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Abstract: DNA microarray experiments are frequently used because they have various advantages. However, gene

expression data from DNA microarray experiments are noisy, and, consequently, the computations that are based on such

noisy data may lack accuracy. In this paper, an evolutionary uncertain data-clustering algorithm, E-MFDBSCAN, and a

prediction model using E-MFDBSCAN for uncertain data are proposed. The proposed methodology may be successfully

applied to noisy gene expression data. In this methodology, global patterns of time series data can be extracted using our

evolutionary clustering approach. These patterns are used to infer future projections. In the proposed methodology, an

autoregressive time series function (using these patterns) used to predict the similarities among sets of gene expression

clusters is constructed. The algorithms are tested with two different gene expression time series datasets.
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1. Introduction

Due to the biological variations and the nature of probe-level measurements, missing and noisy data are major

problems in microarray experiments. Several studies have focused on this problem. One of the relevant studies

[1] proposes a technique applied to microarray experiment datasets in which the fuzzy set logic is used for gene

selection. In the work by Troyanskaya et al. [2], three missing-data estimation methods, K-nearest neighbors,

singular value decomposition, and row average, were tested and evaluated using three different gene expression

datasets. To predict the missing gene expression time series data, linear interpolation was proposed by Aach

and Church [3]. Similarly, D’haeseleer [4] proposed a spline interpolation method to estimate the missing time

points. Bar-Joseph et al. [5] modeled the gene expression profiles as a cubic spline. Using spline curves,

the missing data are estimated. However, because the measured data are fuzzy, even if the missing data

are estimated somehow, they are still uncertain. Therefore, Sivriver et al. [6] proposed a dynamic modeling

approach, DynaMiteC, to overcome both noisy and missing data problems. The proposed approach enables time

course gene expression profiles to be modeled and clustered using biologically meaningful parameters (e.g., point

of induction). With the same motivation, another modeling approach, an extension of the Gaussian mixture

model named PUMA-CLUST, was proposed by Liu [7]. Because of the use of manual methods in some parts

of gene expression experiments, the reliability of the data is low. If these data are directly used as inputs to

a data-mining algorithm or a model to evaluate gene expression data, then the adverse effects on the desired

results will be inevitable. To eliminate the aforementioned adverse effects and reduce the fuzziness, the data

are represented using sample datasets generated using uncertain data-management techniques.
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To vigorously understand and analyze the global patterns of gene activities time series-based dynamic

data processing should be used to extract relevant information. Thus, recent studies have focused on time

series-based dynamic modeling and clustering. Holter and Maritan [8] proposed a method that uses a time

translational matrix. Using a time translational matrix, temporal relationships can be modeled. However,

because this method focuses on the time points that are sampled at the lowest common frequencies, the available

expression data are only partially used. Zhao et al. [9] proposed statistical models to extract the genes that are

regulated by the cell cycle. For each periodically analyzed specific dataset, a custom model is generated, which

is the distinct weakness of their proposed method. Aach and Church [3] focused on aligning gene expression

time series. These authors propose time-warping methods instead of clustering. Global pattern extraction and

prediction are not possible with these algorithms. Therefore, evolutionary clustering and unsupervised learning

approaches are more suitable.

In this paper, a prediction model for gene expression time series is proposed. We developed an evo-

lutionary uncertain data clustering algorithm, evolutionary M-FDBSCAN (E-MFDBSCAN), and used it in a

model to predict the similarity value of a gene expression cluster for the next time point. In addition, be-

cause E-MFDBSCAN is a density-based clustering algorithm, it returns more accurate results for noisy datasets

[10] compared to the other algorithms that are based on different approaches. The other strength of the pro-

posed algorithm is the global clusters that are generated according to the time-based evolutionary information.

The proposed prediction model allows for the prediction of the next time points by modeling the similarity

information of the set of global clusters for n time points.

The paper is organized as follows. In Section 2, the related works are presented. In Section 3, elaborated

explanations of the proposed evolutionary clustering algorithm and the prediction model are given. In Section

4, the results of tests using two different gene expression time series datasets are discussed. In Section 5, the

conclusion of the study is given.

2. Related work

In the case of gene expression clustering, several techniques are widely used. Hierarchical clustering is the

most commonly used technique. The main drawbacks of this approach are a lack of robustness, nonuniqueness,

complicated hierarchy interpretations due to inversion problems, and local decision-based grouping without

clustering reevaluation capability [11]. The nonuniqueness problem of hierarchical clustering approach is studied

in [12]. For this purpose, a leaf ordering algorithm is proposed for preserving the clustering result based on the

dynamic programming concept. Another interesting study [13] proposed a noise-aware method (a derivation

of nonnegative matrix factorization (NMF) called PNMF) for clustering and classifying microarray data, but

the solution is not a time-aware solution. The other widely used technique is density-based clustering. In

density-based clustering algorithms, the essential task is to discover high-density regions that are separated by

low-density regions in a data space. This approach is more robust against noisy and diffused data. Thus, the

unambiguous clustering performance is better than that of the other approaches. There are several density-

based clustering algorithms, including K-means [14], self-organizing maps (SOMs) [15], and density-based spatial

clustering of applications with noise (DBSCAN) [16]. One of the most popular density-based gene expression

clustering algorithms is SOMs. To observe the pattern interpretation performance of SOMs, Tamayo et al.

[11] developed the computer package GENECLUSTER. According to their execution results, SOMs are well

suited for exploratory data analysis. Similarly, Fang et al. [17], developed a computer package, supraHex, to

train, analyze, and visualize omics data, an implementation of a derivation of the SOMs algorithm. Despite its
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popularity, the SOMs approach has two major drawbacks. One drawback is the number of incorrect clusters in

the case of noisy and missing data and the other is the high computational cost.

In the present study, the evolutionary clustering algorithm E-MFDBSCAN, which is a density-based

clustering algorithm, was developed. E-MFDBSCAN is devised for uncertain data clustering by modeling the

uncertainty using a Gaussian probability density function. Thus, the cluster accuracy performance is better

than that of SOMs. The other advantage of E-MFDBSCAN is the enhanced computational time performance.

Because E-MFDBSCAN is a derivation of M-FDBSCAN [18], which is devised for multicore systems, clustering

issues can be resolved in each subdataset concurrently by splitting a gene expression dataset into subdatasets.

Gene expressions change, especially during transcription and translation. If clustering is performed for

only static time points, the generated clusters help to deduce only instantaneous and local information about

the overall cellular events. Therefore, to see the whole picture, time-aware global clustering approaches are

required.

Subhani et al. [19] proposed an evolutionary clustering algorithm that combines the approaches of

expectation maximization and the multiple alignments of gene expression profiles to cluster microarray time

series data. The algorithm uses the k-means clustering algorithm, which is a centroid-based clustering algorithm.

However, the main drawback of the centroid-based representation is that the number of clusters must be specified

in advance. Because of the nature of the data domain, determining the number of clusters before the clustering

process is difficult.

E-MFDBSCAN generates time-aware global clusters. Thus, it enables future prediction using the ex-

tracted time-based global patterns. In this algorithm, uncertainty is modeled by generating several sample

points for each gene expression data point using a Gaussian probability distribution function. According to the

number of sample points, the original dataset enlarges. However, the sample data approach not only reduces the

ratio of fuzziness but also increases the output generation time due to an increase in the amount of processed

data, which is directly proportional to the cardinality of the sample dataset. Because E-MFDBSCAN supports

parallel computation, this increase in data size can be managed effectively.

3. Materials and methods

In this section, the proposed evolutionary clustering algorithm E-MFDBSCAN and the proposed prediction

model are presented.

3.1. E-MFDBSCAN

E-MFDBSCAN is an evolutionary uncertain-data–clustering algorithm based on the DBSCAN clustering ap-

proach. The uncertain-data–clustering method proposed in [20] and the parallel computation approach proposed

in [18] are used in E-MFDBSCAN. According to the density-based clustering approach, there are two main con-

straints: i) each cluster has at least a number of µ members, and ii) the distance between any two members

in a cluster is not larger than ε . In the context of gene expression, the cluster membership and the distance

between two data objects are fuzzy. In [20], to address the uncertainty, a data-sampling technique is proposed.

According to their proposal, for each uncertain data object x , a sequence of s sample points, < x1, . . . , xs > is

derived using a Gaussian probability density function. The proposed clustering method is based on the sample

matrix concept. A sample matrix is used to determine the neighbors of the fuzzy data objects. If a fuzzy data

object has no neighbor, then it is flagged as an outlier fuzzy data object.

Each row oi in the sample matrix represents the derived sample data points of o , where {oi| <
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o1, . . . , oi, . . . , os >}. Each column Dj represents the j th database instance, where {xj | < x1, . . . , xj , . . . , xs >

ϵD ∧ xj ̸= oj} ∪ oi . Finally, each matrix element is mi,j = |Nε,Dj(oi)| , where Nε,Dj(oi) denotes the set

{xj |d(oi, xj ≤ ε ∧ xjϵDj } , and d(., .) denotes the distance function.

In Figure 1, a sample 4 × 4 sample matrix is shown. For example, according to the figure, m11= 4,

indicating the existence of 4 fuzzy data objects in D , of which the first sample points are in the ε-neighborhood

of the first sample point o1 of o .

Figure 1. A 4 × 4 sample matrix.

Because the proposed evolutionary clustering model is developed for gene expression time series data, the

sample matrix concept is extended by adding the time dimension. The new matrix, called the t-sample matrix,

is a three-dimensional m×s×s matrix, where m denotes the number of time points in the time dimension, and

s denotes the number of derived sample points for the fuzzy data objects. In E-MFDBSCAN, for each fuzzy

data object x , a sequence of m× s samples, < x11, . . . , xm1, . . . , xms > is derived using a Gaussian probability

density function. Similar to the sample matrix, in the t-sample matrix,oki represents the ith derived sample

point for the k th time point, such that {oki| < o11, . . . , o1s, . . . , oki, . . . , oms > ϵo}, and Dkj represents the j th

database instance for the k th time point, where {xkj | < x11, . . . , x1s, . . . , xkj , . . . , xms>ϵD ∧ xkj ̸= okj } ∪oki .
Finally, each matrix element is mk,i,j = |Nε,Dkj(oki)| , where Nε,Dkj(oki) denotes the set {xkj |d(oki, xkj) ≤
ε ∧ xkj ∈ Dkj } , and d(., .) denotes the distance function. In Figure 2, to give an idea, a 5 × 3 × 3 t-sample

matrix is illustrated.

In the first step of the algorithm, the t-sample matrices are constructed for all of the fuzzy data objects.

A t-sample matrix T-SM(o), where o is any fuzzy data object, is a data structure that is used to compute the

reachability probabilities between oand the other fuzzy data objects in the database. In short, the reachability

probability with respect to oand xdenotes the probability of oand xbeing in the same cluster. Assigning an
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Figure 2. A t-sample matrix with m = 5 time points and s = 3 sample data points.

object to a cluster or flagging it as an outlier is performed according to the value of the reachability probability.

P reach(x, o) = P core(o)× Pd(x, o)(ε) (1)

In Eq. (1), P core(o) represents the core object probability of o , which denotes the probability of ohaving at

least µ−1 neighbors in ε -neighborhood, except for x . This probability value is derived using the t-sample

matrix. The derivation procedure is customized as follows:

Core object probability
Begin

1. For each time point tk, where {tk| < t1, . . . , tm>} :

1. Decrease mk,i,j by 1 for which d(oki, xkj) ≤ ε holds.

2. Count the number of elements in the t-sample matrix T-SM(o) that contain values greater
than or equal to µ− 1.

3. Normalize the result by s2.

4. Assign the final normalized result to P core(o)k

2. Count the core probabilities that are greater than or equal to 0.5

3. Normalize the result by m.

4. Assign the final normalized result to P core(o)final.

End

Finally, the next probability that must be computed is the distance distribution probability Pd(x, o)(ε)

with respect to x and o , which denotes the probability of x being in the ε-neighborhood of o . As in the core

object probability computation, the computation of Pd(x, o)(ε) is customized for E-MFDBSCAN as follows:
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Distance distribution probability
Begin

1. For each time point tk of the fuzzy data object x, where {tk| < t1, . . . , tm>} :

1. Count the number of events d(oki, xkj) ≤ ε.

2. Normalize the result by s2.

3. Assign the final normalized result to Pd(x, o)(ε)k

2. Count the distance distribution probabilities that are greater than or equal to 0.5

3. Normalize the result by m.

4. Assign the final normalized result to Pd(x, o)final.

End

Thus, the final reachability probability is

P reach(x , o)final = P core(o)final × Pd(x , o)final .

If P reach(x , o)final ≥ 0.5, then it is accepted that x is reachable from o , also indicating that xand oare

in the same cluster. If for all x values P reach(x , o)final < 0.5, then o is flagged as an outlier. With this new

perspective proposed by E-MFDBSCAN, time-based global clusters and outliers can be generated.

Because standard distance functions, such as Euclidian distance functions, are mostly used for objects in

n -dimensional spaces (n ≥ 2), they are not adequate for defining the correlations among the gene expression

data, which is in 1D space. Therefore, the Pearson correlation function has been used in many gene expression

studies [6,21,22]. Thus, the Pearson correlation was used to measure distance.

As seen in Figure 3, for each time point, the gene expression data lie on a vertical line, and each fuzzy

data object is represented with a sequence of derived sample points.

If E-MFDBSCAN is assumed as a function, then it returns a set of sets of clusters SC such that SC =

{SC1 , . . . , SCi , . . . , SCm}, where m denotes the number of time points, and SCi denotes the set of clusters

that are generated at the time point ti using the database Di ⊆ D , where Di denotes the database in which

the data for the time points < t1 , . . . , ti > are stored.

3.2. The prediction model

The stable pattern of gene expression time series data is an advantage with respect to near-future time prediction.

For most of the other data domains, as mentioned in [23], the risk of erroneous prediction is high due to the

instability of the trend of the time series. Recently, several studies have focused on gene expression profile

prediction. The dynamic model proposed by Holter and Maritan [8] is capable of class prediction. The class

prediction model proposed by Sorlie et al. [24] is based on prediction analysis of microarrays, which is a variant

of the nearest-centroid classification approach. Another classification and prediction solution based on the

nearest-centroid approach was proposed by Tibshirani [25]. The common restriction of these models is that

they are applicable only when the classes are known and defined. Unfortunately, in most cases, the classification

of gene expression profiles is challenging. As mentioned in [25], because the number of genes to be classified and

predicted is much greater than the number of samples that are analyzed by microarray experiments, selecting

the best-fit classes for each gene is nearly impossible. In addition, the significant identification of the genes that
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Figure 3. A gene expression time series dataset.

contribute to this classification is difficult. For these reasons, clustering-like unsupervised learning methods are

widely used to group gene expression profiles.

In several studies, evolutionary clustering approach-based prediction models have been proposed. The

evolutionary clustering approaches in which the time parameter is not considered, such as in EvoCluster,

proposed by Ma et al. [26], are not suitable for future time prediction models.

In the present study, a prediction model for gene expression time series is proposed. As illustrated in

Figure 4, one of the crucial benefits of E-MFDBSCAN is the demonstration of the temporal evolution of the

gene expression clusters.

To use the proposed prediction model, a similarity measure between two timely adjacent sets of clusters is

defined. The obtained similarity values determine the level of affinity of the two sets of clusters. The proposed

prediction model is represented by the time-series function, which is constructed according to the autoregressive

model concept and the achieved time-based similarity values.

Sim(E −MFDBSCANi+1, E −MFDBSCANi) = A+B × Sim(E −MFDBSCANi,

E −MFDBSCANi−1) + Ei+1(i = 1, . . . ,m)
(2)

In Eq. (2), Sim represents the BestMatch similarity function as defined by Goldberg [27], which is used to

compute the similarity values between two timely adjacent sets of clusters. A and B are the coefficients of

the time series function, and E is the noise function. The index i represents the ith time point. To observe

the prediction performance of the model, the similarity value for the next future time period [tm−tm+1 ] is

obtained from the time series function. Then the obtained similarity value is compared to the similarity value

by executing E-MFDBSCAN for the time points tm and tm+1 . Notice that, although tm+1 represents the next

future time point, the gene expression data at this time point are known and reserved in the database for testing

issues. The difference between these two similarity values determines the performance of the prediction model.
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Figure 4. Time-based evolutionary changes of sets of clusters.

4. Results and discussion

The tests were done on a server with an Intel Xeon X5650 2.67 GHz 24 Core CPU and 72 GB RAM. The
operating system was 64-bit Linux Centos 5.11. The algorithm and all other coding issues were implemented

in ANSI C programming language.

Because the time series of gene expression is generally very short (i.e. 4 to 20 samples) and unevenly

sampled, extracting the time-based evolutionary patterns is difficult. In this study, two different time series

gene expression datasets are used to test the issues surrounding evolutionary clustering and prediction. The

evolutionary clustering tests are used to observe the patterns of the generated global clusters. For each time

point i , the set of global clusters SCi is established, including the time period [t1 − ti ]. Thus, for mtime

points, m sets of global clusters are established such that {SCi| SC1 , . . . , SCi , . . . , SCm }. For predicting

and obtaining the similarity values of each of the two timely adjacent sets of global clusters, the coefficients and

the noise of the time series function as given in Eq. (2) are defined. The performance tests of the prediction

capability of the model are performed due to the similarity values that are obtained from the time series

function. Then these values are compared to the similarity values using E-MFDBSCAN for two timely adjacent

time points. The comparison results for the used datasets are given in Figures 5 and 6.

The first dataset is a budding yeast dataset, for which the gene expression time series data were obtained

during the yeast cell cycle. The dataset also includes the class information of the achieved data. The expression

levels were observed for 6220 yeast genes. At 10 min intervals, from time points 0 to 160 min, a total of 17

distinct temporal data were obtained for each gene. The used clustering algorithm is described in [28]. This

dataset was extended by deriving 8 sample points for each gene expression data point. The input parameters

ε (maximum distance between two members in a cluster) and µ (minimum number of members in a cluster)

are derived from the given class information. The values of the parameters that were derived from the class

information are ε = 0.005 and µ = 5. Starting from the 0th time point, for each time point of 17 time points,
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Figure 5. Similarities versus time graph for a budding yeast dataset.

Figure 6. Similarities versus time graph for a breast cancer dataset.

E-MFDBSCAN is used to generate the sets of global clusters. After computing the similarity values for each

set of clusters pairs of adjacent time points, we obtain the set of similarity values S . Using S , the unknown

coefficients in Eq. (2) are extracted. Finally, a time series function is established for the budding yeast dataset.

During the tests, the similarity values for the last three time points are predicted.

As shown in Figure 5, the actual and predicted value bars are approximately the same height. Due to
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the stable pattern of the gene expression time series data, after the construction of a model with a reasonable

number of time points, satisfactory prediction results can be generated.

The next dataset is a breast cancer gene expression time series dataset. The data are the result of

an analysis of breast cancer MCF10A-Myc cells at four time points up to 24 h following treatment with

dexamethasone to activate the glucocorticoid receptor. This dataset is composed of 22,283 gene expression

time series values. For each gene expression data point, again, 8 sample points are derived using a Gaussian

probability density function. In contrast to the first dataset, the classes in this dataset are not defined. Thus,

the tests are performed using several µ and ε parameter values. The relevant graph is shown in Figure 6. As in

the previous experiment, for the last three time points, the actual and predicted values are compared. Because

the number of time points is smaller than in the first dataset, the fitting ratio of the time series function is low.

Therefore, the differences between the predicted and actual values are slightly greater than in the first dataset.

5. Conclusion

In this study, a methodology to predict the evolutionary patterns of gene expression time series data is proposed.

An evolutionary clustering algorithm (E-MFDBSCAN) and a prediction model are developed. The distinct

contribution of the methodology is the proposed comprehensive solutions for several problems in gene expression

data processing, including uncertain data management, evolutionary pattern extraction, and near-future time

prediction. There are few studies that concentrate on a complete solution from this perspective. Most of these

studies focus on a specific problem in gene expression data processing. In most of these studies, the prediction

is performed by means of class prediction. However, this approach requires the classes to be previously known.

Because the samples from microarray experiments are smaller than the genes to be classified in most cases, the

provided classes are not sufficient for a comprehensive classification. Therefore, instead of supervised learning

approaches, unsupervised learning approaches are preferred in most of the recent studies. In some studies,

evolutionary clustering methods have been proposed for gene expression data. However, these methods are

incapable of time-based evolutionary pattern extraction.

In the clustering part of the methodology, an evolutionary clustering algorithm is presented. E-

MFDBSCAN generates time-based global gene expression clusters. The other features of the algorithm are

i) parallel execution capability and ii) uncertain data consideration and management. According to the results

of our literature survey, there is no other clustering algorithm that gathers all of the aforementioned features

into a single algorithm.

In the prediction part of the methodology, a prediction model is presented. The similarity values between

two timely adjacent sets of global clusters, which were generated by E-MFDBSCAN, are used to construct

an autoregressive time series function. The model is verified by comparing the predicted and the actual

similarity values for the same time period. The predicted similarity values are derived from the function,

and the actual similarity values are achieved by executing E-MFDBSCAN for two adjacent time points. The

prediction performance of the model depends on the size of the training dataset. Unfortunately, in the context

of gene expression data, the time series are generally short, meaning that the training dataset has only a few

time points (e.g., 4 to 20). However, despite this essential drawback, due to the stable pattern of gene expression

time series data, the prediction results are satisfactory.

Although the methodology is applied to the gene expression data domain, it can be used for other data

domains, such as social media. In future studies, the model will be tested for social media analysis.
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[18] Erdem A, Gündem Tİ. M-FDBSCAN: A multi core density-based uncertain data clustering algorithm. Turk J Elec

Eng & Comp Sci 2014; 22: 143-154.

[19] Subhani N, Rueda L, Ngom A, Burden C. Clustering microarray time-series data using expectation maximization

and multiple profile alignment. In: Proceedings of the IEEE International Conference on Bioinformatics and

Biomedicine Workshops; 1–4 November 2009; Washington, DC, USA: IEEE. pp. 2-7.

[20] Kriegel HP, Pfeifle M. Density-based clustering of uncertain data. In: Proceedings of the Eleventh International

Conference on Knowledge Discovery and Data Mining; 21–24 August 2005; Chicago, IL, USA: ACM. pp. 672-677.

3453

http://dx.doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/10.1093/bioinformatics/17.6.495
http://dx.doi.org/10.1093/bioinformatics/17.6.495
http://dx.doi.org/10.1145/565196.565202
http://dx.doi.org/10.1145/565196.565202
http://dx.doi.org/10.1145/565196.565202
http://dx.doi.org/10.1186/1471-2105-8-98
http://dx.doi.org/10.1186/1471-2105-8-98
http://dx.doi.org/10.1073/pnas.98.4.1693
http://dx.doi.org/10.1073/pnas.101013198
http://dx.doi.org/10.1073/pnas.101013198
http://dx.doi.org/10.1073/pnas.96.6.2907
http://dx.doi.org/10.1073/pnas.96.6.2907
http://dx.doi.org/10.1073/pnas.96.6.2907
http://dx.doi.org/10.1016/j.bbrc.2013.11.103
http://dx.doi.org/10.1016/j.bbrc.2013.11.103
http://dx.doi.org/10.3906/elk-1202-83
http://dx.doi.org/10.3906/elk-1202-83
http://dx.doi.org/10.1109/BIBMW.2009.5332128
http://dx.doi.org/10.1109/BIBMW.2009.5332128
http://dx.doi.org/10.1109/BIBMW.2009.5332128
http://dx.doi.org/10.1145/1081870.1081955
http://dx.doi.org/10.1145/1081870.1081955
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