case2 Case3
variance I(x)
variance G(x) 10 100 1000

To apply the RL method, it is first necessary to specify the number of actions, the number of iterations,

and the action-selection method.
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Although by increasing the number of actions the controller would become more similar to a continuous

controller (the performance is expected to rise), the computational complexity increases rapidly. Increasing the

number of iterations may decrease the effect of randomized numbers, but the computational complexity will
grow.

Similar to the N-armed bandit problem [1], three action-selection methods are chosen:

Greedy (ε-greedy, ε = 0)

ε-greedy, ε = 0.01

ε-greedy, ε = 0.1

To analyze the effect of action number, iteration number, and action-selection method, the performances

of the Fair and RL algorithms are compared when case2 of the GMM is selected with 50,000 plays, as illustrated

in Figures 4 and 5.

Figure 4. (a) Comparison of Fair, greedy, and ε -greedy in case2, number of actions = 11, number of Iterations = 15;

(b) an arbitrary zooming of (a).

Figure 5. (a) Comparison of Fair, Greedy and ε -greedy in case-2, number of actions = 500, number of iterations = 30;

(b) an arbitrary zooming of (a).

In Figure 4 the numbers of actions and iterations are set to be 11 and 15, respectively. All the FIR filters

start with zero in taps value, so the absolute value of the error is growing at first. By assigning nonzero numbers

in each tap, the value of Ae (n) starts to decrease, so the value of ANR is rising rapidly. In Figure 5 the numbers

of actions and iterations are increased from 11 to 500 and from 15 to 30, respectively. By increasing the number

of actions, as it was expected, the final difference is declining for action-selection methods. In both figures,
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the ε-greedy methods show better performance than the greedy method because they continue to explore for

recognizing the optimal action.

The ε = 0.1 method explores more than ε = 0.01 and it is expected to find the optimal action quicker.

The advantage of ε-greedy over greedy methods depends on the number of plays [1]. According to the number of

plays and the results illustrated in Figures 4 and 5, the number of actions is set to be 500 and the action-selection

method is chosen to be ε = 0.1 for the following simulation.

Figure 6 illustrates the distribution of action selection when the number of plays is 50,000. For example,

Figure 6 shows that action number 238 (while the number of actions and action value index were equal to

m = 500 and p = 238, respectively) was chosen 37,545 times during 50,000 plays (nearly 75% of all the action

selections).

Figure 7 illustrates the error signal, e(n), of the proposed method with the number of iterations and

number of plays set to 1500 and 3000, consequently. The error curve can be categorized into three sections, as

follows:
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Figure 6. Distribution of action selection ε -greedy

ε = 0.1.

Figure 7. Error value in 1500 iterations and 3000 plays.

Section1: Increasing in error value until all the FIR taps get values

Section2: Exploring

Section3: Exploiting

As was mentioned before, in section1 taps values are changed to nonzero values. During the exploring

section (section2), the value of the error is increasing rapidly because the optimal action has not yet been

specified, but in the exploiting area, after finding the optimal action, the error is decreasing smoothly.

These findings coincide with the kind of error behavior mentioned in [1]. Figure 8 illustrates the

performances of the Fair and RL algorithm with three different GMM noise model cases. Here the number

of iterations, number of actions, and ε are equal to 20, 500, and 0.1, respectively. We see that RL shows

faster initial convergence than Fair in all cases, as demonstrated in Table 2. In GMM cases, by increasing

the impulsiveness of noise, the meeting point of Fair and RL curves shows a decrease from 27,785 in case1 to

25,840 in case2 and 17,770 in case3. Table 3 demonstrates the maximum performance difference between the

RL method and Fair algorithm after the meeting point in GMM cases. The maximum of differences between

algorithms is increased, as shown in Table 3, while the steady performances in all cases remain similar. Despite

the fact that the proposed method can be categorized as feedback ANC type, because of RL qualities it shows

an acceptable result in comparison to the feedforward type.
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Figure 8. Comparison of Fair and RL algorithms in feedforward type: (a) case1, (b) case2, (c) case3.

Table 2. Comparison of Fair and RL convergences into 90% of their final values.

Noise model Case1 Case2 Case3
Fair 22,515 20,721 18,305
RL 9067 11,178 11,067
Difference 13,448 9543 7238

Table 3. Maximum performance difference between RL method and Fair algorithm.

Noise model Case1 Case2 Case3
Maximum difference value (dB) 0.42 0.48 1

6. Conclusion

In this paper, it is shown that using RL instead of the common FIR filters and M-estimators results in

considerable improvement of the sensitivity with respect to the constant parameters. The computer simulations

conducted proved that it is robust and the initial convergence rate is fast. By increasing noise impulses, the

meeting point and the convergence differences show decreases from 27,785 and 12,448 in case1 to 17,770 and

7238 in case3, respectively, while the maximum performance differences increase from 0.42 in case1 to 1 in case3.

Numerical simulations demonstrate that the proposed feedback method has faster initial convergence compared

to the Fair algorithm.
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