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Abstract:The aim of this work is to present a new method for cerebral MRI image segmentation based on modification

of the fuzzy c-means (FCM) algorithm. We used local and nonlocal information distance in the initial function of the

robust FCM model. The obtained results of the classification of MRI images showed the effectiveness of the suggested

model. Calculation of the similarity index confirms that our method is well adapted to MRI images even in the presence

of noise.
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1. Introduction

Many acquisition methods exist in medical imaging such as magnetic resonance imaging (MRI), ultrasounds,

X-rays (radiography), and photon emission tomography (PET). MRI has undeniable qualities for the contrast

and characterization of brain tissues. Segmentation is an important step of medical image processing. It is

carried out before the steps of visualization and analysis of anatomical structures.

Several segmentation models have been proposed [1–5]. We can group them into two categories [6]:

unsupervised segmentation [7], which aims to automatically separate an image without prior knowledge of classes

(i.e. it does not require any training base or any preliminary tasks related to manual labeling), and supervised

segmentation, [8] which consists of determining the groups that we wish to achieve before segmentation (i.e.

segmentation by Markov’s fields [2] and neural networks [3]). In our work, we will limit the study to fuzzy

c-means (FCM) segmentation, introduced by Pham et al. [9], which is based on the fuzzy unsupervised

classification algorithm. Each point in the data set belongs to a cluster with a certain degree. All the clusters

are characterized by their gravity center. Weijie and Giger [10] and Singh et al. [11] adapted this segmentation

for MRI image segmentation. Brandt et al. [12] used the segmentation to measure cranial spinal liquid volume,

white matter, and gray matter in pediatric brain MRIs. Clark et al. [13] used it as a stage of initialization in an

expert system in order to segment tumor volumes or edema on cerebral MRI images. Menon and Ramakrishnan

used it to segment tumors [14].

Segmentation FCM is used in cerebral MRI image analysis [15]. Its flexibility allows the pixel to belong

to several classes; it provides good repair performance in the presence of the partial volume effect [16]. However,

the standard FCM algorithm does not compensate for intensity inhomogeneities [17]. To overcome this problem,
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several approaches were proposed [6,18–20]. Pham [18] proposed a robust method that takes into account only

the membership functions of the voxel neighbor in order to force the segmentation using a regulating term in the

standard function. Several other models were proposed for the same purpose. Sahbi and Nozha [21] introduced

a regulating term based on entropy. Sathya et al. [22] used a quadratic regulating term. Wang et al. [23],

Cai et al. [24], Ahmed et al. [25], and Bazin and Pham [26] incorporated special information in the regulating

term. The limits of the proposed improvements have led us to introduce in our method an approach that can

minimize noise sensitivity while taking into account the spatial information of pixels.

The aim of our work is to study the FCM and robust FCM (RFCM) models introduced by Pham [18]. We

will then present our approach and the results obtained from brain MRIs by comparing them to those obtained

by other approaches.

2. Methods

The classic FCM segmentation algorithm was applied successfully to several classification varieties. The FCM

standard algorithm can be described by the following theory.

Let us consider that X = {xj/xj ∈ R, j ∈ {1, . . . n}} is a vector space where n ∈ N represents the

number of pixels in the image and V = {vi/vi ∈ R, i ∈ {1, ..., c}} is a prototype vector space that characterizes

the classes, where c , c ∈ N represents the number of classes (1 < c < n). In the FCM segmentation case, xj

is not assigned to a single class, but rather to several classes via different degrees of membership uji . The aim

of the classification algorithm is not only to calculate the centers of a class vi , but also to determine all degrees

of membership to the classes of the vectors.

U = {uji/uji ∈ Rn×c, j ∈ {1, ..n} , i ∈ {1, ..., c}} represents the fuzzy separation matrix that should

satisfy the following conditions:

0 ≤ uji ≤ 1 ∀i ∈ [1, c] ,∀j ∈ [1, n] (1)

c∑
i=1

uji = 1 ∀j ∈ [1, n] Closure relation (2)

0 <
n∑

j=1

uji < n ∀i ∈ [1, c] No empty class (3)

The function of energy connecting the partition uji to the prototypes vi is defined by:

J (u, v) =
n∑

j=1

c∑
i=1

uq
ijd

2 (xj , vi) (4)

where q > 1 is the fuzzy degree of the segmentation.

We can then search the optimal partitioning (c1c2cn) and the optimal prototype to minimize Eq. (4) by

using the following theorem [4]:

Fuzzy c-means theorem. To carry out a partitioning (c1c2cn), we must minimize Eq. (4) of the energy

by using the following Lagrange function:

JL = J (u, v) +

n∑
j=1

λj

(
1−

c∑
i=1

uji

)
(5)
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with the following conditions:

∂

∂uji
JL = 0 (6)

∂

∂vi
JL = 0 (7)

λj represents Lagrange’s multiplier, which is calculated after the calculation of the derivates of Eqs. (6) and

(7). The membership degrees uji and the centroid vi must satisfy the following conditions:

uji=

[
c∑

k=1

(
d (xj ,vi)

d (xj ,vk)

)2/(q−1)
]−1

1 ≤ i ≤ c, xi∈ X (8)

vi =

n∑
j=1

uq
ijxj

n∑
j=1

uq
ij

1 ≤ i ≤ c (9)

The term d2 (xj , vi) calculates the similarity between xj and vi :

d2 (xj , vi) = ∥xj − vi∥2 (10)

where ∥.∥ represents the Euclidean distance.

This theorem makes possible the determination of the prototypes and the membership function in an

iterative way by using Eq. (8) and Eq. (9) until a criterion of convergence is reached.

The FCM algorithm requires prior knowledge of the class number and generates these classes through

an iterative process to minimize the function of energy. This produces a fuzzy partition in the image by giving

each pixel a degree of membership in a given class (from 1 to 0). The class that is associated with a pixel is the

one whose degree is the highest. The FCM algorithm stages are as follows:

Input: Image, x = {x1, x2, . . . , xn} the number of the class c , to fix q a value such as q > 1, to fix the

threshold of convergence.

Step 1: Initialize the matrix of partition U = [uji]

Step 2: Initialize the counter t = 0.

Step 3: Calculate the value of centroid vti using Eq. (9).

Step 4: Calculate ut+1
ji for j = 1 to n

Ij the set of values i that satisfied Ij =
{
i/1 ≤ i ≤ c, dji = ∥xj − vi∥ = 0

}
If Ij = ∅ then

calculate ut+1
ji with Eq. (8)

Else ut+1
ji = 0

For all i /∈ I and
∑
i∈Ij

ut+1
ji = 1, continue with another j .

Step 5: if
∥∥U t − U t+1

∥∥ < ε , then stop. If not, set t = t+ 1 and go to step 3.
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One of the disadvantages of FCM segmentation is its sensitivity to the intensity of heterogeneities because

the centroids are invariants in the image space, from where the interest to modify the standard function of energy
appears.

To adapt the FCM model to the presence of artifacts, several approaches were proposed, one of which is

the addition of a regulating term to the initial FCM function. Pham [18] proposed an extension to the FCM

algorithm. The function is then written as follows:

J =

 n∑
j=1

(
c∑

i=1

uji ∥xj − vi∥22

) +
β

2

 n∑
j=1

c∑
i=1

uq
ji

 ∑
k∈NR

j

∑
l∈Li

uq
kl

 (11)

The first term represents the initial function of FCM, which is also called a data fidelity term; the second term

is a regulating term of the energy function.

∥xj − vi∥22 is the Euclidean distance, NR
j is a neighborhood of voxel j , β is a constant that controls the re-

spective weights between the fastener term to the data and the regulation, Li = [1, c] /{i} = {1, ..., i− 1, i+ 1, . . . c} ,
and vi make up the centroid.

Our approach is based on the work of Caldairou et al. [27]. We used a nonlocal weight wnl (k, j) in

the two terms of Eq. (11) to select the most relevant voxels within the zone of search. It is then possible

to carry out a regulation according to the similarity degree. We also used the local and nonlocal distance

presented by Wang et al. [23]. Wang et al. modified the initial FCM function by weighting local information

and nonlocal information and by redefining the distance between the intensity of a voxel and the centroid of a

class. In our model, we combined the two methods to retain the advantages of both. A nonlocal weight was

first introduced in the regulating term of the function to take into account the voxel vicinity in the membership

function calculation of voxel j of the class c in order to minimize the influence of noise intensity. We then used

a local and a nonlocal weight in the calculation of the distance between voxel j and the centroid.

The new function is then written as:

J = JFCM + JReg

J =
n∑

j=1

 c∑
i=1

uji

∑
k∈Nj

wkjD
2(xj , vi)

 +
β

2

 n∑
j=1

(
c∑

i=1

uq
ji

) ∑
k∈NR

j

wkj

∑
l∈Li

∑
k∈Nj

uq
kl

 (12)

To minimize Eq. (12), the Lagrange function of Theorem 1 is used.

∂J

∂uji
= quq−1

ji

∑
k∈Nj

(
wkjD

2(xj ,vi)
)
+β

∑
k∈Nj

wkj

∑
l∈Li

∑
k∈Nj

uq
kl

−λj (13)

Using Eq. (6), we obtain:

uji=

( ∑
k∈Nj

wkjD
2(xj ,vi) + β

∑
k∈Nj

wkj

∑
k∈Nj

∑
l∈Li

uq
kl

)−1/(q − 1)

c∑
i=1

( ∑
k∈Nj

wkjD2(xj ,vi)+β
∑

k∈Nj

wkj

∑
k∈Nj

∑
l∈Li

uq
kl

)−1/(q−1)
(14)
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D2 (xj ,vi) represents the distance between the intensity xj of voxel j and the centroid vi of class i . It is a

combination of a local distance and nonlocal distance [23] calculated using:

D2 (xj ,vi)= (1−φj) d
2
l (xj ,vi) +φjd

2
nl (xj ,vi) (15)

φj locally controls the proportion between the distances dl and dnl for the calculation of the final distance D .

dl measures the distance influenced by the local information calculated by the following expression:

d2l (xj ,vi) =

∑
xk∈Nj

wl (xk,xj) d
2 (xk, vi)∑

xk∈Ni

wl (xk,xj)
(16)

where Nj is a neighborhood centered around voxel j , and d2(xkvi) represents the Euclidean distance. wl is

the local weight of each pixel in Ni defined by:

wl (xk,xj)=e−
|xk−xj |2

δ2 (17)

δ2 is the variance of Ni, and dnl is the distance influenced by the nonlocal information of all the pixels in the

given image I , which is calculated by:

d2nl (xj ,vi) =
∑
xk∈I

wnl (xk,xj) d
2 (xk,vi) (18)

wnl (xk, xj) =
1

Z (xj)
U (xk, xj) (19)

U (xk, xj) is the exponential form of the similarity:

U (xk, xj) = e−
∥V (Nk)−V (Nj)∥2

2,a

h2 (20)

The similarity between the two pixels xk andxj is calculated by the Euclidean distance ∥V (Nk)− V (Nj)∥22,a ,

where V (Nk) and V (Nj) represent the pixels’ intensities. The parameter h governs the smoothing degree of

the nonlocal filtering, and Z (xj) is a constant of standardization:

Z (xj) =
∑
xk∈I

e−
∥V (Nk)−V (Nj)∥2

2,a

h2 (21)

φj =
1

q

q∑
i=1

Ui(xk, xj) (22)

The proposed algorithm is:

Input: Image, X = {x1, x2, . . . , xn} the number of the classes c, q and set ε > 0

Step 1: Compute wkj for all (kj) ∈Ω2 .

Step 2: Initialization of the centroids V = [v1, v2, . . . . . . vc]
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Step 3: Calculate the new distance with Eq. (15).

Step 4: Update the value of uji using Eq. (14) .

Step 5: Update vi using Eq. (9).

Step 6: Repeat Steps 3–5 until the following termination criterion is met:

∥vnew − vold∥ < ε.

The algorithm was implemented in MATLAB R2013a using Windows 7 with an Intel Core i3 2.30 GHz processor

and 4.00 GB of RAM.

3. Results

Our model was applied to synthesized images consisting of real MRIs obtained from the Internet Brain Seg-

mentation Repository (IBSR) provided by the Center for Morphometric Analysis at Massachusetts General

Hospital. The algorithm was applied on clinical MRI images. The obtained results were compared to those

generated by other segmentation methods such as FCM and FCMS proposed by Ahmed et al. [25] and RFCM

suggested by Pham et al. [18].

The program was applied to a synthetic 2D image (435× 335) in the presence of Gaussian noise with a

deviation equal to 9. We fixed q = 2 , C = 3, and h = 2ασ2
∣∣P I

j

∣∣ . The Coupé approach [28] produces better

results for brain MRI segmentation with a patch size of
∣∣P I

j

∣∣ . σ represents the standard deviation of noise

and α = 2 and ε = 1e − 5 during all handling. Figures 1a, 1b, 1c, 1d, 1e, and 1f represent, respectively,

the image to be segmented, the disturbed image, FCM segmentation, FCMS segmentation, segmentation with

the standard model RFCM, and segmentation with our model. After several trials, we fixed β = 500 with a

neighborhood (3 × 3). For the FCMS model, it was α = 2. The obtained results show that our method is

more effective than the other methods in the presence of Gaussian noise. To evaluate the performance of our

segmentation, we calculated three indices: the similarity index ρ , the number of false-positives rfp , and the

number of false-negatives rfn [29]. ρ is represented by the following equation:

ρ =
2 |Ai ∩Bi|
|Ai|+ |Bi|

(23)

The similarity index is a positive value that represents the correspondence of the pixels in the two images A

(manually segmented image) and B (a segmented image using our approach). Ai and Bi represent the pixels

of class i during manual segmentation and in the segmentation carried out by our method, respectively. |Ai|
is the number of pixels in image A , and |Bi| is the number of pixels in image B . An excellent similarity

is obtained when ρ > 70% [29]. To calculate the number of false-positives and false-negatives, we used the

following equations:

rfp =
|Bi| − |Ai ∩Bi|

|Ai|
(24)

rfn =
|Ai| − |Ai ∩Bi|

|Ai|
(25)

The false-positives rate measures the capacity of the algorithm to oversegment the images. In other words, the

pixel is included in the segmentation but not in the reference segmentation. The false-negatives rate measures
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Figure 1. Segmentation of a synthetic image: a) synthetic image, b) noisy image, c) FCM segmentation, d) FCMS

segmentation, e) RFCM segmentation, f) the result of our algorithm.

its capacity to undersegment the images, i.e. the pixel is excluded from the segmentation but remains in the

reference segmentation.

The Table gives the values of the three indices (ρ, rfprfn) for different segmentation methods. Compar-

ison of these values shows the superiority of our method for segmentation of synthetic images.

Table. Values of the similarity index and the rates of false-positives and false-negatives.

Synthetic image (Figure 1)
MRI image from IBSR (Figure 2)
WM (white matter) GM (gray matter)

Methods ∆t (s) ρ% rfp% rfn% ρ% rfp% rfn% ρ% rfp% rfn%
FCM 16.42 77.43 23.40 17.35 75.18 20.15 9.87 74.69 8.20 20.98
FCMS 22 92.33 3.40 1.90 88.6 17.65 7.59 85.12 6.07 19.35
RFCM 36.59 99.86 0.51 3.09 90.03 14.98 6.44 86.57 5.63 17.25
Our model 47.39 99.91 0.23 1.61 93.12 8.36 4.68 90.37 3.67 12.03

We used the Brain Extraction Tool [30] to separate brain from nonbrain tissue in all MRI images. Our

algorithm was applied to 17 real brain MRI data sets obtained from the IBSR. Figure 2a illustrates the real T1-

weighted MRI brain volume of case 8 in the IBSR database. These images have a size of 256× 256× 128 voxels

and a resolution of 10× 10× 15 mm. For all methods, we applied segmentation in three classes representing

white matter (WM), gray matter (GM), and the cerebrospinal fluid (CSF) by the FCM method (Figure 2b),

by FCMS (Figure 2c), and by RFCM (Figure 2d). The obtained results can be compared to those provided

by manual segmentation obtained from the IBSR in order to validate them (Figure 2e). Figure 2f shows the

obtained results with the suggested model. The similarity indices, false-negatives and false-positives of WM and

GM from the segmentation results in Figure 2 are shown in the Table. The average similarities of WM and GM

obtained by the algorithm in our model are larger than 90%. Therefore, our algorithm seems to perform better

than the other methods, namely FCM and RFCM. Moreover, it eliminates the noise effect. For this experiment,
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Figure 2. Segmentation of a real MRI image from IBSR: a) MRI slice of IBSR, b) FCM segmentation, c) FCMS

segmentation, d) RFCM segmentation, e) IBSR segmentation, f) result of our method.

Figure 3. Influence of neighborhood size and noise intensity on the segmentation: a) segmentation with 3 × 3 window,

b) segmentation with 5 × 5 window, c) segmentation with 7 × 7 window.
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the number of neighborhoods is 7× 7 pixels and the execution time is 18 min. This time can be justified by

the computation of the nonlocal weights in the data and the regularization terms using a different size of the

neighborhood window for each iteration.

In the following section, we study the influence of the neighborhood and noise on the suggested model

using IBSR images. Various values of the window size of the neighborhood have been studied with the aim of

classification (WM, GM, and CSF) (Figure 3). In Figures 3a and 3b, we used neighborhood windows of 3× 3

Figure 4. Segmentation results for real brain MRI images.
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and 5× 5, respectively. In Figure 3c, the similarity index of our model is presented for different values of noise

using a neighborhood window size of 7× 7.

The curves of Figure 3 show that the similarity index decreases when the noise level increases. This

reduction is slowed down by the best choice of the window size of the neighborhood. A comparison of the three

figures shows that:

• For CSF, calculation of the similarity index with maximum noise and a neighborhood of 3× 3 produces

better results than those obtained without noise for a neighborhood of 5× 5 or 7× 7.

• For GM, we noted that the window size of 5 × 5 is the best. This finding is based on two criteria: the

maximum value of the similarity index (96% for a neighborhood of 5×5) and noise influence on this same

value (> 1% for a neighborhood of 5× 5).

• For WM, the three figures show that 7 × 7 is the optimal window size of the neighborhood in order to

obtain the best similarity index (the same criteria used for GM).

We tested our algorithm on 14 cases of T1 and T2 MRI brain images for different modalities obtained

from clinical tests. Figure 4a represents a T1 sagittal, Figure 4b represents a T2 axial, and Figure 4c represents

a coronal T2. The size of the images tested is 512× 512× 128 at 0.5× 0.5× 3 resolution.

Figure 4 shows the effectiveness of our method in the segmentation of T1 and T2 MRI images. The best

segmentation takes place in the narrow and winding areas, such as the areas between the CSF and GM and

also in the region between the GM and WM. These results also show a clearer and more specific delineation of

the different regions.

4. Conclusion

In this paper, we showed that our method produces better results for the segmentation of a disturbed cerebral

MRI image than those obtained through more classic techniques. This comparison is based on the calculation

of the similarity index and the false-positives and false-negatives rates. We also showed that the best choice of

the segmentation parameters depends on the brain region that we want to extract.
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