
Turk J Elec Eng & Comp Sci

(2017) 25: 3355 – 3366

c⃝ TÜBİTAK

doi:10.3906/elk-1608-22

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Access pattern-aware data placement for hybrid DRAM/NVM

Didem UNAT ERTEN∗

Department of Computer Engineering, Koç University, İstanbul, Turkey

Received: 02.08.2016 • Accepted/Published Online: 08.01.2017 • Final Version: 30.07.2017

Abstract: In recent years, increased interest in data-centric applications has led to an increasing demand for large-

capacity memory systems. Nonvolatile memory (NVM) technologies enable new opportunities in terms of process-scaling

and energy consumption, and have become an attractive memory technology that serves as a secondary memory at low

cost. However, NVM has certain disadvantages for write references, due to its high dynamic energy consumption for

writes and low bandwidth compared to DRAM writes. In this paper, we propose an access-aware placement of objects

in the application code for two types of memories. Given the desired power savings and acceptable performance loss,

our placement algorithm suggests candidate variables for NVM. We present an evaluation of the proposed technique on

two applications and study the energy and performance consequences of different placements.

Key words: Data placement, nonvolatile memory, static analysis

1. Introduction

DRAM, generally used for main memory, is an important component of computing systems. Although it provides

fast and durable storage, it shares up to 41% of system power consumption [1,2]. Additionally, because it must

be periodically refreshed, it consumes power even when not in use. Moreover, the scaling of DRAM technology is

problematic [3], which implies that it will be difficult for DRAM to provide low-cost and high-capacity memory

for future high-performance computing systems, since the cost of memory is directly proportional to memory

cell size. Scaling the feature size leads to higher density and lower cost. Byte-addressable nonvolatile memory

(NVM) technologies, such as phase change memory (PCM), have been studied to replace or augment DRAM

in future memory systems due to their better process scaling characteristics. PCM is expected to scale up to 9

nm and prototypes in 3 nm have already been fabricated [4]. As a result, NVM is considered as an alternative

scalable memory solution for main memory. On the other hand, the write bandwidth and write power of

NVM still limit its wide adoption. Compared to DRAM, the dynamic write energy is 4–40 times worse and

write bandwidth is 3 times slower [5–8]. Computer architects rigorously explore techniques to overcome these

drawbacks and make this memory technology competitive with DRAM in terms of performance and dynamic

energy cost.

Recent research combines NVM and DRAM to take advantage of both storage types, and proposes

PCM/DRAM hybrid main memory system architectures. In this study, we assume a hybrid memory design,

where NVM (e.g., PCM) and DRAM coexist in a compute node, as envisioned by Ang et al. in abstract

machine models for HPC systems [9]. NVM might have a particular address range assigned to it or it might act

∗Correspondence: dunat@ku.edu.tr

3355



UNAT ERTEN/Turk J Elec Eng & Comp Sci

as a temporary buffer for the primary memory. In such a scenario, to gain the full advantage of the memory

subsystem, a programmer or compiler would need to be explicit about the initial placement of the data on

different types of memories.

This paper investigates whether or not an application can benefit from a hybrid memory system, and

proposes placement algorithms with different objectives to decide what objects in an application should be placed

on what type of memory. We automatically analyze an application’s read/write access pattern using a compiler-

based loop analysis tool. The extracted access information is then fed into our object placement algorithms,

which suggest data structures that are suitable for NVM. Our study also evaluates whether applications have

sufficient low-write memory traffic for NVM or not. Since read and write voltages are highly dependent on the

technology, we suggest that the minimum values for NVM be energy-effective alternatives to DRAM.

This paper is organized as follows. In Section 2, we provide a brief background and motivation for using

NVM technologies in future high-performance systems. Section 3 details our methodology, including the analysis

tool, metrics used for the analytical model, our energy model, and the data placement algorithms with different

objectives. Section 4 evaluates our tool using two motivating applications. Section 5 discusses the related work,

and, finally, Section 6 concludes the paper.

2. Background and motivation

Emerging NVM technologies are word-addressable, as opposed to block-addressable, which make them an

attractive main memory alternative to DRAM. PCM is one of the emerging nonvolatile random-access memories.

It is based on reversible phase conversion between the amorphous and the crystalline state of a chalcogenide

glass as a result of heat change. The heat produced by the electric current sets the chalcogenide between the

two states [10].

For PCM to be a cost-effective alternative to DRAM, it should provide better or comparable memory cell

size and scalability, since the cost of memory is directly proportional to memory cell size. DRAM cells occupy

6–8 F2 , where F is the smallest lithographic feature size. On the other hand, 4–6 F2 of PCM has already

been demonstrated [10]. A smaller device footprint leads to a higher density and, thus, lowers the cost per

bit. PCM is expected to scale 9 nm and higher density than DRAM, whereas scaling DRAM beyond 18 nm is

challenging, as indicated by the International Technology Roadmap for Semiconductors (ITRS 2009) and other

researchers [7,11,12]. Recent research shows that more than one bit of data per physical cell can be represented

without decreasing feature size [13] in PCM. In addition, the physical structure of PCM is three-dimensional,

which allows for many transistors in a fixed area. This means that NVM can provide more GB in the same size

package.

NVM favors read references over write references due to the high dynamic energy consumption for writes

and low bandwidth rates compared to DRAM writes, as shown in the Table. As a result, write references to

NVM have an adverse effect on both dynamic power consumption and application performance. However, NVM

has a comparable read performance with DRAM and much better leakage (4.23 mW/GB vs. 451 mW/GB).

Although PCM challenges reliable DRAM technology in the long term, in this work we would like to address

the following questions: 1) which data structure(s) should be placed in DRAM and NVM to avoid performance

loss when NVM is used to augment DRAM to increase system storage capacity? 2) What is the change in

energy consumption as a result of such data placement? In order to answer these questions, we need to collect

a memory access pattern in an application. We utilize the ExaSAT tool, previously developed by Unat et al.

[14], and build our analysis on ExaSAT.

3356



UNAT ERTEN/Turk J Elec Eng & Comp Sci

Table. Characteristics of PCM and DRAM technologies.

DRAM PCM DRAM/PCM
Latency read (ns) 39 [19] 40 [19] 0.98
Latency write (ns) 48 [19] 139 [19] 0.35
Bandwidth read (MB/s) 775 [19] 760 [19] 1.02
Bandwidth write (MB/s) 632 [19] 220 [19] 2.87
Dynamic energy (nJ) 5.9 [18] 80.4 [18] 0.07
Read dynamic energy (nJ) 12.7 [18] 418.6 [18] 0.03
Write leakage (mW/GB) 451 [18] 4.23 [18] 106.62

3. Methodology

To find the appropriate data structures for NVM, the community standard is to use the read/write ratio of the

variables [15]. However, write access rate is as important as the read/write ratio, because a program may have

high rates of both read and write. Instead, we use the metric write access rate for evaluating the candidate data

structures for DRAM and NVM. Variables with a low write access rate do not greatly increase dynamic energy

and do not have significant impact on performance; thus, they are good candidates for NVM. If the dynamic

energy consumption for reads to NVM is not comparable to that of DRAM, the write access rate should be

complemented with the read/write ratio or read access rate.

3.1. Application-specific metrics

Let wv be the write references for a variable v and R be all references to memory by all variables V . Then the

write access rate for v is wv/R . Similarly, let rv be the read references for a variable v ; then the read access

rate is rv/R . Note that R = Σ(wv + rv) for all v ∈ V . To characterize NVM opportunities, we look at three

metrics in an application:

1. Write access rate: low access rate is better, because dynamic power consumption for writes is higher for

NVM, and NVM has shorter write endurance.

2. Read access rate: lower is better due to dynamic energy consumption. On the other hand, the read

performance of NVM is comparable to that of DRAM, although NVM reads have static power advantage.

3. Memory footprint: higher is better, since leakage power saving is proportional to the size of the data

structure.

A data structure may be a struct containing multiple fields (or components). We compute the read and

write the counts for each field, because each one may have a different access pattern. This is possible when

struct of array is used, as opposed to array of struct, to represent the data structures in the application. On

the other hand, access to a field is taken as a whole; when a single element of a field is read/written, we assume

that the entire (field) array is accessed. This assumption typically holds true, because many applications loop

over the entire array, instead of accessing a few elements of the array.

3.2. Architecture-specific metrics

We need to identify a set of important architectural characteristics for different memory types. These char-

acteristics can be categorized as performance-related and power-related metrics. Performance-related metrics

3357



UNAT ERTEN/Turk J Elec Eng & Comp Sci

include random read/write latencies and read/write bandwidth. Power-related metrics include dynamic energy

and leakage power, because memory consumes energy both when it is active and when it is idle. The dynamic

energy can be different for read and write references.

The Table shows values for architecture-specific metrics for PCM and DRAM technologies. The values

of these metrics are presented in several works in the literature [16–19], including the International Technol-

ogy Roadmap for Semiconductors (http://www.itrs. net/Links/2013ITRS/2013Tables/ERD 2013Tables.xlsx).

Suzuki and Swanson conducted a comprehensive study of the evolution of NVM technologies, and gathered

information from over 300 technical papers published since 2000 in prestigious journals and conferences [19].

In this study, we use their survey data to model the performance, energy, and power characteristics of hybrid

memory architecture.

As seen in the Table, the performance characteristics of both PCM and DRAM are comparable for reads;

both read latency and bandwidth of PCM are very close to those of DRAM. As a result, there is no significant

performance benefit in placing read-intensive data to DRAM versus NVM. On the other hand, writes to PCM

have higher latency and lower bandwidth rates.

3.3. Energy model

In this section, we analytically estimate the energy impact of placing data in different types of memory. We

adopt the energy model suggested in [18]. Static energy consumption is based on the memory footprint and

the lifetime of the variable. Dynamic energy, however, depends on memory access frequency and type of access.

Energy consumed by a variable v residing a memory type t is then

Ev(t) = rv ×Dr(t) + wv ×Dw(t) + Sv × Tv × L(t).

Read references, rv , and write references, wv , are computed with our analysis tool, discussed in Section

3.4. Dr and Dw are the dynamic energy for reading/writing, respectively, from/to the memory type, t.L

represents the leakage power for t, Sv is the footprint of the variable, and Tv is the lifetime of a variable. From

the Table, we expect that L(nvram) < L(dram); however, D(nvram) > D(dram). As a result, the values used

for architectural metrics are important for our study; the system will either save energy or lose it for placing

data in NVM.

3.4. Access pattern analysis

To collect memory access references, type, and object information, we employ the ExaSAT framework [14].

ExaSAT is a compiler-based framework, used for studying software optimizations on current and future archi-

tectures [20]. The framework statically analyzes an application and automatically gathers information about

data accesses, static variable references, and arithmetic operations. It outputs an XML that represents the

application workload on a loop-by-loop basis. ExaSAT uses the XML file, and feeds into a performance model

that can combine hardware and software characteristics to estimate memory bandwidth usage or memory traffic

between DRAM and last level cache. It also computes the arithmetic intensity of an application, and decides

whether the application is compute or memory-bound. The framework is tested on production combustion

simulations and is used to answer key design questions for future node architectures. In this project, we focus

on the memory access information that the framework provides for read/write references and their frequencies.

ExaSAT creates read and write counts for each variable for every loop in every function. However,

moving an object between two successive loops, or even functions, is not practical, because it will lead to

3358



UNAT ERTEN/Turk J Elec Eng & Comp Sci

excessive memory traffic between NVM and DRAM. As a result, the initial placement plays an important role

in maximizing application performance. Instead of driving our model from the loop-by-loop basis counts, we

calculate the total reads and writes for each data structure.

One of the limitations of our approach is that ExaSAT does not take into account any memory access

optimizations that might be performed by the compiler, as it analyzes the code as it is written. However, the

commercial compilers do not drastically affect the lower bound of memory access, because they cannot safely

generate cache-optimized codes, except for simple loops. It is important to note that ExaSAT only estimates

compulsory memory access rather than actual memory access, because the analysis is statically performed at

compile-time. As a result, the placement algorithms may produce a suboptimal placement, because they do not

have the runtime information.

3.5. Placement algorithms

We can categorize the placement algorithms based on their objectives. Algorithm 1 in Figure 1 shows the data

placement algorithm with a performance objective. For each variable v, we compute its read and write references

in program P. These values are computed with the help of the ExaSAT tool. Then we sort the variables with a

decreasing write reference. If two variables have the same write reference counts, then the higher read reference

precedes the lower read reference. In the case of equality, the variable with the lower footprint precedes the one

with the higher footprint. Starting from the beginning of the sorted list, the second loop in Line 13 appends the

variables to the DRAM candidate list until DRAM is full, since the objective is to take advantage of DRAM

for write- and read-intensive objects. Line 19 takes the set difference; any variable that cannot be placed in

DRAM is allocated to NVM.

Figure 1. Data placement algorithm with performance objective.

The second algorithm in Figure 2 performs the data placement with the objective of saving energy. After

computing the rv and wv values of a variable, we compute its dynamic and static energy consumption as if it

3359



UNAT ERTEN/Turk J Elec Eng & Comp Sci

were to be placed on NVM (vnvm) and on DRAM (vdram). Line 13 adds the NVM and DRAM pairs to the

energy list, and then sorts them based on the increasing DRAM energy consumption. Line 18 compares the

energy consumption for two memory types. If DRAM consumption is less than that of NVM and there is still

space on DRAM, then variable v is placed on DRAM, otherwise it is placed on NVM. Sorting the list ensures

that no object is placed onto NVM due to its capacity limitation, as it has lower energy consumption than that

of an object, which is already placed on DRAM.

Figure 2. Data placement algorithm with energy-saving objective.

The third algorithm in Figure 3 finds the middle ground for the performance and power in data placement.

Similarly to Algorithm 1, Algorithm 3 computes the read/write references of the variables and then sorts them

based on their write counts. Then Line 13 traverses the sorted variable list and computes the dynamic and

static energy consumption of each variable for two memory types. Line 16 checks if DRAM has space to hold

any further objects. Line 17 examines whether the energy consumption of variable v on DRAM is less than

that of NVM or not. If NVM is more advantageous in terms of energy consumption, then the algorithm also

checks the write access rate of the variable, because placing this variable on NVM would lead to performance

degradation. Based on the desired access rate threshold, the variable might still be placed on DRAM if there

are too many accesses to it. The threshold value can be experimentally set, or can be set by the desired fraction

of memory objects on one type of memory.

4. Evaluation

4.1. Motivating applications

To evaluate our analysis and investigate the benefits of hybrid NVM-DRAM technologies, we study two

applications: CNS and SMC [21]. Both applications are direct numerical combustion simulations and are

representative of real-life scientific applications. CNS and SMC play an important role in stencil-based partial

differential equation solvers. While CNS consists of 1347 lines of Fortran code and contains 35 three-dimensional

3360



UNAT ERTEN/Turk J Elec Eng & Comp Sci

Figure 3. Data placement algorithm with performance power objective.

arrays, the SMC code contains 3830 lines of code and 159 three-dimensional arrays. Due to the length of the

applications and the high number of arrays, it is difficult for a programmer to manually analyze these codes

to identify candidate arrays for NVM and DRAM. Our compiler-based approach automatically analyzes the

program and gathers write and read frequencies of arrays.

4.2. Results

For the experimental results, we assume there is 128 GB of DRAM and 2 TB of NVM, which is a realistic

configuration for a high-performance computing system. We use a relatively large problem size of 10243 so

that most data can fit into the existing DRAM. We use one timestep of the solver as execution time for the

applications. Firstly, we evaluate the read/write ratio and write the access rates of the motivating applications.

Figure 4 shows the application metrics for the CNS (left) and SMC code (right). The x-axis represents different

variables in the applications, sorted by their write access rates. Because SMC has more three-dimensional

variables (159 versus 35), there are more data points in the SMC figure. We are primarily interested in arrays

rather than scalar variables, because the idle power consumption is proportional to the memory footprint. It is

important to note that the low write access rate does not exclude variables with high read/write ratio. However,

the read/write ratio omits variables that have a low ratio and low write access rate, which could have benefitted

from NVM.

Figure 5 shows the fraction of data as a function of the (sorted) write access rates. Arrays with a large

write access rate reside in DRAM, and the rest reside in NVM. The programmer can select a threshold value to

serve as a cut-off value for data placement, or can completely fill DRAM first and then move to NVM, using the

proposed Algorithm 1. Because Algorithm 1 sorts the arrays in terms of their write access rates, the high access

rates will be placed on DRAM first. Assuming a problem size of 10243 for the SMC code, the total memory

3361



UNAT ERTEN/Turk J Elec Eng & Comp Sci

Figure 4. Read/write ratio (left y axis) and write access rates (right y axis) are shown for CNS and SMC. The x axis

indicates a different variable in the applications.

requirement for holding all the data structures is 1272 GB (1.2 TB). In that case, only 10% of data can reside

in DRAM; the rest have to go to NVM. Algorithm 1, with the objective of performance, helps select 10% of

data as candidates for DRAM, so that performance penalties are minimized due to the write access latencies.

Figure 5. Fraction of data as a function of write access rates. High write access rates are better candidates for DRAM.

An application-specific threshold value can be computed based on the desired performance or power

budget. Our analysis helps choose an application-specific value. In SMC, there are several arrays with low read

and write access rates. If a write access rate of ≤0.11% is chosen, then a large fraction of data (77%) qualifies

for NVM, which translates into roughly 77% idle power savings. Nevertheless, the dynamic energy for these

arrays will increase. For the CNS code, a higher threshold value is needed compared to SMC. The threshold

line can be moved to the left or right depending on the desired power savings, acceptable performance loss, or

the size of DRAM.

Figure 6 shows both dynamic and static energy consumption for DRAM (left) and NVM (right), using

the energy values in the Table. Each data point on the x-axis represents a different variable in the SMC code.

As seen from the figure, DRAM’s dynamic and static energy consumptions are very similar. However, on NVM,

3362



UNAT ERTEN/Turk J Elec Eng & Comp Sci

energy consumption due to leakage is almost negligible. The main energy consumption is due to the dynamic

energy. Overall, NVM has much higher total energy consumption for each variable than DRAM, using the

hardware metrics in the Table. Based on these energy values, Algorithms 2 and 3 will fill DRAM until it is full

and then move to NVM, because there is no energy gain for placing data in NVM. Furthermore, this means that

Algorithm 3 converges with Algorithm 1, according to the current technology parameters. For NVM to become

more competitive, its dynamic energy consumption should be improved with new advances in technology.

Figure 6. Total energy consumption in joules for each variable in SMC code when a variable is placed on DRAM or

NVM.

Next, we investigate the effect of further improved read/write dynamic energy values on NVM. In

particular, we choose hypothetical values and set the read and write energy consumption to only 50% worse

than that of DRAM. All other parameters remain unchanged. Figure 7 compares the DRAM and NVM total

energy consumption for each variable in the SMC code, based on the improved hardware metrics. The x-axis

includes the variable names, sorted according to their qualification for DRAM, and uses Algorithm 3, which

takes both the performance and energy consumption into account. Starting from the left of the x-axis, the

variables are placed into DRAM until it is full, and then the remaining variables go to NVM. As seen from the

figure, some variables may have lower total energy consumption in NVM than DRAM. However, because of

their high access rates, Algorithm 3 places them in DRAM due to performance concerns.

In summary, our results suggest that write-access rate threshold is an important metric for deciding the

data placement between NVM and DRAM. In particular, an application-specific write-access rate threshold

should be chosen to avoid performance penalties. NVM technology still lags far behind in terms of dynamic

energy consumption, compared to DRAM. Unless dynamic energy consumption improves in future systems,

NVM cannot compete with DRAM. Despite these disadvantages, NVM has cost and capacity advantages,

which allow programmers to utilize a large amount of memory at low cost for their applications.

4.3. Related work

Several researchers have proposed hybrid NVM and DRAM memory systems [22]. Proposed solutions in the

literature on data placement on hybrid NVM and DRAM are predominantly based on operating systems or

hardware support. The OS migrates data over the course of the execution to the most appropriate type of

memory with the help of hardware extensions. Ramos et al. proposed a dynamic page placement solution

through OS support in hybrid memory systems [23], which is agnostic about applications. Another group

developed a memory management method for hybrid memory that keeps the write history to hide the slow

3363



UNAT ERTEN/Turk J Elec Eng & Comp Sci

Figure 7. Data placement for variables using Algorithm 3. Starting from the left of x axis, the variables are placed

onto DRAM until it is full.

writes to PCM [24]. Seok et al. [25] developed a page monitoring system for page migration between PCM and

DRAM to reduce access latencies to PCM. Application agnostic data placement techniques for hybrid memories

supported in the hardware, such as [7], have the advantage of hiding complexities from the user. However, they

require extensions to the hardware to assist the OS. Our solution makes the application portable, because it

does not depend on the OS or hardware extension used in the target platform.

Qureshi et al. [8] propose using DRAM as a page cache for PCM memory. The cache buffers frequently

accessed pages, improves the endurance, and reduces the number of writes to the PCM. Zhang and Li propose

a hybrid memory design, where PCM is used as a primary memory and a small portion of DRAM is used

as a write-buffer [22]. Similarly, in [23], the authors propose a page replacement algorithm that leverages the

memory controller to monitor programs. Then the operating system uses this information to make decisions

about page migrations. The common idea behind these proposed approaches is that they use a global view of

the programs. This work brings application-specific knowledge into the picture, when a decision is made about

which objects are placed on NVM. We rely on an analysis tool that statically analyzes an application by studying

its data structures and places data accordingly on DRAM or NVM. Since we rely on compiler analysis, which

is performed statically at compile time, this tool introduces lower overhead than those at runtime. Moreover,

our approach is orthogonal to the previously proposed approaches and can be combined with them to obtain

better results.

Closest works to this are by Hassan et al. [18] and Li et al. [15]. Hassan et al. [18] proposed a

programming interface to place data within the user application. Similarly to our work, they argue that

object-based placement is better than page placement, since program objects are strongly biased towards one

particular memory type. Unlike our compiler-based approach, they use a profiling tool and instrument the code

to collect memory access information. This requires extra effort by the programmer. Li et al. [15] studied

scientific workload and followed a dynamic approach for data placement. They developed a PIN-based binary

instrumentation tool, which adds the execution time overhead to the application. On the other hand, our

approach is static and lightweight, because it is compiler-based and the placement relies on an analytical model.

Our analytical model sheds light on the usability of NVM, but has limitations. To assess whether dynamic

energy consumption overshadows idle energy savings or not, our future work will employ memory simulators.

Architectural simulation can provide more accurate power-saving numbers. Conversely, our analysis is practical

3364



UNAT ERTEN/Turk J Elec Eng & Comp Sci

and can be used by a memory manager with a low overhead.

Wang et al. [26] studied the placement for embedded systems. Because real-time tasks have a hard

deadline, they favor the placement of data on only one type of memory. This is very restrictive for scientific

workload, because a task may have multiple data objects; additionally, in our case the objects can reside on

two different memory types. Another approach to collecting object information is to use a tool that captures

data movement by tracking data objects in an application at runtime, such as ADAMANT [27]. Such a tool

can be combined with our placement algorithms to place data not only on NVM but also on newly introduced

3D stack memories such as MCDRAM [28].

5. Conclusion

Nonvolatile memories have emerged as an alternative to DRAM, because they use extremely low power when in

standby mode. On the other hand, they have low bandwidth rates, especially for writes, whereas reads are more

comparable to DRAM. They also consume more dynamic power for writes and have limited write endurance.

Hybrid DRAM-NVM memory architectures combine the best of both worlds; however, the technology is at its

early stage. This paper investigated whether there is any opportunity or not to store variables in the NVM

instead of DRAM. We used an analysis tool and categorized variables as good or bad candidates for NVM.

Our approach is compiler-based and uses application information for the best initial placement of data. Future

research will employ power simulations to tune a write access rate threshold for given power and performance

goals.

References

[1] Lefurgy C, Rajamani K, Rawson F, Felter W, Kistler M, Keller TW. Energy management for commercial servers.

Computer 2003; 36: 39-48.

[2] Mittal S. A survey of power management techniques for phase change memory. Int J Comput-Aid Eng 2014; 1223:

41-54.

[3] Hoefflinger B. ITRS: International technology roadmap for semiconductors. In: Hoefflinger B, editor. Chips 2020:

A Guide to the Future of Nanoelectronics. Berlin, Germany: Springer-Verlag, 2012. pp. 161-174.

[4] Raoux S, Burr G, Breitwisch M, Rettner C, Chen Y, Shelby RM, Salinga M, Krebs D, Chen SH, Lung HL et al.

Phase-change random access memory: a scalable technology. IBM J Res Dev 2008; 52: 465-479.

[5] Zhou P, Zhao B, Yang J, Zhang Y. A durable and energy efficient main memory using phase change memory

technology. SIGARCH Comput Archit News 2009; 37: 14-23.

[6] Caulfield AM, Coburn J, Mollov T, De A, Akel A, He J, Jagatheesan A, Gupta R, Snavely A, Swanson S.

Understanding the impact of emerging non-volatile memories on high-performance, IO-intensive computing. In:

ACM/IEEE 2010 High Performance Computing, Networking, Storage and Analysis Conference; 13–19 November

2010; Washington, DC, USA. New York, NY, USA: IEEE. pp 1-11.

[7] Lee BC, Ipek E, Mutlu O, Burger D. Architecting phase change memory as a scalable dram alternative. SIGARCH

Comput Archit News 2009; 37: 2-13.

[8] Qureshi MK, Srinivasan V, Rivers JA. Scalable high performance main memory system using phase-change memory

technology. SIGARCH Comput Archit News 2009; 37: 24-33.

[9] Ang J, Barrett R, Benner R, Burke D, Chan C, Cook J, Donofrio D, Hammond S, Hemmert K, Kelly SM et

al. Abstract machine models and proxy architectures for exascale computing. In: IEEE 2014 Hardware–Software

Co-Design for High Performance Computing Workshop; 17 November 2014; Piscataway, NJ, USA. New York, NY,

USA: IEEE. pp. 25-32.

3365

http://dx.doi.org/10.1109/MC.2003.1250880
http://dx.doi.org/10.1109/MC.2003.1250880
http://dx.doi.org/10.1147/rd.524.0465
http://dx.doi.org/10.1147/rd.524.0465
http://dx.doi.org/10.1145/1555815.1555759
http://dx.doi.org/10.1145/1555815.1555759
http://dx.doi.org/10.1109/SC.2010.56
http://dx.doi.org/10.1109/SC.2010.56
http://dx.doi.org/10.1109/SC.2010.56
http://dx.doi.org/10.1109/SC.2010.56
http://dx.doi.org/10.1145/1555815.1555758
http://dx.doi.org/10.1145/1555815.1555758
http://dx.doi.org/10.1145/1555815.1555760
http://dx.doi.org/10.1145/1555815.1555760
http://dx.doi.org/10.1109/Co-HPC.2014.4
http://dx.doi.org/10.1109/Co-HPC.2014.4
http://dx.doi.org/10.1109/Co-HPC.2014.4
http://dx.doi.org/10.1109/Co-HPC.2014.4


UNAT ERTEN/Turk J Elec Eng & Comp Sci

[10] Burr G, Breitwisch M, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras A,

Padilla A et al. Phase change memory technology. J Vac Sci Technol B 28: 223-262.

[11] Burr G, Kurdi B, Scott J, Lam C, Gopalakrishnan R, Shenoy R. Overview of candidate device technologies of

storage-class memory. IBM Res Dev 2008; 52: 449-464.

[12] Mandelman J, Dennard H, Bronner G, DeBrosse J, Divakaruni R, Li Y, Radens C. Challenges and future directions

for the scaling of dynamic random-access memory (DRAM). IBM J Res Dev 2002; 46: 187-212.

[13] Meena J, Sze S, Chand U, Tseng T. Overview of emerging nonvolatile memory technologies. Nanoscale Res Lett

2014; 9: 526-559.

[14] Unat D, Chan C, Zhang W, Williams S, Bachan J, Bell J, Shalf J. ExaSAT: An exascale co-design tool for

performance modeling. Int J High Perform C 2015; 29: 209-232.

[15] Li D, Vetter J, Marin G, McCurdy C, Cira C, Liu Z, Yu W. Identifying opportunities for byte-addressable non-

volatile memory in extreme-scale scientific applications. In: IEEE 2012 International Parallel and Distributed

Processing Symposium; 21–25 May 2012; Washington, DC, USA. New York, NY, USA: IEEE. pp. 945-956.

[16] Doller E. Forging a future in memory—new technologies, new markets, new applications. In: IEEE 2010 Hot Chips

Symposium; 22–24 August 2010; Stanford, CA, USA. New York, NY, USA: IEEE. pp. 1-28.

[17] Dong X, Xu C, Xie Y, Jouppi NP. NVSim: A circuit-level performance, energy, and area model for emerging

nonvolatile memory. IEEE T Comput Aid D 2012; 31: 994-1007.

[18] Hassan A, Vandierendonck H, Nikolopoulos DS. Software-managed energy-efficient hybrid DRAM/NVM main

memory. In: ACM 2015 Computing Frontiers Conference; 18–21 May 2015; Ischia, Italy. New York, NY, USA:

ACM. pp. 23:1-23:8.

[19] Suzuki K, Swanson S. The non-volatile memory technology database (nvmdb). Technical Report CS2015-1011,

Department of Computer Science & Engineering, San Diego, CA, USA: University of California, May 2015.

http://nvmdb.ucsd.edu.

[20] Chan C, Unat D, Lijewski M, Zhang W, Bell J, Shalf J. Software design space exploration for exascale combustion

co-design. In: Kunkel JM, Ludwig T, Meuer H, editors. Supercomputing. Berlin, Germany: Springer-Verlag, 2013.

pp. 196-212.

[21] Emmett M, Zhang W, Bell JB. High-order algorithms for compressible reacting flow with complex chemistry.

Combust Theor Model 2014; 18: 361-387.

[22] Zhang W, Li T. Exploring phase change memory and 3D die-stacking for power/thermal friendly, fast and durable

memory architectures. In: IEEE 2009 Parallel Architectures and Compilation Techniques Conference; 12–16 May

2009; Raleigh, NC, USA. New York, NY, USA: IEEE. pp. 101-112.

[23] Ramos LE, Gorbatov E, Bianchini R. Page placement in hybrid memory systems. In: ICM 2011 Supercomputing

Conference; 31 May–4 June 2011; Tucson, AZ, USA. New York, NY, USA: ACM. pp. 85-95.

[24] Lee S, Bahn H, Noh SH. Characterizing memory write references for efficient management of hybrid PCM and

DRAM memory. In: IEEE 2011 International Symposium on Modeling, Analysis Simulation of Computer and

Telecommunication Systems; 25–27 July 2011; Singapore, Singapore. New York, NY, USA: IEEE. pp 168-175.

[25] Seok H, Park Y, Park KH. Migration based page-caching algorithm for a hybrid main memory of dram and pram.

In: ACM 2011 Applied Computing Symposium; 21–24 March 2011; Taichung, Taiwan. New York, NY, USA: ACM.

pp. 595-599.

[26] Wang Z, Gu Z, Shao Z. Optimized allocation of data variables to PCM/DRAM-based hybrid main memory for

real-time embedded systems. IEEE Embedded Syst Lett 2014; 6: 61-64.

[27] Cicotti P, Carrington L. ADAMANT: Tools to capture, analyze and manage data movement. Procedia Comput Sci

2016; 80: 450-460.

[28] Borkar S. 3D integration for energy efficient system design. In: IEEE 2011 Design Automation Conference; 5–9

June 2011; New York, NY, USA. New York, NY, USA: IEEE. pp. 214-219.

3366

http://dx.doi.org/10.1147/rd.524.0449
http://dx.doi.org/10.1147/rd.524.0449
http://dx.doi.org/10.1147/rd.462.0187
http://dx.doi.org/10.1147/rd.462.0187
http://dx.doi.org/10.1186/1556-276X-9-526
http://dx.doi.org/10.1186/1556-276X-9-526
http://dx.doi.org/10.1177/1094342014568690
http://dx.doi.org/10.1177/1094342014568690
http://dx.doi.org/10.1109/IPDPS.2012.89
http://dx.doi.org/10.1109/IPDPS.2012.89
http://dx.doi.org/10.1109/IPDPS.2012.89
http://dx.doi.org/10.1109/HOTCHIPS.2010.7480056
http://dx.doi.org/10.1109/HOTCHIPS.2010.7480056
http://dx.doi.org/10.1109/TCAD.2012.2185930
http://dx.doi.org/10.1109/TCAD.2012.2185930
http://dx.doi.org/10.1145/2742854.2742886
http://dx.doi.org/10.1145/2742854.2742886
http://dx.doi.org/10.1145/2742854.2742886
http://dx.doi.org/10.1007/978-3-642-38750-0_15
http://dx.doi.org/10.1007/978-3-642-38750-0_15
http://dx.doi.org/10.1007/978-3-642-38750-0_15
http://dx.doi.org/10.1080/13647830.2014.919410
http://dx.doi.org/10.1080/13647830.2014.919410
http://dx.doi.org/10.1109/PACT.2009.30
http://dx.doi.org/10.1109/PACT.2009.30
http://dx.doi.org/10.1109/PACT.2009.30
http://dx.doi.org/10.1145/1995896.1995911
http://dx.doi.org/10.1145/1995896.1995911
http://dx.doi.org/10.1109/MASCOTS.2011.68
http://dx.doi.org/10.1109/MASCOTS.2011.68
http://dx.doi.org/10.1109/MASCOTS.2011.68
http://dx.doi.org/10.1145/1982185.1982312
http://dx.doi.org/10.1145/1982185.1982312
http://dx.doi.org/10.1145/1982185.1982312
http://dx.doi.org/10.1109/LES.2014.2325878
http://dx.doi.org/10.1109/LES.2014.2325878
http://dx.doi.org/10.1016/j.procs.2016.05.323
http://dx.doi.org/10.1016/j.procs.2016.05.323

	Introduction
	Background and motivation 
	Methodology
	Application-specific metrics
	Architecture-specific metrics
	Energy model 
	Access pattern analysis 
	Placement algorithms 

	Evaluation 
	Motivating applications
	Results 
	Related work 

	Conclusion

