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Abstract: The objective of the study is to classify electroencephalogram signals recorded in a familiar and unfamiliar

face recognition experiment. Frontal views of familiar and unfamiliar face images were shown to 10 volunteers in different

sessions. In contrast to previous studies, no marker button was used during the experiment. Participants had to decide

whether the displayed face was familiar or unfamiliar at the instant of stimulus presentation. The signals were analyzed

in the preprocessing, channel selection, feature extraction, and classification stages. The novel two-feature extraction

and eight-channel selection methods were applied to the analyses. Sixteen classification results were compared and the

best performance was investigated. Consequently, the highest average classification accuracy was obtained at 72.67%

when piecewise constant modeling feature extraction and relative entropy channel selection methods were used.

Key words: Electroencephalogram, evoked potential, familiar and unfamiliar face stimuli, feature extraction, channel

selection, classification

1. Introduction

Electroencephalography (EEG) is a noninvasive brain activity-reading technique. According to this technique,

the accumulation of electrical activities within a group of neurons of the brain is recorded with an electrode

located on the scalp. Event-related potentials (ERPs) are elicited against the specific stimulus during EEG

recordings. Because the behaviors of these potentials vary according to different stimuli, they contain informa-

tion about the stimuli [1].

The human face contains information about the person’s age, sex, identity, and emotional state [2].

Investigations associated with the neuropsychological human face perception system date back to the 1970s

[3–6]. The human face perception system in the brain and its correspondence to familiar and unfamiliar stimuli

is an important research topic due to its contribution to both mental illness research and forensic inspections. It

has been reported in the literature that some brain regions related to face perception are crucially activated [4,7].

Familiar and unfamiliar face stimuli were presented to subjects in a study, and the activated brain regions were

compared for two classes. The results showed that some brain regions were activated by familiar face stimuli,

including the prefrontal, lateral temporal, and medial temporal (hippocampal and parahippocampal) regions

[8]. In another study, the frontal and temporal regions in the skull were related to personal identification. In

this study, it was also observed that different activations, associated with familiar and unfamiliar face stimuli,
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emerged in the middle occipital gyrus, right inferotemporal cortex, and right posterior fusiform gyrus regions [9].

Activations related to familiar names and external factors were also observed in these regions [10]. In another

study, familiar face signals significantly diverged from unfamiliar face signals in the middle lateral fusiform

gyrus and inferior occipital gyrus areas [11]. A positive peak occurred at about 600 ms after the onset of visual

stimuli and continued for a few hundred milliseconds. This activation emerged in the right central parietal area

of the skull [12].

Regions related to face perception in the skull can be localized from EEG and we can provide some

information about previously viewed faces by classifying EEG signals responsive to familiar and unfamiliar

faces. Thus, the classification process provides information about some disorders originating in the brain and

about criminals in a judicial investigation. These are the motivations for classifying EEG signals corresponding

to familiar and unfamiliar face stimuli.

There have been many studies on the classification of EEG signals. In several studies, familiar and

unfamiliar face stimuli have been classified utilizing the evoked potentials of stimuli and statistical analysis.

For instance, Tanaka et al. studied ERPs corresponding to preexisting acquired face familiarity [13]. Sun et

al. used a directed lying task and computed ERPs to explore the differentiation between identification and

classification of familiar faces [14]. Other studies are relevant to brain–computer or brain–machine interfacing

build employing ERPs of stimuli. For example, Jin et al. studied ERP-based brain–computer interface, utilizing

facial expression changes and multiple faces [15,16]. Kaufmann et al. used flashing characters accompanied by

famous faces to build an ERP-based brain–computer interface [17].

However, these studies do not involve the classification of familiar and unfamiliar face stimuli from the

corresponding EEG data. In [18], the authors classified EEG signals recorded in a familiar and unfamiliar face

recognition experiment. In this experiment, subjects pressed a button to mark that the displayed face was

familiar. A custom wavelet was generated and used to obtain wavelet transform of the EEG data. Features

were extracted in the transform domain. The classification and performances were then compared with custom

and common wavelets in the paper. To the best of our knowledge, there are no studies related to familiar and

unfamiliar classification incorporating machine learning in the literature.

Our study is a further attempt to classify the familiar and unfamiliar face stimuli from EEG. We compute

the distance between the ERPs of two channels corresponding to two respective categories. The most distant

channels are employed to classify single trial EEG. This approach is different from the method in [18]. In

our study, EEG signals are processed in preprocessing, feature extraction, channel selection, and classification

stages. To extract features from the data, piecewise constant and piecewise linear approximation (in other

words, modeling) of EEG signal are used. Six different channel selection methods are employed to select

suitable channels. Two different approaches are chosen to apply the channel selection methods. The first is

to identify the channels with the highest variance in the rank for a class while having the lowest variance for

the other class in the rank. Variance ratio approach and common spatial pattern technique are used in this

category. The other is to measure the similarities and distances among the ERPs of the familiar and unfamiliar

classes of channels. Fisher score, r-correlation coefficient, mutual information, and relative entropy methods are

employed in this category. A support vector machine is used to classify the familiar and unfamiliar face stimuli.

Such an analysis is thought to contribute to the process of classification of EEG signals that are responsive to

familiar and unfamiliar classes.

In the next section, we describe the collection of EEG data and the experimental procedure. In the third

section, we describe the methods, and in the fourth section we discuss the EEG signal-processing stages. In the
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fifth section, we provide and compare the results obtained using the piecewise constant, linear modeling, and

six-channel selection methods. We conclude the study in the final section.

2. Materials

2.1. Subjects

Ten healthy volunteers, 1 female and 9 male, aged from 22 to 52 years with an average age of 34 years and a

standard deviation of 9.87, took part in this study. All participants had normal or corrected-to-normal vision and

no history of neurological or psychiatric disorders, and all were right-handed. Four subjects wore glasses and all

were nonmedicated during the experiment. All participants signed an informed consent form. The experiments

were approved by the local ethics committee of the Health Sciences Institute of Adıyaman University.

2.2. Stimuli

One hundred and twenty familiar and unfamiliar face images were used in the study. The familiar group

contained 61 well-known personalities collected from the public domain of the WorldWideWeb and 59 unfamiliar

faces obtained from a model agency. We chose faces with frontal views that were alike in general visual

appearance and attractiveness. All images were subjectively equalized for luminance and contrast. The stimuli

were displayed with custom software (stimuli display program) developed in Borland Delphi 7 on an LCD

monitor.

2.3. Experimental procedure

Subjects were seated in a comfortable chair in front of an LCD monitor at about 100 cm from a computer

screen controlled by a laptop computer. In contrast to previous studies, no marker button was used in the

experiment since it might create a variance in EEG. Participants had to decide whether the displayed face

stimulus was familiar or unfamiliar at the instant of the stimulus presentation. All participants declared which

face was familiar by marking the printed faces on a form at the end of the experiment. The time course of the

experiment was organized as follows: at the beginning of the experiment, a black and white checker was shown

for 5 s, and then an ‘Experiment begins’ warning was displayed for 60 s on the screen to indicate the start of

the session. Following the stimulus shown for 800 ms, a gray screen appeared for 1200 ms. Next, a gray fixation

was displayed for 2500 ms to enable the subjects to prepare and concentrate on the upcoming trial (Figure

1). During the experiments, familiar and unfamiliar face stimuli images were randomly exhibited. Moreover,

because epochs belonging to stimuli were extracted, the display order of the face images was also saved for each

subject during the course of the experiment.

2.4. Data

The EEG recordings were achieved with a wireless Emotiv EPOC research EEG neuroheadset. The headset

consisted of 14 channels of the extended electrode placement system: AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7,

P8, T7, T8, O1, and O2, plus common mode sense (CMS)/driven right leg (DRL) references at P3/P4 locations.

The 50-Hz power line interference was suppressed with an analog notch filter of the instrument before sampling.

A 16-bit analog-to-digital converter with 128-Hz sampling rate equipped in the device was used for converting

the analog signal to digital. After the EEG data were acquired for 14 subjects, all data were examined visually

to identify corrupted records, and four subjects were removed from the data and excluded from the analyses.

In order to classify EEG signals acquired during the familiar/unfamiliar face recognition experiments,

first the EEG signals were enhanced, and then channel selection, feature extraction, and classification processes
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Figure 1. Time course of the experiment on familiar/unfamiliar face recognition.

followed. The algorithms were implemented using MATLAB release R2010a on a personal computer (equipped

with an Intel Core i7-3520M CPU@2.90 GHz and 12 GB RAM).

3. Methods

3.1. Preprocessing

A first-order 0.16-Hz digital high-pass Butterworth IIR filter was applied in the forward direction to eliminate the

baseline of the EEG. Subsequently, a linear-phase low-pass digital FIR filter was used to remove the background

signal (noise) from the EEG signals. The order of the filter was chosen as 10 and the bandwidth was determined

as 32 Hz. The ‘butter’ and ‘fir1’ functions of MATLAB were implemented to design high-pass and low-pass

filters, respectively.

Furthermore, the spatial correlation between channels was reduced by applying a type-II discrete cosine

transform to the data in the spatial domain before the feature extraction process.

3.2. Feature extraction

In the feature extraction stage, we used piecewise constant and piecewise linear modeling techniques. Initially,

the trials of EEG data were extracted; the time interval of [0.6, 1.6] s from stimulus (in terms of sample indices,

the interval was [78, 205] - 128 samples - 1 s) was employed. To obtain the models of a single-trial EEG

signal, it was initially partitioned into segments. The length of the segment chosen for four samples amounts

to a time interval of 1/32 s (31.25 ms). The window length was decided empirically. In the case of piecewise

constant modeling (PCM), the averages of the segments were accepted as features. In the case of piecewise

linear modeling (PLM), the slopes of the first-order polynomial approximation of segments were acquired as

features.

To describe the procedure, consider that a segment (window) is the sequence{yt}t=0,1,...,N−1 . Each

segment is modeled as follows:

y = a, a =
1

N

N−1∑
t=0

yt, (1)
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y = b.t+ c, b =

N−1∑
t=0

t · yt
N−1∑
t=0

t2
, c =

N−1∑
t=0

yt − b
N−1∑
t=0

t

N
, (2)

where the first equation is the constant modeling and the second equation is the linear modeling of the segment.

Since the segment length was four, each channel provided 32 coefficients. The coefficients coming from each

channel (the four most discriminative channels) were concatenated to feed the classifier.

3.3. Channel selection

In the channel selection stage, we employed six different channel selection methods. These were Pearson

correlation (r -value), Fisher score (FS), mutual information (MI), relative entropy (KL), variance ratio (VR),

and common spatial pattern (CSP). VR and CSP were employed for the channels where variances of EEG were

the highest in the rank for a class and consequently lowest in the rank for the other class. The two distances,

FS and KL, and the two similarity measures,r -value and MI, were computed between event-related potentials

of the classes. The evoked potential of a class is obtained by averaging the training data over trials (ensemble

averaging). The channel pairs with the lowest correlation and mutual information were accepted, whereas the

channel pairs with the highest Fisher score and KL distance were considered discriminative. The four selected

channels (two pairs) were employed for classifying the data, and the results were compared in terms of their

performances in classification.

3.3.1. Pearson’s correlation (r value)

The most commonly used measure of association is Pearson’s product-moment correlation coefficient, often

denoted r. This value is a measure of the linear trend between two variables. The value of rwill always lie

between –1 and 1. In this study, r = –1 shows that the two variables are completely distant, and r = 1 indicates

that the groups are identical (closest). The r value is computed for two quantities X and Y by using Eq. (3)

[19]:

r = s2XY /sXsY , (3)

where s2XY is the sample covariance, and sX and sY are the sample standard deviations of X and Y ,

respectively.

3.3.2. Fisher distance

The Fisher distance or FS is the normalized level of discrimination between two classes. Fisher criteria can be
calculated as in the following equations:

FS = |m1−m2|2
s21+s22

mk = 1
Nk

∑
x∈Dk

x s2k = 1
Nk−1

∑
x∈Dk

(x−mk)
2
. (4)

In the above equations, mk and sk are sample average and variance belonging to the k th class (k = 1, 2 )

respectively [20].
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3.3.3. Mutual information

Mutual information is a measure of how much information one random variable contains about another. The
mutual information of two random variables X and Y is defined by Eq. (5) [21]:

I(X;Y ) =
∑
x,y

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
, (5)

where pX(x) and pY (y) are the probability densities of the random variables. pXY (xy) is the joint probability

density function. To compute the densities, the number of quantization levels is chosen as eight.

3.3.4. Relative entropy

Let pX(x) and pY (y) be two probability density functions of the X and Y variables, respectively. Relative

entropy between pX(x) and pY (y) functions is expressed as in Eq. (6) [22]:

KL (X;Y ) =
∑
x

pX (x) log

(
pX (x)

pY (x)

)
. (6)

Alternatively, the time-varying quantized signals are scaled with their sums, and the resultant sequences

are accepted as probability densities. The relative entropy computed with these probability densities is named

KL2. The number of quantization levels is chosen as eight, as it is for mutual information. Furthermore, the

levels are specified to be greater or equal to zero to calculate KL2.

3.3.5. Variance ratio

The variance ratio is the ratio of the average powers of two variables. Suppose that CX and CY denote

covariance matrixes belonging to two variables X and Y, respectively. Furthermore, assume that λi and τj

are the ith and j th eigenvalues of covariance matrices of CX and CY , respectively. Then the variance ratio

between the ith and j th channels is obtained as in Eq. (7):

V R (i, j) =
λ

i

τj
. (7)

Another version of the variance ratio is the ratio of normalized eigenvalues:

V R2 (i, j) =
λi/ (λi + τi)

τj/
(
λj + τj

) . (8)

The channels with the highest and lowest variance ratio are assumed to be discriminative. This approach

is similar to the common spatial pattern filtering method. Both forms of variance ratio have been used in the

classification algorithm.

3.3.6. Common spatial pattern

This method amounts to maximizing the variance of the (spatially) filtered signal under one condition while

minimizing it for the opposite condition [23]. Let Ca and Cb express covariance matrixes belonging to two

classes a and b , respectively, and Cc is the common covariance matrix:

Ca = 1
Ka

Ka∑
k=1

EkE
T
k

trace(EkET
k )

, Cb =
1
Kb

Kb∑
k=1

EkE
T
k

trace(EkET
k )

, Cc = Ca + Cb , (9)
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where Ek is the collection of EEG signals of the k th trial, in which a row holds the EEG signal of a channel

and T denotes transposition. The whitening transformation matrix of the common covariance matrix is

simply computed by P = D−1/2U−1 . Diagonal matrix D and unitary matrix U are obtained by eigenvalue

decomposition of the common covariance matrix Cc = UDUT . If the common unitary matrix of the eigenvalue

decomposition of matrices PCaP
T and PCaP

T is B , then the projection matrix (bank of filters; a row is a

filter) W and the projected matrix Zk are given by Eq. (10):

W = PTB,Zk = WTEk. (10)

3.4. Classification

We employ a linear support vector machine (SVM) in this study. The linear SVM model is produced based

on the training data. To describe it, let a training set of instance label pairs be given as (xiyi) with the class

labels yi ∈ {−1, 1} . A sample xi belongs to class yi = −1 if it satisfies wTxi + b ≤ −1 , and it belongs to

class yi = 1 if it satisfies wTxi + b ≥ 1. The separating function (hyperplane) is wTx+ b = 0, where w is the

coefficient vector and b is the offset of the separating hyperplane. The linear support vector machine maximizes

margin 2/∥w∥ between support vectors (boundaries of two classes): wTxi + b = 1 for the class labeled yi = 1

and wTxi + b = −1 for the class labeled yi = −1. Then the SVM is formulated by the following optimization

problem given in Eq. (11) [24]:

max
w

(2/ ∥w∥) subject to, yi(w
Txi + b) ≥ 1. (11)

The features belonging to the selected four channels were concatenated sequentially before feeding into

the classifier. In order to evaluate the classification performance and validate the procedure, EEG data were

initially separated into two sets at this stage. Seventy-five percent of the data was designated for training and

the remaining 25% was assigned to testing. The testing data were classified using the trained machine and

the results were compared to the correct labels. Thus, classification success was calculated. The same process

was repeated 20 times for each subject. The training and testing data sets were always specified randomly.

An average of 20 classification results were accepted as classification success for each subject. This validation

technique is known as Monte Carlo cross-validation [20]. The chance level for each subject was also obtained

with 100-fold Monte Carlo cross-validation. Each time the class labels were assigned randomly, an arbitrarily

chosen 75% of data trained the classifier, and the accuracy of the classifier was attained from the remaining

25% of data. The average accuracy yielded the chance level.

4. Results

The classification accuracies are summarized in Table 1. The eleventh and twelfth rows are mean value and
standard deviation of the results, respectively, and the thirteenth row shows chance levels of classification for

each distance/similarity metric. It is observed that the chance levels are almost 50%, as expected for a two-class

case, and the average classification accuracies are well above the chance levels. From the eleventh row of the

table, it is deduced that the highest average accuracy of the subjects is 72.67% with a standard deviation of

9.71%, achieved by using PCM features and KL2 channel selection measure.

In addition to accuracy, specificity (Qn), which is the measure of the number of detected unfamiliar face

stimuli among unfamiliar face stimuli, and sensitivity (Qd), which is the measure of the number of detected

3348
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Table 1. SVM classification accuracies (%) with PCM and PLM methods.

 
r correlation 

coe"icient 

Fisher 

score 

Mutual  

information 
Kullback– 

Leibler 

Kullback– 

Leibler 2 

Variance  

ratio 

Variance  

ratio 2 

Common  

spatial  

pattern 

Sbj PCM PLM PCM PLM PCM PLM PCM PLM PCM PCM PLM PCM PLM PCM PLM 

1 69.83 70.34 69.31 61.72 70.86 62.41 68.97 62.59 76.72 70.86 71.72 68.79 63.28 59.48 73.10 69.83 

2 92.00 88.50 91.17 89.00 90.00 89.50 92.00 91.33 86.17 82.33 83.83 84.50 89.83 89.50 92.00 90.00 

3 65.69 65.34 69.83 68.79 68.28 69.48 66.72 67.07 70.69 73.10 57.24 57.24 55.17 56.55 60.86 59.66 

4 61.00 60.50 63.50 59.50 62.50 60.67 64.50 60.83 63.00 63.50 62.17 55.00 63.00 58.17 64.67 60.17 

5 90.83 79.67 88.33 86.83 88.17 84.17 88.17 83.67 89.33 83.33 82.83 80.67 71.50 70.33 80.17 77.50 

6 59.17 68.83 59.00 60.33 57.17 58.50 55.17 59.50 57.50 66.50 54.83 62.50 60.00 57.67 59.50 63.67 

7 76.67 75.33 72.67 68.83 71.50 71.00 74.00 72.67 72.83 72.67 65.33 60.67 72.67 68.33 76.00 76.83 

8 67.67 67.50 64.00 61.83 64.33 63.67 63.33 61.33 71.33 69.83 78.00 77.33 56.67 53.50 68.50 66.50 

9 59.00 58.83 69.50 68.83 66.00 63.50 69.00 66.83 73.00 67.83 59.17 58.67 58.67 59.00 65.83 62.33 

10 69.33 68.17 57.67 60.50 63.00 64.67 63.50 62.67 66.17 66.67 67.00 68.00 63.33 57.83 64.83 63.33 

Avg. 71.12 70.30 70.50 68.62 70.18 68.76 70.54 68.85 72.67 71.66 68.21 67.34 65.41 63.04 70.55 68.98 

Std. 11.99 8.89 11.26 10.85 10.82 10.30 11.44 10.71 9.71 6.58 10.51 10.39 10.31 10.66 9.99 9.73 

Chance 

level 
50.80 50.60 50.69 50.21 49.92 49.97 50.69 49.95 50.53 50.01 50.63 50.28 50.40 50.40 50.88 50.35 

familiar face stimuli among familiar face stimuli, are also reported in Table 2. Since the performance of PCM

is better than that of PLM, sensitivity and specificity are only given for PCM features in this table. Selected

channels contributing to classification success are different for each subject.

Table 3 shows the channels decided by using PCM features. When this table is examined, it is observed

that the number of chosen channels differs with respect to the channel selection methods. It is seen from Table 1

that Subject 5 provides the best classification performance (89.33%) when Kullback–Leibler distance (KL2) for

channel selection with PCM features is used. The two pairs of highest counts in the selected channel histogram

are visualized with a 14 × 14 grid (matrix) in Figure 2a for Subject 5. The black-colored grids (elements) show

the decided pairs. The brain map of the determined channels for this subject is also shown in Figure 2b. This

brain map shows the locations of the selected channels on the scalp for familiar and unfamiliar face stimuli.

From the figure, it is observed that F3–FC5 and F3–T7 are the most significant pairs of channels. It can be

noted that F3 is chosen two times. The evoked potentials of these channels are shown in Figure 4 to examine

their categorization capability. These potentials are obtained by averaging the trials of the whole data for each

class. The stimulus time is accepted as a reference for these plots.

The average classification success of the subjects, which is obtained using KL2 for channel selection with

PCM features, is the highest average performance. In order to obtain the most selected channels by subjects, the

most distant channel pairs of the subjects are counted and the two pairs with the highest polls are considered to

be the selected channels on average. The common matrix of the pairs of the most distant channels is displayed

in Figure 3a. The brain map of these selected channels on the skull is shown in Figure 3b. From Figure 3, it

is deduced that F3–FC5 and F3–O1 are the most selected pairs of channels. As seen, F3 is chosen two times.

When these figures are examined, it is understood that the frontal and occipital regions in the brain are active
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Table 2. Specificity (Qn) and sensitivity (Qd) of the classification with PCM (%).

 r correlation  
coe"icient 

Fisher 
score 

Mutual  
information 

Kullback– 
Leibler 

Kullback– 
Leibler 2 

Variance  
ratio 

Variance  
ratio 2 

Common  
spatial pattern 

Sbj Qn Qd Qn Qd Qn Qd Qn Qd Qn Qd Qn Qd Qn Qd Qn Qd 

1 66.00 73.93 69.00 69.64 72.00 69.64 66.00 72.14 65.00 76.07 75.00 68.21 75.00 61.43 75.00 71.07 

2 91.67 92.33 93.00 89.33 89.33 90.67 92.67 91.33 93.33 87.00 93.33 84.00 93.33 86.33 93.33 90.67 

3 70.67 60.36 73.00 66.43 70.00 66.43 69.00 64.29 54.33 68.93 63.33 56.43 63.33 56.07 63.33 58.21 

4 71.33 50.67 71.00 56.00 71.33 53.67 71.00 58.00 73.33 56.00 72.33 52.67 72.33 52.67 72.33 57.00 

5 91.33 90.33 86.67 90.00 86.33 90.00 87.00 89.33 68.00 91.00 76.67 85.67 76.67 75.00 76.67 83.67 

6 56.67 61.67 55.33 62.67 53.33 61.00 52.00 58.33 55.00 63.00 57.00 58.00 57.00 65.00 57.00 62.00 

7 78.33 75.00 76.67 68.67 72.67 70.33 76.67 71.33 73.67 72.67 75.67 64.00 75.67 71.67 75.67 76.33 

8 68.67 66.67 62.67 65.33 65.67 63.00 65.33 61.33 53.33 68.33 71.67 76.67 71.67 60.00 71.67 65.33 

9 62.67 55.33 72.33 66.67 69.67 62.33 68.33 69.67 62.67 72.00 66.33 56.67 66.33 54.67 66.33 65.33 

10 78.53 57.31 70.00 41.54 74.12 48.46 72.65 51.54 76.18 56.15 75.88 50.77 75.88 46.54 75.88 50.38 

Avg. 73.59 68.36 72.97 67.63 72.45 67.55 72.06 68.73 67.48 71.12 72.72 65.31 72.72 62.94 72.72 68.00 

Std. 11.50 14.33 10.79 14.24 10.04 13.74 11.44 13.11 12.36 11.58 9.67 12.83 9.67 11.90 9.67 12.54 

Figure 2. Selected channels for Subject 5: a) two most distant channel pairs pictured on the grid, b) locations of the

channels on the scalp.

for familiar and unfamiliar face selectivity. In other words, it is observed that (F3, FC5) and (F3, O1) are the

most distant channel pairs for familiar and unfamiliar classes.

5. Discussion and conclusion

The EEG data of the familiar/unfamiliar face recognition experiment were classified. Results were obtained

for 10 subjects who participated in the experiment. In the experiment, the interstimulus interval was not

randomized; instead, it was constant and the same for all subjects. No button was used to mark displayed

portraits that were known to participants. Any undesired event during an EEG experiment could cause
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Figure 3. Preferred channels in average: a) the chosen channel pairs visualized on the matrix, b) locations of the

channels on the scalp.

Figure 4. Evoked potentials (EPs) of channels F3, FC5, and T7 for Subject 5.

unwanted changes in the EEG records. These unacceptable variations are artifacts for the records. Button-

pressing is a controlled event; however, preparation and planning might also alter the EEG before button

pressing actions. It was not guaranteed that the response for face recognition and button pressing would never

overlap. We also required subjects to focus on the face recognition event. Consequently, we did not include the

marking of familiar and unfamiliar faces during the experiment. Furthermore, it is not certain that the faces

recognized by a subject during and after the experiment coincide. On the other hand, we expect that the faces

recognized by a subject during and after the experiment mostly coincide.

The type-II discrete cosine transform reduced the spatial correlation of the channels. The 1-s epochs

and stimulus onset of 0.6 s to 1 s, were analyzed in the study. The 1-s epochs with 0.6 s to 1.6 s stimulus

onset were also analyzed in the study. In the feature extraction process, the trial was divided into 31.25-ms
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Table 3. The most distinctive pairs of channels obtained with the channel selection methods using PCM features.

 

r correlation 

coe"icient 

Fisher 

score 

Mutual 

information 

Kullback–

Leibler 

Kullback–

Leibler 2 

Variance  

ratio 

Variance ratio 

2 

Common spatial 

pattern 

Sbj  I II I II I II I II I II I II I II I II 

1 F7 F8 F7 FC6 F4 O1 F4 P8 F3 P8 O2 T7 F8 O1 F8 T7 F8 F7 F8 AF3 AF4 AF3 AF3 AF4 O1 O1 AF4 AF4 AF3 FC5 AF3 F7 

2 F7 F7 AF3 P8 F3 O1 F3 T7 AF3 T7 AF4 O1 F3 O1 FC5 F7 FC5 AF3 FC5 F3 AF4 AF3 AF3 AF4 O1 O1 F3 F3 AF3 FC5 F7 O2 

3 T7 FC6 T7 P7 P8 F4 F8 
FC

5 
FC5 F3 P8 F4 P8 F3 F3 P8 FC5 F3 AF3 P8 AF4 AF3 AF3 AF4 O1 O1 F7 F7 AF3 P7 F7 O2 

4 F7 F8 F7 T8 T8 F3 T8 O2 F7 O2 AF3 T7 O2 O1 T8 O1 FC6 AF3 F7 AF4 AF4 AF3 AF3 AF4 AF3 AF3 AF4 AF4 AF3 O2 AF3 O1 

5 F3 F4 F3 FC5 F3 O1 F3 P8 F3 P8 F4 O1 F3 P8 FC5 F3 FC5 F3 T7 F3 AF4 AF3 AF3 AF4 O1 O1 T7 T7 AF3 FC5 F7 T7 

6 F7 P8 F7 F8 T7 F3 FC5 F3 O1 F3 O1 AF4 O1 F4 P8 FC6 O1 F3 P8 F7 AF4 AF3 AF3 AF4 T7 T7 F7 F7 AF3 F3 AF3 FC5  

7 T7 O2 P8 O1 F4 FC6 F4 O1 O1 F3 FC5 F3 FC5 P7 F4 FC5 O1 F3 O2 T7 AF4 AF3 AF3 AF4 P7 P7 F3 F3 AF3 T7 F7 T7 

8 AF3 O2 AF3 P8 AF4 P7 O2 F7 O2 F4 O2 T7 FC6 P7 FC5 FC6 AF4 O1 AF4 T7 AF4 AF3 AF3 AF4 F8 F8 P8 P8 AF3 T7 F7 P7 

9 F7 O1 F7 P8 F4 AF4 F4 T8 T8 F7 T8 O1 F4 T8 F8 P8 F7 AF4 F3 P7 AF4 AF3 AF3 AF4 P7 P7 AF4 AF4 AF3 FC5 F7 O2 

10  F3 F4 F3 O2 FC6 P8 FC6 T7 AF3 P8 T8 FC6 F3 FC6 FC5 P8 T8 T7 F4 F3 AF4 AF3 AF3 AF4 O2 O2 P8 P8 F7 T8 AF3 O1 

nonoverlapping segments. The average of a segment (PCM) and the slope of the first-order polynomial fitted

to the segment (PLM) were employed as features. The four most discriminative channels (two channel pairs)

were chosen by applying the similarity (correlation coefficient, mutual information) and distance (Fisher score,

relative entropies) measures and the common spatial pattern filtering and variance ratio techniques. To the

best of our knowledge, variance ratio as a channel selection method was first proposed in this study. The

classification performances of the models and channel selection methods were examined and reported.

The classification accuracies were obtained with 20-fold Monte Carlo cross-validation. PCM for feature
extraction and the Kullback–Leibler distance (KL2) as a channel selection method with SVM classifier achieved

72.67% average accuracy for the data set of this paper and yielded the highest performance. PCM yielded

almost 2% more accuracy than PLM for the same channel selection method in the feature extraction stage.

KL2 as a channel selection method performed almost 2%–3% better than other methods. KL2 is a measure of

difference between time changes of two signals, whereas KL is a measure of distance between two probability

distributions (scaled histograms). This does not mean that if these two signals have similar histograms the time

changes of the two signals are similar. This is possibly why KL2 is better. In the case of two classes, the chance

level was 100/2 = 50%, and this level was almost attained by 100-fold Monte Carlo cross-validation, each time

randomly assigning class labels to data (Table 1). This shows that the results are not obtained by chance and

are not accidental.

The statistical difference among channel selection methods accompanied with feature type (each column in

Table 1) was investigated by a one-way ANOVA test. The test returned P = 0.942, which shows that there is no

significant difference among channel selection approaches. Statistically, there is no prominent channel selection

technique (together with feature) in the set of channel selection methods used. The interaction between features

and channel selection methods was also investigated by applying two-way ANOVA. The test resulted in P = 1

for the interaction of channel selection methods and features. This outcome shows that there is no connection
(relation) between channel selection and feature types.

Because the highest accuracy was obtained with zero-order polynomial fitting of nonoverlapping windows

of EEG and the KL2 channel selection technique, we explored the most decided discriminative pairs of channels
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among subjects for this feature and the channel selection method. It was seen that F3–FC5 and F3–O1 were

the most commonly selected pairs of channels. As F3 was chosen two times, the number of chosen channels

was three. It was discovered that the frontal and occipital regions in the brain were decisive for familiar and

unfamiliar face categorization.

In this study, the EEG channels were limited to 14 channels. From the standard international 10/20

electrode placement system, central and parietal electrodes were missing [25]. These electrodes were not included

in the analysis. It was not possible to investigate the association of missing electrodes with categorization. It is

known that the parts of the brain relevant for cognition and vision are mainly the frontal and occipital regions,

respectively [4,7–12,26]. Most of the occipital and frontal regions were covered with the used electrodes in this

research. Nevertheless, this is a shortcoming of the study, and future studies will use electrodes of the 10/20

system.

In conclusion, the findings of the proposed approach show that the study is suitable for face recognition

for the purposes of medical applications such as diagnosis of brain diseases and criminal identification.
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