
Turk J Elec Eng & Comp Sci

(2017) 25: 3175 – 3187

c⃝ TÜBİTAK

doi:10.3906/elk-1608-112

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

TSGV: a table-like structure-based greedy method for materialized view selection

in data warehouses

Mohammad Karim SOHRABI∗, Hossein AZGOMI
Department of Computer Engineering, Semnan branch, Islamic Azad University, Semnan, Iran

Received: 10.08.2016 • Accepted/Published Online: 23.12.2016 • Final Version: 30.07.2017

Abstract: Since a data warehouse deals with huge amounts of data and complex analytical queries, online processing

and answering to users’ queries in data warehouses can be a serious challenge. Materialized views are used to speed up

query processing rather than direct access to the database in on-line analytical processing. Since the large number and

high volume of views prevents all of the views from being stored, selection of a proper subset of views to materialization

is inevitable. Proposing an appropriate method for selecting the optimal subset of views for materialization plays an

essential role in increasing the efficiency of responding to data warehouse queries. In this paper, a greedy materialized

view selection algorithm is represented, which selects a proper set of views for materialization from a novel table-like

structure. The information in this table-like structure is extracted from a multivalue processing plan. This table-like

structure-based greedy view selection (TSGV) method is evaluated using the queries of an analytical database, and

the query-processing and view maintenance costs of the selected subset are both considered in this evaluation. The

experimental results show that TSGV operates better than previously represented methods in terms of time.

Key words: Materialized view selection, multivalue processing plan, data warehouse, on-line analytical processing,

decision support systems

1. Introduction

The main information support part of many decision support systems is a data warehouse, which is a subject-

oriented, integrated, time-variant, and nonvolatile collection of data [1]. A data warehouse has a large number

of records collected from different data sources. Query processing is a very time-consuming operation in data

warehouses due to the large volume of data and the complex nature of analytical queries. Materializing

intermediate views that are constructed to answer some queries can speed up the processing and answering

of the other queries.

Since a very large number of intermediate views can be constructed in processing several queries of a

data warehouse, it is impossible to store all of these views. Furthermore, when modifying the base tables, it is

necessary to update materialized intermediate views, which causes another time overhead [2]. These issues lead

to an important problem called view selection for materialization, or materialized view selection, which aims at

selecting a (quasi-)optimal subset of intermediate views for storage in the available memory space.

Materialized view selection methods have used different structures for organizing the views obtained from

queries. One of the most common structures is multivalue processing plan (MVPP), a forest in which roots are

∗Correspondence: amir sohraby@yahoo.com

3175

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

the queries, leaves are the base tables, and other middle nodes include different relational algebra operators,

such as selection, projection, and join operators, which are used to create the given queries [3]. AND-OR DAGs

[4] and data cube lattices [5] are other well-known structures of materialized view selection methods. In addition

to algorithms using the above structures to organize intermediate extracted views of queries, there are some

methods that do not use any structure and only change the queries by rewriting them such that other queries

can use the obtained results. Some other methods also identify the candidate views based on syntactic analysis

of workload. These methods study the workload and select a subset of relations that store one view or more if

and only if selection of this subset causes a significant decrease in workload cost.

Based on their limitation assumption, materialized view selection methods can be divided into three

categories. Some of the proposed methods consider no limitations for selecting the views. Therefore, the view

selection problem selects a set of views to minimize the query processing and view maintenance costs. However,

some other methods consider the limitation of storage space. In these methods, an appropriate subset of views

should be selected considering the limitation of storage space. Some other methods consider limitation in view

maintenance cost; in these methods, the time required for keeping the stored views updated is limited.

In this paper, a new view selection method, called table-like structure-based greedy view selection

(TSGV), is presented. This method uses a table-like structure with information extracted from MVPP structure

nodes and employs a greedy algorithm to select appropriate views from the present nodes this table-like structure.

Both view maintenance costs and query processing costs can be considered in TSGV.

The remaining parts of the paper are organized as follows: Section 2 represents a literature review of

the problem. A formal definition of materialized view selection and the new proposed method are proposed in

Section 3. Furthermore, TSGV is explained with a detailed example and its table-like structure is described

in Section 3, along with its algorithm. In Section 4, the proposed method is practically and experimentally

evaluated and compared to other similar methods. The work is concluded in Section 5.

2. Related works

Since 1979, when the first algorithm for materialized view selection was presented [6], great efforts have been

made to provide better and more efficient solutions for this problem. Several view selection algorithms can be

divided into four categories: deterministic algorithms, randomized algorithms, hybrid algorithms, and constraint

programming methods [7].

Deterministic algorithms are the first category of algorithms considered by researchers. Several methods

in this category were presented between 1996 and 2005. Some of these algorithms have used MVPP as their

query organizer’s structure [3,8]. An MVPP-based greedy algorithm was presented in [3] for view selection

that minimizes both query processing and view maintenance costs without any limitations. To guarantee an

optimal solution, this paper has modeled the materialized view selection problem as a 0–1 integer programming

problem. Another framework for designing materialized views was introduced in [8]. In fact, this paper defined

MVPP for the first time.

AND-OR DAG is another structure that has been used by some view selection methods based on

deterministic algorithms [4,9]. The method presented in [4] selects views from the AND-OR DAG structure

using a greedy heuristic. Combining volcano search strategy and a greedy heuristic and operating some simple

modifications on it, this paper introduced three cost-based heuristic algorithms. The problem with all these

methods is that they only minimize the query-processing cost without paying any attention to view maintenance

cost. Mistry et al. [9] proposed two new concepts for materialization: transient materialization for selecting

3176

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

shared expressions and indices of queries, and permanent materialization for selecting other expressions and

indices. Selecting views for transient and permanent materialization, along with selecting the best maintenance

plan for each view, are three issues that have been addressed by the proposed framework of this work.

More recent deterministic-algorithm–based methods have used a cube lattice as their structures [10,11].

An extended-lattice–based greedy algorithm for view selection in distributed data warehouses was proposed in

[10]. The concept of an aggregation lattice has been extended in this paper to capture the distributed semantics.

Storage, maintenance, communication, and computation costs have all been supported by this extended lattice.

The cost model in [10] was divided into monotonic and nonmonotonic cost models, and a monotonic benefit

function that is only related to the size of the evaluated views was used. Another distributed approach to view

selection was presented in [11]. Under storage limitation, a greedy algorithm was proposed in [11], which used

an extended cube lattice to address materialized view selection.

There are other deterministic methods that do not use any structure to find the optimal subset of views

for materialization. For example, Theodoratos et al. [12] studied the materialized view problem based on

space-limited query rewriting and [13] is based on a syntactical analysis from workload that selects views with

limited memory, disregarding view maintenance cost.

Although deterministic-algorithm–based methods are a significant part of materialized view selection

approaches, newer methods have tried to reduce the time complexity of view selection using heuristics and

settling for suboptimal responses. Several artificial intelligence techniques and soft computing tools have been

used to make more efficient randomized algorithms for materialized view selection. Genetic algorithms and

other types of evolutionary computing, simulated annealing and other types of optimization methods, and data-

mining techniques are the most common approaches used for this category of view selection methods. Similar to

the first category of algorithms, several methods in this category employ different well-known query structures

to improve their efficiency [14–18].

An MVPP-based unbounded genetic approach was presented for view selection in [14]. A central and a

parallel simulated annealing for materialized view selection were proposed in [15] and [16], respectively. Both

algorithms were based on MVPP, and both were unbounded. Randomized local search algorithms were employed

for view selection in [17]. The proposed algorithm provides a near-optimal solution within limited time and

limited storage size. Furthermore, it is appropriate for dynamic environments. Another genetic algorithm for

materialized view selection was presented in [18], in which its initial population is generated based on database

tuning to allow the genetic algorithm to converge quickly.

Using data-mining techniques to view selection is one of the most recent approaches of this algorithm class.

There are different types of data-mining processes [19]. Frequent pattern mining is one of the most common

mining techniques used for materialized view selection. Several centralized, parallel, and distributed algorithms

have been presented that attempt to improve pattern-mining efficiency [20–23]. Recently, some materialized

view selection methods have tried to use the benefits of pattern mining to speed up the view-selection process

[1,24,25].

The third category of view-selection algorithms contains hybrid algorithms that combine deterministic

and randomized algorithms to improve their efficiency. For example, a hybrid algorithm was proposed in [26]

that combines greedy and genetic algorithm to optimize queries, choose the best processing plan, and select the

best set of materialized views. This hybrid algorithm is based on MVPP.

Constraint programming is a programming technique used to solve combinatorial problems. Some

materialized view-selection methods have used approaches based on constraint programming to find an optimal

3177

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

set of materialized views. The view-selection problem should be modeled as a constraint satisfaction problem

in this class of algorithms. In [27], it was proved experimentally that this class of algorithms performs better

than randomized methods.

An academic method titled 2PO was presented in [28] for selecting appropriate views from an MVPP

structure and without any special limitation. In this method, the MVPP structure is optimized by finding the

mutual subexpressions in the queries, and then appropriate views are selected from this optimized MVPP. The

2PO method minimizes the query-processing and view maintenance costs after the optimization of MVPP.

3. Statement of the problem and method proposal

In this section, the view selection problem is formally defined and MVPP is described. Then a new greedy

method and the cost function of its view-selecting approach is proposed. Finally, the proposed method’s

algorithm is presented and explained with an example.

3.1. Mathematical definition of the problem

Materializing an optimal subset of views is the most common method in reducing query response times. In fact,

storing a set of views and responding to the queries using these views can significantly affect the processing rate

of the queries. The view selection problem can be expressed mathematically as follows:

Assume R = {R1 , R2 , ..., Rr } to be a set of base relations of a dataset. Let Q = {Q1 , Q2 , ..., Qq } be

a set of queries defined on R, and let N = {N1 , N2 , .., Nn } be the set of all the other nodes of MVPP, each

of which represents an intermediate view that should be constructed to respond to a query. The materialized

view-selection problem aims at selecting an appropriate (possibly optimal) set of views in the form of M =

{V1 , V2 , .., Vm} , (obviously, M is a subset of N) in a way that the queries are responded to with the lowest

possible cost, based on resource costs like storage space and view maintenance.

3.2. An example of MVPP

In this section, an example of a small data warehouse system and the resulting MVPP is presented and this

example is used to show the proposed method’s details. The data warehouse in this example is a simplified

version constructed from the TPC-H database (available from http://www.tpc.org/tpch/). Relations and

attributes of this version are considered a follows:

Customer(C custkey, C name, C address)

Order(O orderkey, C cusktkey, O orderdate)

Supplier(S suppkey, S nationkey)

Lineitem(L orderkey, L suppkey, L tax, L quantity)

Nation(N nationkey, N name)

Moreover, assume that there are three queries in this system. These queries are presented in Figure 1.

Some of these queries overlap in temporary intermediate views, which are the results of relational algebra

operators. In calculating query-processing and view maintenance costs, “k” stands for thousand, “m” for million,

and “b” for billion.

Now assume there are 150k tuples in Customer, 227k tuples in Order, 10k tuples in Supplier, 6m tuples

in Lineitem, and 25 tuples in Nation. Considering these relations and queries, the resulting MVPP is presented

in Figure 2.

3178

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

Figure 1. Queries of the given example.

Figure 2. MVPP of the given example.

Each node shows one view. Queries are placed in roots and base relations are in leaves (Figure 2).

Considering the mentioned items, each node’s cost is given beside it. The frequency of each query is shown

3179

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

on top of it. The query-processing cost of each node equals the cost of creating that node multiplied by total

frequency of the queries using that node. The view maintenance cost of each node equals the cost of creating

that node multiplied by the number of relations used for producing that node. For example, consider tmp4.

The query processing cost for tmp4 is equal to (5 + 3 + 1.5) × (1t365b582m + 6m + 227k597 + 150k) and

view maintenance cost equals 2 × (1t365b582m + 6m + 227k597 + 150k).

As observed in Figure 2, some of the views, like tmp4, are jointly used in a number of (or even all) queries.

This view can be appropriate for materialization. However, the query-processing and view maintenance costs

related to them should be considered. The goal here is to find a set of optimal views with minimum query-

processing and view maintenance costs.

3.3. TSGV method

In most of the methods based on MVPP, the investigation mechanism of views consists of two main MVPP-

scanning phases. The first scan selects the members of the initial set of candidate views for materialization, and

the second one eliminates selected views that can result from other members of this set. Therefore, each node

in which all of its previous nodes (in MVPP structure) are materialized must be deleted from the materialized

nodes set because all of the queries that need this node for constructing their own results can be responded to

using its previous nodes. To omit these types of nodes, it is necessary to evaluate the materialized node set and

the MVPP twice, which is time-consuming. The proposed TSGV method aims to obtain the optimal nodes set

by only scanning the MVPP once. For this purpose, TSGV should investigate the MVPP nodes in a bottom-up
manner.

Now consider the MVPP nodes in Figure 2. If the queries are in the zero level, then tmp8 and tmp10

are both placed in level 2, while tmp8 has been used in creating tmp10 and must certainly be considered before

that. To solve this problem, a new measure is introduced for each node, called Dfr, which is defined as the

maximum distance of that node from MVPP relations. Formally, if Dist(Ni , Rj) is defined as the number of

intermediate nodes between Ni and Rj , then Dfr will be defined as Dfr(Ni) = max
∀Rj∈R

(Dist(Ni, Rj)).

For example, Dfr(tmp1) = 1, Dfr(tmp8) = Max(2,4,3) = 4 and Dfr(tmp10) = Max(2,3,5,4) = 5. Using

Dfr, the views can be arranged in ascending order for bottom-up investigation. Therefore, according to this

parameter, first tmp8 and then tmp10 are studied for materialization.

3.3.1. Table-like structure (TLS)

To investigate the nodes using Dfr, a new structure containing information from all nodes available in MVPP

is presented, the table-like structure of views (TLS). The proposed method is based on TLS. In each TLS row,

there is information related to one of the MVPP’s nodes. Each TLS row includes the following:

• Node: Specified as v , which is the node’s unique ID.

• Dfr : Dfr(v) = max
∀Rj∈R

(Dist(v,Rj)), in which Dist(v, R j) is the number of intermediate nodes between

node v and relation Rj .

• Pre: The set of all previous nodes of v in the MVPP.

• Cq : The query processing cost of the node v , calculated according to Cq(v) =
∑

qϵQ fq×Cq
a(v), in which

fq is query frequency and Cq
a is the access cost of query q to the node v [3].

3180

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

• Cm: The view maintenance cost of the node v , calculated according to Cm(v) =
∑

rϵR fu×Cr
m(v), in

which fu is the update frequency and Cr
m is the maintenance cost of node v based on change of base

relation r [3].

TLS can be obtained easily by one scan of the MVPP. After obtaining the TLS, its rows are ordered in ascending

order using Dfr, so that the nodes closer to the relations are examined earlier. The TLS resulting from the

example MVPP is presented in Figure 3.

Figure 3. TLS of the given example.

Since the nodes have been ordered based on Dfr in the TLS, nodes closer to base relations examined

sooner, and thus there is no redundant node in the TLS and there is no need to rescan the TLS to eliminate

redundant selected nodes.

3.3.2. Cost function

After determining the investigation order of the nodes, the appropriate nodes for materialization must be

specified. In order to determine appropriate nodes, profitability of the nodes must be obtained. Different

relations have been presented in order to study the profitability of the nodes or views in different methods.

These relations usually consider the query-processing cost, the view maintenance cost, or both. The query-

processing cost of one node, from another point of view, is in fact the profit gained after materializing the node,

because after materialization, there is no need for that node or view to be created from the basic relations.

Furthermore, from another point of view, the view maintenance cost equals the cost we should afford for a

materialized node after updating the base relations.

In the given example, we pay attention to both costs. In addition, in studying each node, the query-

processing total costs of previously materialized nodes (the Pre set) are considered, because if a node is

materialized while a number of its previous nodes are also materialized, some of the resources will be lost.

This cost is calculated through Cqmp (v)=
∑

uϵPre(v)
∩

M Cq
a(u), in which M is the total materialized nodes.

The cost function of the proposed method is in form of Eq. (1).

B(v) = α× Cq(v) + β × Cqmp(v) + γ × Cm(v), (1)

where α , β , and γ are the adjustment factors of the mentioned costs. Considering these coefficients, the

proposed cost function is flexible. For example, if updates of the relations are not important and we want to

3181

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

ignore view maintenance costs, then we can give γ a value of zero. However, if we want to consider this cost

and subtract it from the profit obtained from materialization, we should give γ a value of –1. Other coefficients

can be given values in the same way.

Now we should evaluate the nodes in the TLS individually using this cost function. While evaluating a

node, if its profitability is higher than zero, it is added to the set of materialized nodes and all of its Pre nodes

are omitted from M if materialized, but if the profitability of a node is zero or less than zero, it will be ignored.

After studying all nodes in the view table, the set of optimal nodes is found.

3.3.3. TSGV algorithm

After constructing the TLS, the Dfr of each TLS node should be calculated. Figure 4 shows the pseudocode of

the recursive algorithm for calculating Dfr from TLS.

Figure 4. The pseudocode of the recursive algorithm calculating Dfr.

After calculating the Dfr of each TLS node, TSGV calculates the cost function for each node of this

structure. If the utility of a node is equal to or less than zero, TSGV ignores it, and in other cases TSGV

inserts the node to the materialized views list and eliminates its Pre nodes from this list. The pseudocode of

the TSGV algorithm is shown in Figure 5.

The inputs of the algorithm are the MVPP and the adjusting parameters. It first constructs the TLS

from the MVPP. Then this structure is ordered in ascending order based on Dfr. Later, the candidate views

for materialization will be selected by TSGV and inserted in M . For this purpose, the Cqmp cost of each node

of the ordered TLS is calculated first. Then the utility of the node is calculated according to Eq. (1). If this

utility is higher than zero, it is added to M , and any of its Pre nodes that exist in M will be removed.

The results of running TSGV on the example MVPP given in Figure 2 with values of α = 1, β = –1,

and γ = –1 are as follows:

M = { }

B (tmp1) = [(1) × 1m425k] + [(–1) × 0] + [(–1) × 150k] > 0

Pre(tmp1)
∩

M = Ø

M = {tmp1}

B (tmp3) = [(1) × 57m] + [(–1) × 0] + [(–1) × 6m] > 0

Pre(tmp3)
∩

M = Ø

M = {tmp1, tmp3}

B (tmp5) = [(1) × 225k] + [(–1) × 0] + [(–1) × 150k] > 0

3182

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

Figure 5. The pseudocode of the TSGV algorithm.

Pre(tmp5)
∩

M = Ø

M = {tmp1, tmp3, tmp5}

B (tmp7) = [(1) × 80k] + [(–1) × 0] + [(–1) × 10k] > 0

Pre(tmp7)
∩

M = Ø

M = {tmp1, tmp3, tmp5, tmp7}

B (tmp9) = [(1) × 125] + [(–1) × 0] + [(–1) × 25] > 0

Pre(tmp9)
∩

M = Ø

M = {tmp1, tmp3, tmp5, tmp7, tmp9}

B (tmp2) = [(1) × 3m587k171.5] + [(–1) × 1m425k] + [(–1) × 377k597] > 0

Pre(tmp2)
∩

M = {tmp1}
M = {tmp2, tmp3, tmp5, tmp7, tmp9}

B (tmp4) = [(1) × 12t973b89m587k171.5] + [(–1) × (3m587k171.5 + 57m)] +

[(–1) × 2t731b176m755k149] > 0

Pre(tmp4)
∩

M = {tmp2, tmp3}
M = {tmp4, tmp5, tmp7, tmp9}

B (tmp6) = [(1) × 2t48b384m157k174] + [(–1) × (12t973b89m587k171.5 + 22k)] +

[(–1) × 4t96b768m143k348] < 0

3183

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

B (tmp8) = [(1) × 10t997b548m620k776] + [(–1) × (12t973b89m587k171.5 +80k)] +

[(–1) × 4t124b80m732k791] < 0

B (tmp10) = [(1) × 6t873b581m720k985] + [(–1) × 125] + [(–1) × 5t498b865m362k388] > 0

Pre(tmp10)
∩

M = {tmp9}
M = {tmp4, tmp5, tmp7, tmp10}

B (result1) = [(1) × 2t48b385m522k952.5] + [(–1) × 0] + [(–1) × 4t96b771m45k905] < 0

B (result2) = [(1) × 4t124b83m464k348] + [(–1) × 0] + [(–1) × 4t124b83m464k348] = 0

B (result3) = [(1) × 6t873b586m255k580] + [(–1) × 6t873b581m720k985] +

[(–1) × 5t498b869m4k464] < 0

TSGV selected M = {tmp4, tmp5, tmp7, tmp10} as the optimal views set for materialization.

4. Experimental results

The TPC-H database was used to evaluate TSGV (http://www.tpc.org/tpch/). This database includes 8

relations of region, nation, supplier, customer, orders, line item, part, and partsupp

(http://www.tpc.org/tpc documents current versions/pdf/tpc-h v2.17.1.pdf). In addition, 60 queries were used

to evaluate the proposed method. No limitation has been considered in our evaluations. The evaluation was

conducted using an Intel 2410M 2.3GHz Core i5 2.9 GHz processor, 4 GB of DDR3 main memory, and a 600

GB SATA hard disk.

In order to study TSGV, its functionality was compared with 2PO [28], which is a recently presented,

MVPP-based, dynamic view selection method. 2PO optimizes the MVPP structure by finding the common

subexpressions in queries and then selecting the views from the optimized MVPP. For evaluation, both methods

were first tested with 60 queries and the query-processing and view maintenance costs and the total resulting

cost were calculated. The adjustment coefficients were set as α = 1, β = –1, and γ = –1 for TSGV. The costs

resulting from conducting both methods are presented in the Table.

Table. Cost comparison of TSGV and 2PO.

Total cost
View (a) Query-processing Number of

Method
maintenance cost cost materialized views

9,852,234,291,325 6,329,383,146,254 3,522,851,145,071 37 2PO
9,852,241,256,761 6,329,368,000,604 3,522,873,256,157 42 TSGV

The total cost of the 2PO method is slightly less than total cost of the TSGV. This is because the MVPP

structure is optimized in 2PO and, as a result, the total number of views is reduced. Therefore, it is possible

that the number of views selected for materialization in 2PO was lower than in TSGV. Therefore, there is

the possibility of cost reduction in the 2PO method. However, the total cost of the TSGV does not differ

significantly from the total cost of 2PO method, and it performs better than other deterministic methods in

this field.

We also compared TSGV and 2PO methods in terms of time. First, the queries were divided into four

3184

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

categories: A, B, C, and D. The queries of each category were more complicated than the previous one, such

that category A contained the simplest queries and category D contained the most complex.

Calculating the selection time of the views began with 5 queries for workload and the performance times

of both methods were calculated. Then one query was added to the workload in each stage and performance

times were calculated for both methods. This continued until all 15 queries of each category were eventually

added to the workload, and the performance time of each method was calculated for each category of queries.

View selection in each stage was separate and static, and adding the queries does not mean that view selection

process is dynamic. The results of these evaluations are presented in Figure 6.

Figure 6. TSGV and 2PO temporal comparison diagram.

TSGV performed better than 2PO in all evaluations. This is because in TSGV, the MVPP is directly

used for selecting the view, and necessary information is extracted and placed in the view table. However,

in 2PO, the MVPP is created first. Then the common subexpression between queries is identified and the

optimized MVPP is rebuilt. Therefore, the MVPP is built twice, which is time-consuming.

3185

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

5. Conclusion

Selection of views for materialization is an important issue in data warehouses. Materialized views help the

data warehouse to increase the response rate of its online analytical queries. The purpose of the materialized

view selection problem is to select the optimal subset of views that receive a high number of requests so that

queries can be more quickly answered using them. A number of methods have been introduced so far for

solving the view-selection problem. In this paper, a deterministic method based on a novel TLS called TSGV

is presented for solving the view-selection problem. Information in this TLS was extracted from the MVPP.

The proposed cost function of this paper considered query-processing costs and view maintenance costs and the

query-processing cost of the previous materialized nodes. The practical evaluation showed that TSGV performs

better than similar methods in terms of time costs. The proposed TLS of this paper can extract its information

from other view structures, such as AND-OR DAGs or cube lattices, rather than an MVPP as a future work.

This TLS may also be combined with randomized algorithms or hybrid algorithms for other future works.

References

[1] Sohrabi MK, Ghods V. Materialized view selection for data warehouse using frequent itemset mining. Journal of

Computers 2016; 11: 140-148.

[2] Yu D, Dou W, Zhu Z, Wang J. Materialized view selection based on adaptive genetic algorithm and its implemen-

tation with Apache hive. IETE Tech Rev 2015; 8: 1091-1102.

[3] Yang J, Karlapalem K, Li Q. Algorithms for materialized view design in data warehousing environment. VLDB

1997; 97: 25-29.

[4] Roy P, Seshadri S, Sudarshan S, Bhobe S. Efficient and extensible algorithms for multi query optimization. ACM

SIGMOD Record 2000; 29: 249-260.

[5] Harinarayan V, Rajaraman A, Ullman JD. Implementing data cubes efficiently. ACM SIGMOD Record 1996; 25:

205-216.

[6] Roussopoulos N. View indexing in relational databases. ACM Trans Database Syst 1982; 7: 258-290.

[7] Mami I, Bellahsene Z. A survey of view selection methods. ACM SIGMOD Record 2012; 41: 20-29.

[8] Yang J, Karlapalem K, Li Q. A framework for designing materialized views in data warehousing environment.

ICDCS 1997.

[9] Mistry H, Roy P, Sudarshan S, Ramamritham K. Materialized view selection and maintenance using multi-query

optimization. ACM SIGMOD Record 2001; 30: 307-318.

[10] Bauer A, Lehner W. On solving the view selection problem in distributed data warehouse architectures. SSDBM

2003; 43-51.

[11] Ye W, Gu N, Yang G, Liu Z. Extended derivation cube based view materialization selection in distributed data

warehouse. WAIM 2005; 245-256.

[12] Theodoratos D, Ligoudistianos S, Sellis T. View selection for designing the global data warehouse. Data Knowl Eng

2001; 39: 219-240.

[13] Agrawal S, Chaudhuri S, Narasayya VR. Automated selection of materialized views and indexes in SQL databases.

VLDB 2000; 496-505.

[14] Horng JT, Chang YJ, Liu BJ. Applying evolutionary algorithms to materialized view selection in a data warehouse.

Soft Computing 2003; 7: 574-581.

[15] Derakhshan R, Dehne FKHA, Korn O, Stantic B. Simulated annealing for materialized view selection in data

warehousing environment. Databases and Applications 2006; 89-94.

3186

http://dx.doi.org/10.17706/jcp.11.2.140-148
http://dx.doi.org/10.17706/jcp.11.2.140-148
http://dx.doi.org/10.1145/335191.335419
http://dx.doi.org/10.1145/335191.335419
http://dx.doi.org/10.1145/235968.233333
http://dx.doi.org/10.1145/235968.233333
http://dx.doi.org/10.1145/319702.319729
http://dx.doi.org/10.1145/2206869.2206874
http://dx.doi.org/10.1145/376284.375703
http://dx.doi.org/10.1145/376284.375703
http://dx.doi.org/10.1016/S0169-023X(01)00041-6
http://dx.doi.org/10.1016/S0169-023X(01)00041-6
http://dx.doi.org/10.1007/s00500-002-0243-1
http://dx.doi.org/10.1007/s00500-002-0243-1

SOHRABI and AZGOMI/Turk J Elec Eng & Comp Sci

[16] Derakhshan R, Stantic B, Korn O, Dehne FKHA. Parallel simulated annealing for materialized view selection in

data warehousing environments. ICA3PP 2008; 121-132.

[17] Kalnis P, Mamoulis N, Papadias D. View selection using randomized search. Data Knowl Eng 2002; 42: 89-111.

[18] Chaves LWF, Buchmann E, Hueske F, Bohm K. Towards materialized view selection for distributed databases.

ACM EDBT 2009; 1088-1099.

[19] Sohrabi MK, Akbari S. A comprehensive study on the effects of using data mining techniques to predict tie strength.

Comput Hum Behav 2016; 60: 534-541.

[20] Sohrabi MK, Barforoush AA. Efficient colossal pattern mining in high dimensional datasets. Knowl-based Syst 2012;

33: 41-52.

[21] Sohrabi MK, Barforoush AA. Parallel frequent itemset mining using systolic arrays. Knowl-based Syst 2013; 37:

462-471.

[22] Sohrabi MK, Roshani R. Frequent pattern mining using cellular learning automata. Comput Hum Behav 2017; 68:

244-253.

[23] Sohrabi MK, Ghods V. Top-down vertical itemset mining. ICGIP 2014.

[24] Aouiche K, Darmont J. Data mining-based materialized view and index selection in data warehouses. JIIS 2009;

33:1: 65-93.

[25] Nalini T, Kumaravel A, Rangarajan K. An efficient I-MINE algorithm for materialized views in a data warehouse

environment. Computer Science Issues 2011; 8: 366-375.

[26] Zhang C, Yao X, Yang J. An evolutionary approach to materialized views selection in a data warehouse environment.

IEEE T Syst Man Cybern C 2001; 31: 282-294.

[27] Mami I, Coletta R, Bellahsene Z. Modelling view selection as a constraint satisfaction problem. DEXA 2011; 396-410.

[28] Suchyukorn B, Auepanwiriyakul R. Dynamic materialized view selection using 2PO based on re-optimized multiple

view processing plan. International Journal of Advancements in Computing Technology 2013; 5: 150-167.

3187

http://dx.doi.org/10.1016/S0169-023X(02)00045-9
http://dx.doi.org/10.1016/j.chb.2016.02.092
http://dx.doi.org/10.1016/j.chb.2016.02.092
http://dx.doi.org/10.1016/j.knosys.2012.03.003
http://dx.doi.org/10.1016/j.knosys.2012.03.003
http://dx.doi.org/10.1016/j.knosys.2012.09.005
http://dx.doi.org/10.1016/j.knosys.2012.09.005
http://dx.doi.org/10.1016/j.chb.2016.11.036
http://dx.doi.org/10.1016/j.chb.2016.11.036
http://dx.doi.org/10.1109/5326.971656
http://dx.doi.org/10.1109/5326.971656

	Introduction
	Related works
	Statement of the problem and method proposal
	Mathematical definition of the problem
	An example of MVPP
	TSGV method
	Table-like structure (TLS)
	Cost function
	TSGV algorithm

	Experimental results
	Conclusion

