
Turk J Elec Eng & Comp Sci

(2017) 25: 3738 – 3751

c⃝ TÜBİTAK
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Abstract: In this paper, a piecewise continuous current estimator-based observer is proposed to estimate a plant’s

states using sampled and delayed measurements. The advantage of the proposed technique is simple in terms of analysis

and design. Moreover, the proposed observer can compensate the time delay when the delay equals the sampling

period. Comprehensive stability analysis of the designed observer is performed. In addition, to assess the efficiency and

effectiveness of the proposed observer, a numerical comparative study with a Kalman filter-based observer is established

and the simulation results are demonstrated.
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1. Introduction

A visual servoing system (VSS) is a kind of system that uses vision data as a feedback signal to control an

object’s motion [1]. It comprises a controller, robots, and a vision system. During the last two decades, VSSs

have been broadly used to increase the accuracy and the flexibility of robotic systems [2,3].

VSSs can be utilized in many applications such as building automation (surveillance), games (soccer

robots), and industrial zones (cooperative). Nonetheless, VSSs are facing a great challenge due to the use of

visual information in the feedback channel. The time delay in the feedback channel occurs by image acquisition,

image processing, and information transmission [4,5]. The time delay is well known to be a resource of instability

and degrades the system’s performance.

Generally, the sensors that are based on vision have a larger sampling period than the other types of

sensors due to the restricted constraints the vision sensors have in communication and snapshot speed [6–8].

In the literature, various control design methods were presented to handle systems with time delay. In [9–

11] researchers studied the delay problem by utilizing standard analysis methods from robust control, and good

control performances were observed. The analysis of the problem was investigated under the assumption that

the time delay in the feedback channel is less than one sampling period. However, the control performance will

be affected by increasing the sampling period, and it might be ineffective, particularly in high-speed dynamical

systems.

On the other hand, designs of nondelay state observers for systems with the above-mentioned problems

have been proposed in several approaches such as a continuous approach, which designs a continuous time
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observer based on the continuous time plant model. The weakness of this approach is the neglect of the

sampling of the output and the closed-loop system stability is assured only under a small sampling period

[12–14]. Based on the hybrid systems approach a piecewise continuous observer was proposed in [15,16]. The

benefit of this approach is that it takes into account sampling and delay and is simpler compared with other

approaches. Based on the continuous-time Lyapunov–Krasovskii approach, the Lyapunov–Krasovskii observer

was proposed in [17]. The advantage of this approach is the robust stability in the case of uncertainties in

the system parameters and sampling period. The disadvantage of this approach is an imperative solution of

complex linear matrix inequalities.

This work proposes a different approach to the observer design based on a piecewise continuous system

and current estimator, and the observer gain is selected based on a linear matrix inequality (LMI) to guarantee

the stability of the dynamics error. In this approach, the solution of complex linear matrix inequalities is not

compulsory.

This paper considers the delay in the feedback channel from sampled and delayed measurement. The

goal is to design the observer based on the piecewise continuous system and current estimator to estimate the

nondelay continuous state.

The main contributions of this work are as follows: 1) it compensates the time delay in a feedback

channel with a simpler estimator structural design than the aforesaid approaches; 2) it estimates the nondelayed

continuous state from the sampled and delayed measurement; 3) with respect to the existing results, accuracy

and fast computation are achieved when the time delay is equal to the sampling period. In order to demonstrate

the performance superiority of the proposed observer, a comparison with the Kalman filter-based approach

proposed in [13,14] has been performed.

The rest of this paper is organized as follows: in Section 2, the problem formulation and introduction to

the plant are given. Section 3 presents the piecewise continuous system and observer design. In Section 4, the

observer dynamics and stability are presented. In Section 5, an overview of the Kalman filter-based observer

is provided. The numerical simulation example is demonstrated in Section 6. Finally, concluding remarks and

recommendations for future work are given in Section 7.

2. Problem formulation

The VSS structure considered in this paper is shown in Figure 1. In our study, the only available plant

information is obtained through the digital sensor (camera), which introduces time delay as a consequence of

image acquisition, image processing, and visual information transmission. The digital sensor determines the

object position to be manipulated and delivers it in a sampled and delayed form (see Figure 2).

Figure 1. The VSS structure considered.
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Figure 2. The real output and its measurement.

The system dynamics is linear time-invariant (LTI) and it can be described as follows:{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
, (1)

where u(t) ∈ ℜr is the control input and x(t) ∈ ℜn is the state, y(t) ∈ ℜm is the output of the plant, and

A ∈ ℜn×n, B ∈ ℜn×r, C ∈ ℜm×n are constant matrices. It is assumed that the system in Eq. (1) is observable.

Digital sensor information can be specified by:

Y (t) = y∗(t− d), (2)

where Y (t) is the digital sensor output and represents the visual information of the object position, which is

used to estimate the position and velocity of the moving object, and ∗ represents sampling with the known

and constant period. d is the time delay that represents the time requirement for image processing and data

transmitting and it can be expressed as d = te , which means that the measures sampled at ti are available for

the observer before the next measures at ti+1 , where te is the sampling period of the digital sensor.

For simplification, the notation yi−d will be used to represent the sampled and delayed measurement. In

this work, te is assumed to be known and constant.

As shown in Figure 1, the control design is not considered in our study. The main issue is the time delay

between the sensor and controller, which is introduced as a consequence of image acquisition, image processing,

and data transmitting. The design of a state observer is a very important issue in estimating the system’s

continuous nondelayed state x(t) from the sampled and delayed measurement Y (t).

3. Observer design

To deal with a system whose state is not accessible, an observer is proposed to estimate the states. The proposed

observer is constructed from two linear piecewise continuous systems and current estimator as shown in Figure 3.

The piecewise continuous system (PCS) is characterized by controlled impulses and autonomous switching

[18]. The PCS is a hybrid system that represents a two-time domain, discrete and continuous time. The
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Figure 3. Piecewise continuous current estimator based observer.

discrete time input is defined by S, where S = {ti, i = 0, 1, 2, ..., } , and the continuous time input is defined

by Tt = {ℑ − S} , where ℑ = {t ∈ [0,∞]} . Both inputs determine the dynamic of the PCS. At each switching

instant, the plant is controlled by a switching input, and between two switching instants it is controlled by

a continuous input. Two successive switching instants ti and ti+1 set the boundaries in an interval denoted

Ti = {Tt |∀t ∈]ti, ti+1[} .
The linear PCS at ti = ite can be described as:

xp(it
+
e ) = Bdvp(ite) ∀i ∈ S, (3a)

ẋp(t) = Apxp(t) +Bpup(t) ∀t ∈ Tt, (3b)

yp(t) = Cpxp(t) ∀t ∈ ℑ, (3c)

where vp(t) ∈ ℜs, up(t) ∈ ℜr are the switching and continuous inputs, respectively; xp(t) ∈ ℜn is the system

state; yp(t) ∈ ℜm is the system output; and Ap ∈ ℜn×nBp ∈ ℜn×r, Bd ∈ ℜn×s, Cp ∈ ℜm×n are constant

matrices. Eq. (3a) describes the PCS in the discrete time domain at every time instant, Eq. (3b) describes the

dynamic state in the continuous time domain, and Eq. (3c) represents the output of the PCS.

The PCS is denoted as
∑

[{ite} , Ap, Bp, Bd, Cp] . The PCS is represented symbolically as inputs and

output as shown in Figure 4, where the input vp(t) is denoted by the point symbol and the continuous input

up(t) is denoted by the usual symbol.

Figure 4. PCS symbolic representation.

The description of Eq. (3b) in time interval Ti = {Tt |∀t ∈]ite, (i+ 1)te } can be given as [18]:

xp(t) = exp(Ap(t− ite)xp(it
+
e ) +

t∫
ite

expAp(t− τ)Bpup(τ)dτ ∀t ∈ Ti. (4)
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Substituting Eq. (3a) into Eq. (4), one can get:

xp(t) = exp(Ap(t− ite)Bdvp(ite) +

t∫
ite

expAp(t− τ)Bpup(τ)dτ ∀t ∈ Ti. (5)

The left limit xp(it
−
e )ofxp(t) at t = ite can be acquired from Eq. (5) for the interval ti−1, ti as follows:

xp(it
−
e ) = exp(Apte)Bdv((i− 1)te) +

ite∫
(i−1)te

expAp(ite − τ)Bpup(τ)dτ ∀t ∈ Ti. (6)

Hence, Eqs. (5) and (6) demonstrate thatx(it−e ) ̸= x(it+e ). Figure 5 shows the PCS response.

Figure 5. Piecewise continuous system response.

The design procedures of the proposed observer can be described as follows:

First, we discretize the LTI system, i.e. Eq. (1), with sampling periodte . The discrete model with

sampling time is given by: {
xi = Φxi−1 + Γui−1

yi = Cxi
, (7)

where Φ, Γ, and C are constant matrices of appropriate dimensions.

The sampled and delayed state xi−dof Eq. (2) is estimated from the current estimator based on the most

recent measurement, yi−d . The current estimator was made by modifying the predictor observer to provide the

current estimated state based on the most recent measurement. The current estimator is described by:

x̄i−d = Φx̂i−d−1 + Γui−d−1, (8a)

x̂i−d = x̄i−d + L(yi−d − Cx̄i−d), (8b)

where x̄i−d is the estimated state of xi−d based on the prediction from the previous time step, x̂i−d is the

estimated state of the sampled and delayed state xi−d , and L is the observer gain, which can be calculated

by any conventional approach of the observer based on the pole placement or optimal state estimation. In this

work, the observer gain is determined by LMI and it will be presented in next section.
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Second, from linear piecewise continuous system 1 (LPCS1) with
∑

[{ite}, Ap1 , Bp1 , In, In] and inputs

vp1(t) = 0, up1(t) = u(t), and constant matrices Ap1 = A,Bp1 = B,Cp1 = C , one gets:

yp1(t) =

t∫
(i−1)te

expA(t− τ)Bu(τ)dτ. (9)

Discretizing the output yp1(t) with sampling period te , one obtains:

yp1(ite) =

ite∫
(i−1)te

expA(ite − τ)Bu(τ)dτ. (10)

Then the estimated state without delay x̂i can be estimated as follows:

x̂i = Φx̂i−d + yp1(ite) = Φx̂i−d +

ite∫
(i−1)te

expA(ite − τ)Bu(τ)dτ. (11)

Finally, from linear piecewise continuous system 2 (LPCS2) as
∑

[{ite}, Ap2 , Bp2 , In, In] with input up2(t) =

u(t), vp2(t) = x̂i , and constant matrices Ap1 = A , Bp2 = B , Cp2 = C ,

the estimated continuous time state x̂(t) is obtained from the output of LPCS2 as:

x̂(t) = eA(t−ti)x̂i +

t∫
ti

expA(t− τ)Bu(τ)dτ. (12)

4. Stability analysis

To show the observer stability, the estimation error can be described as follows:

e(t) = x(t)− x̂(t). (13)

The proposed observer is asymptotically stable if and only if the estimation error is asymptotically stable, i.e.

lim
t→∞

e(t) → 0.

For simplified notation, i− d = m and thus x̂i−d = x̂m and x̄i−d = x̄m .

Considering Eqs. (11) and (12), the estimated state can be written as:

x̂(t) = eA(t−ti)[eAte x̂m + yp1(ite)] +

t∫
ti

expA(t− τ)Bu(τ)dτ, (14)

x̂(t) = eA(t−tm)x̂m + eA(t−ti)yp1(ite) +

t∫
ti

expA(t− τ)Bu(τ)dτ, (15)

with tm = ti−d .

3743



MOHAMMED et al./Turk J Elec Eng & Comp Sci

Similarly, the real-time system state can be equally denoted as:

x(t) = eA(t−tm)xm + eA(t−ti)yp1(ite) +

t∫
ti

expA(t− τ)Bu(τ)dτ. (16)

From Eqs. (15) and (16), the error e(t) can be defined as:

e(t) = eA(t−tm)em, (17)

where em = xm − x̂m .

State xm can be obtained from Eq. (7) as follows:

xm = Φxm−1 + Γum−1. (18)

State x̂m can be obtained from Eqs. (8a) and (8b) as:

x̂m = Φx̂m−1 + Γum−1 + L[ym − Cx̄m]. (19)

From Eqs. (18) and (19) the dynamic error is:

em = Φem−1 − LCēm, (20)

with em−1 = xm−1 − x̂m−1 .

The dynamic error of previous time step ēm can be defined as:

ēm = xm − x̄m = Φxm−1 + Γum−1 − Φx̂m−1 − Γum−1 = Φ[xm−1 − x̂m−1],

ēm = Φem−1. (21)

Substituting Eq. (20) into Eq. (21), one has:

em = Φem−1 − LCΦem−1 = [I − LC]Φem−1. (22)

The observer gain L can be chosen using the following theorem.

Theorem 1 Consider that the pairs (Φ, C) of the discrete model described in Eq. (7) are observable; if there

exist a symmetric positive definite matrix P ∈ ℜn×n and matrix L satisfying the algebraic Lyapunov inequality[
−P (PΦ− Y CΦ)T

PΦ− Y CΦ −P

]
< 0, (23)

the observer gain can be calculated by L = P−1Y . Therefore, the current estimator described in Eq. (8b) is

stable and its estimation error asymptotically converges to zero.

Proof In order to verify that the resulting estimator is stable, consider the following

Lyapunov function:

Vm = (em)TPem.
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Taking into account the observation error in Eq. (22), the estimation error em converges asymptotically to zero

if the following condition is satisfied:

∆Vm = em+1 − em < 0, ∀em ∈ ℜn.

Therefore:

∆Vm = (em+1)
TPem+1 − (em)TPem < 0

= ([Φ− LCΦ]em)
T
P ([Φ− LCΦ]em)− (em)TPem < 0

= (em)T
(
(Φ− LCΦ)

T
P ((Φ− LCΦ)em)− Pem

)
< 0

= (em)T
(
(Φ− LCΦ)

T
P (Φ− LCΦ)− P

)
em < 0,

∆V m = (Φ− LCΦ)
T
P (Φ− LCΦ)− P < 0

⇔ (Φ− LCΦ)
T
P (Φ− LCΦ)− P < 0. (24)

Consistent with the Schur complement in [19], Eq. (23) is equivalent to Eq. (24) and Y = PL .

Remark 1 Theorem 1 provides a necessary and sufficient condition for the asymptotic stability of the estima-

tion error, i.e. the observer design L can guarantee fast convergence of x̂m−1 towards xm−1 . Therefore, em−1

converges quickly to zero and hence em . In consequence, the estimation error e(t) converges asymptotically to

zero. Furthermore, it ensures the robust performance with respect to the uncertainties of the plant. By using

the MATLAB toolbox, a feasible solution of Eq. (23) can be easily founded.

5. Overview of Kalman filter-based observer (KFBO)

The proposed PCCEBO is compared with the KFBO, which was proposed in [13,14], to demonstrate the

PCCEBO’s performance. The KFBO was proposed for estimating the noisy and delayed measurement.

The dynamic equation can be described as follows:

˙̂x(t− d) = [A−KC]x̂(t− d) +Bu(t− d) +Ky(t− d), (25)

where d is the time delay. K is the observer gain and it can be calculated by:

K = PrC
TR, (26)

and Pr is the solution of the Riccati equation that is described as follows:

APr + PrA
T − PrC

TR−1CPr +Q = 0, (27)

where Q and R are positive-definite covariance matrices for the noisy and delayed measurement. To remove

the delay effect from the estimated states, a function g is defined as:

ġ(t) = Ag(t) +Bu(t). (28)

Finally, the nondelayed state estimate can be found as:

x̂(t) = g(t) + eAd[x̂(t− d)− g(t− d)]. (29)
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Remark 2 It worth mentioning that the KFBO is neglecting the sampling period in the observer design.

Moreover, the observer gain K depends on the covariance matrix Q and R , the covariance matrices are tuned

by trial and error. Thus, the performance of the KFBO has a problem with tradeoff between accuracy and fast

computation. In practice, it is not easy to determine the exact covariance matrix.

6. Numerical example

In this section, the effectiveness of the proposed observer is illustrated via comparison with the KFBO that was

introduced in Section 5. The comparison has been done in Simulink for the mobile cart visual servoing system

as follows:

ẋ(t) =

[
0 1
0 −122

]
x(t) +

[
0
355

]
u(t), y(t) =

[
1 0

]
x(t), (30)

where x(t) =
[
x1(t) x2(t)

]T
is the system state, which consists of the mobile cart position x1(t) and velocity

x2(t).

Digital sensor information is described as:

Y (t) = y∗(t− 0.2).

The time delay is chosen as d = 0.2 s, which matches the time needed for image acquisition, processing, and

transmitting the information (te = 200 ms).

The observers have been evaluated in the case of an open-loop test, i.e. the controller is not considered.

The control input u(t) is assumed to be a saw-tooth signal with amplitude 10 and frequency 2 rad/s, as shown

in Figure 6.

Figure 6. Control input u(t) .

The initial conditions for the LTI system and the observer are x(0) =
[
5 10

]T
, x̂(0) =

[
0 0

]T
,

respectively. The standard routines of the MATLAB LMI control toolbox are used to calculate observer gain L

and P in Eq. (23) as follows:

P =

[
4.9499 0.0000
0.0000 4.9499

]
, Y =

[
4.9499
0.0000

]
, L =

[
1.0000 0.0000

]T
.

On the other hand, to get the gain of the KFBO, Q and R have been chosen as follows:Q =

[
0.001 0
0 0.001

]
, R =

0.004.
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From Eqs. (26) and (27) we can easily obtain the following: Pr =

[
0.0082 0.0083
0.0083 1.0329

]
,K =

[
2.0405 2.0818

]T
.

The comparison is carried out with and without the existence of measurement noise, as well as in the

case of variable system parameters and the case of sampling period equal to 1 s, as presented in the following

subsections.

6.1. State estimation without measurement noises

The simulation results of state estimation without measurement noise are shown in Figure 7. Figure 7a illustrates

the state of the plant’s x(t) state estimated x̂(t) and sampled and delayed measurements yi−d . Figure 7b shows

the estimation errors without measurement noise.

Figure 7. State estimation without measurement noise: a) the state and its estimation; b) the estimation errors.

The simulation results show that the estimations of PCCEBO convergence are faster than the estimations

for the KFBO. Once the convergence is attained, the PCCEBO estimations present better tracking than the

KFBO estimations even if the changing of the real state is very fast. Furthermore, the estimation error of the

proposed observer is smaller than that of the KFBO. The estimation errors of the PCCEBO are approximately

zero after only two sampling periods; obviously in contrast, the estimation error of the KFBO is not converging

to zero at this time. One can summarize that the proposed PCCEBO exhibits better performance than the

KFBO.

6.2. State estimation with measurement noises

In order to test the robustness of the proposed observer against measurement noise, Gaussian noise with zero

mean power has been realized. The measurement noise is added to the digital sensor; therefore, Eq. (2) can be

written as follows:
Y (t) = y∗(t− d) + v(t), (31)

where v(t) is the stochastic measurement noise.

First, the measurement noise is realized with covariance R , which is chosen to make the performance of

the KFBO acceptable, but the measurement noise is very small and it is not enough to assess the observer’s

performance. Therefore, the assessment has been done for covariance R = 1 and time delay d = 0.6 s. The

obtained results are shown in Figure 8. Another type of measurement noise that is realized is the white noise

measurement with noise power 0.07, and the corresponding results are shown in Figure 9.

Remark 3 One can see that the KFBO performance is affected with the increasing of covariance R, and it

shows a slow response, which implies that the convergence of the estimation errors is attained after a long time,
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Figure 8. Observers’ performance with Gaussian noise measurement: a) Gaussian noise measurement; b) the estimation

errors.

Figure 9. Observers’ performance with white noise measurement: a)white noise measurement; b) the estimation errors.

as presented in Figure 8. Nonetheless, it is known that the KFBO is very effective for large measurement noise

and in particular Gaussian noise, while the PCCEBO is effective for bounded measurement noise. The proposed

PCCEBO under the considered measurement noise presents better responses and faster convergence, and the

estimation errors of the PCCEBO are smaller than the estimation errors of the KFBO.

6.3. State estimation in case of variable system parameters

In this part, all parameters are set to the same values of the parameters in Subsection 6.1. In order to show

the sensitivity of the proposed observer to parameter variations, it is assumed that over longer periods, the

parameters of the system of Eq. (1) have slow variations as follows:

A =

[
0 1
0 A22

]
, B =

[
0
B21

]
where A22 = −120 − (4 sin 10t + 20 cos t sin t), and B21 = 355 +

20 sin 2t cos 2t .

The corresponding results are shown in Figure 10. The results show that the PCCEBO is less sensitive

to the considered parameters variations.

6.4. State estimation when the sampling period is not small

In this case, numerical simulations have been conducted for d = te = 1 s with the following parameters:
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Figure 10. State estimation in case of variable system parameters: a) system parameter variation; b) estimation

errors.

For PCCEBO, P =

[
4.9502 0.0000
0.0000 4.9502

]
, Y =

[
4.9502
0.0000

]
, L =

[
1.0000 0.0000

]T
;

For KFBO, Q =

[
0.001 0
0 0.001

]
, R = 0.3, Pr =

[
0.0712 0.0085
0.0085 1.0330

]
,K =

[
0.2374 0.0282

]T
.

The corresponding results are illustrated in Figure 11. The simulation results show that the proposed

PCCEBO demonstrates a more rapid converge and better performance than the KFBO, and the estimation

errors of the PCCEBO are equal to zero after two sampling periods. Thus, the PCCEBO can compensate time

delay even if the sampling period is not small. The estimation errors for all examined cases are quantified as

shown in Figure 12. The MAE describes the mean absolute error calculated by 1
N

N∑
i=1

|ei| where(i = 1, 2, ..., N)

and RMSE is the root mean square error computed by
√

1
N

N∑
i

e2i . It can be readily noticed that the proposed

observer presents better performance and accuracy than the KFBO.

Figure 11. State estimation for d = te = 1 s: a) the state and its estimation; b) the estimation errors.

Therefore, from all examined cases, it can be summarized that the proposed PCCEBO presents better

performance than the KFBO.

3749



MOHAMMED et al./Turk J Elec Eng & Comp Sci

Figure 12. The observers’ performance and statistical values of the estimation errors: a) MAE estimation errors; b)

RMSE estimation errors.

7. Conclusions

In this paper, a piecewise continuous current estimator observer is derived to estimate nondelay continuous states

from sampled and delayed signals. The proposed observer is designed to compensate the delay in the feedback

channel. Moreover, the stability analysis of the proposed observer is presented. To demonstrate the effectiveness

of the proposed approach, comparison with a Kalman filter-based observer has been conducted. Comprehensive

numerical simulation results demonstrated that the proposed observer showed better performance than the

Kalman filter-based observer.
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