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Abstract:This paper proposes the use of a static synchronous series compensator (SSSC) to increase the power capacity

of a 230 KV transmission line. The power capacity is increased by 30%. The proposed SSSC is a 21-level inverter based

on the cascade connection of improved double flying capacitor multicell (CI-DFCM) converter. The main advantages

of the CI-DFCM multilevel inverter are the low number of power-electronic devices, as well as reduction in the number

and voltage diversity of flying capacitors in comparison with other flying capacitor-based inverters. The CI-DFCM

multilevel inverter uses only two flying capacitors in each phase. The theory of instantaneous p-q power is applied

to control the proposed SSSC. By applying the presented control method, the dc-link capacitors are charged to the

desired voltage value. The modulation method of the CI-DFCM multilevel inverter is a modified phase shifted pulse

width modulation (PS-PWM) technique. In order to validate the accurate performance of the proposed compensator,

a three-phase transmission line with the transmitted active power of 160 MW is simulated. The simulation results are

provided by MATLAB/Simulink.

Key words: Static synchronous series compensator, improved double flying capacitor multicell, cascade connection of

improved double flying capacitor multicell, theory of instantaneous p-q power, phase shifted pulse width modulation

1. Introduction

During recent years, the concept of using flexible alternating current transmission system (FACTS) devices in

transmission lines has seen a significant increase in popularity. FACTS devices, which are installed in series or

parallel in transmission lines, are used to increase and optimize the power capacity of the lines.

Nowadays, FACTS devices have been studied more than ever. There are many studies that have

examined different types of FACTS devices to improve performance and optimize them [1–3]. [4] proposes a new

optimization technique, imperialist competitive algorithm (ICA), for optimal designing of a static synchronous

compensator (STATCOM). The advantage of the proposed controller is damping oscillations. [5] proposes a

hybrid approach called bacterial swarm optimization (BSO), which involves particle swam optimization (PSO)

and bacterial foraging optimization algorithm (BFOA) for designing a thyristor controlled series capacitor

(TCSC) in a multimachine power system.

The initial idea of the static synchronous series compensator (SSSC) was proposed in 1989. The SSSC is

a series device that injects reactive power into the transmission line and increases the capacity of transmitted

active power. FACTS devices are commonly used by a coupling transformer in the transmission lines [6–11].
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Figure 1 shows the fundamental structure of an SSSC.

Figure 1. Fundamental structure of an SSSC.

Due to their remarkable advantages, multilevel converters are now widely used in many high-power

industrial applications such as active power filters (APFs), adjustable speed ac motor drives, and FACTS

devices. Some of these advantages include production of output voltage with low distortion and total harmonic

distortion (THD) rate, reduction in the size of output LC filters, decreased amount of dv/dt , and extended

power range. These notable advantages make them much more practical than their two-level counterparts

[12–16].

Nowadays, by applying medium/high voltage multilevel converters in the structure of FACTS devices,

the size of coupling transformers can be easily reduced or even eliminated. Since high power semiconductor

switches with voltage of several KVs are now available, production of high-voltage converters has become

possible. However, there has been little research carried out in the field of SSSCs with high-level inverters. This

is due to a significant increase in the number of power-electronic devices and the price of the multilevel inverter

as the number of levels increases [17,18]. However, today, with the introduction of new multilevel inverters,

high-level and cost-effective multilevel inverters are used in high-power industrial applications [19–21].

In this paper an SSSC based on the Cascade connection of improved double flying capacitor multicell,

called CI-DFCM, is proposed. The output voltage of the CI-DFCM multilevel inverter has 21 levels. The main

advantages of the CI-DFCM multilevel inverter are the low number of power-electronic devices and reduction

in the number and voltage diversity of flying capacitors in comparison to other flying capacitor-based inverters.

The CI-DFCM multilevel inverter uses only two flying capacitors in each phase. The modulation method of the

CI-DFCM multilevel inverter is a modified phase shifted pulse width modulation (PS-PWM) technique, which

is described in the next section.

The proposed system increases the power capacity of a 230 KV transmission line. The control algorithm

of the proposed SSSC is the theory of instantaneous p-q power, which can be applied individually for each

phase. The nominal values of the proposed SSSC are 29 KV and 11.5 MVar.

This paper is organized as follows: In section 2, the structure of the proposed multilevel inverter and its

switching strategy is studied. In section 3, the structure of the proposed system and its control method, which

is the instantaneous p-q power, is presented. In section 4, simulation results and their analysis are presented.

The simulation results are provided by MATLAB/Simulink.
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2. Structure of the CI-DFCM multilevel converter

The single-phase configuration of the proposed CI-DFCM multilevel converter is shown in Figure 2. The

proposed converter is configured by cascading two modules in each phase. Each module consist of a 2-cell, 11-

level improved double flying capacitor multicell (I-DFCM) converter. The configuration and switching strategy

of the I-DFCM converter is shown in Figure 3.

Figure 2. The structure of CI-DFCM multilevel inverter.

As is obvious, only one flying capacitor is used in the configuration of the 11-level I-DFCM converter.

However, two low-power switches and one dc-link, whose voltage rating is a quarter of the main dc-link rating,

have been added to the structure of the DFCM converter [20]. J and J ′ are the complimentary low-frequency

switches and K and K ′ are the complimentary low-power switches. For switching the I-DFCM converter a new

modulation method based on the PS-PWM technique is utilized. For further details, refer to [20].

As previously mentioned, the switching strategy of the proposed CI-DFCM converter is based on the

PS-PWM technique. By applying the PS-PWM switching strategy, the control circuit does not need a flying

capacitor charging circuit [21]. Figure 4 illustrates the carrier patterns, and also the phase-shift between them

in one module and adjacent modules in the CI-DFCM converter. In this paper, the modulation technique, as

presented in [22], is used for each module of the I-DFCM converter. However, the modulation technique in [22]

is used for the DFCM converter, whereas in this paper it is used for the I-DFCM converter. This switching

strategy covers all the cells of the modules and considers all parts, as a unified system. By using this method,

the flying capacitor voltage ripples are less than what is shown in Figure 3 [22].

Module one has five phase-shifted triangle-carriers that are compared with the absolute value of the

reference voltage. This pattern is also used for the second module. In the other two phases, the same switching

pattern is used, with the only difference being that the reference voltage waveform in each phase has 120◦ phase

difference from the adjacent phase.

In general, each phase of the proposed CI-DFCM converter can be formed by cascade connection of

K modules. Each module is an n-cell, (4n + 3)-level I-DFCM converter. In technical words, the proposed

CI-DFCM converter generates 2K(2n + 1)+ 1 levels in each phase, where )2n + 1( is the number of DFCM

converter levels, which is inside the I-DFCM converter. If each module has a peak to peak voltage of E, the

proposed converter, which has K modules, can produce the peak to peak voltage of KE. The phase-shift between

the triangle-carriers in each module is equal to 2π /K (2n + 1) and the phase-shift between the triangle-carriers

in two adjacent modules is 2π /K. Therefore, in the proposed converter in this paper, the phase-shift between
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Figure 3. The configuration and the switching strategy of the I-DFCM converter.

the triangle-carriers in each module is 36◦ (2π /K (2n + 1)) and the phase-shift between the triangle-carriers

of two adjacent modules is 180◦ (2π /K).

In Table 1 the number of required devices for the cascade connection of double flying capacitor multicell

(CDFCM) converter presented in [22] and the proposed CI-DFCM converters for generating 2K(2n + 1)+ 1

level in the output voltage are compared.

3. Structure and control algorithm of the proposed system

The single-phase diagram of the proposed system and a 230 KV transmission line is shown in Figure 5.

The system consists of a voltage source (Vs1) as busbar 1, balanced three-phase load that is connected

to busbar 2, series reactance of line 1–2 (XL1), series reactance of line 2–3 (XL2), busbar 3 as a PV busbar

that fixes the load voltage at the value of Vs2 , and the proposed SSSC at the middle of the line 1–2.
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Figure 4. The carrier patterns and the phase-shift between them in one module and adjacent modules in the CI-DFCM

converter.

Table 1. The number of required devices for CDFCM and proposed CI-DFCM converters for generating 2K(2n + 1)+

1 level in the output voltage.

No. of high No. of No. of No. of No. of high Type of
low DC links flying cells frequency converter
switches capacitors switches
K(2) K(1) K(2n) K(2n + 1) K(4n + 2) CDFCM
K(2) K(1) K(n - 1) K(n) K(2n + 2) CI-DFCM

Figure 5. The single phase diagram of the proposed system and the 230 KV transmission line.
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Generally, the SSSC is a variable capacitor or inductor, which often in the state of variable capacitor

decreases the series reactance of the line and as a result increases the transmitted active power. Eq. (1) shows

the transmitted active power through the line:

Pt =
VsVr sin (φs−φr)

Xl
, (1)

where XL represents the series reactance of line, and Vs ∠φs and Vr ∠φr are the head and end voltage of the

transmission line, respectively.

The proposed SSSC is designed to compensate 70% of reactive power losses of line 1–2. Hence the nominal

values of the proposed SSSC are equal to 29 KV and 11.3 MVar.

Figure 6 shows the control system based on the theory of instantaneous p-q power for one phase. As can

be seen, Vref is lastly used for the PS-PWM modulation of the CI-DFCM inverter.

Figure 6. The control system based on the theory of instantaneous p-q power for one phase.

As indicated in Figure 6, four PI controllers can charge four dc-link capacitors to their desired value

through the transmission system (each module has two dc-link capacitors, E and E / 4. As a result each phase

has four dc-link capacitors). This control method is also used for the other two phases.

iα and iβ are obtained from the Clarke transformation and according to [23] the series compensator

voltage can be obtained as follows:
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Finally series compensator voltage can be obtained as follows [23]:

Vref =

√
2

3
(

iα
i2α + i2β

p− iβ
i2α + i2β

q) (4)

Since the SSSC injects only the reactive power into the line, p and q are as follows:

p = pref = 0 , q = qref (5)

However, when the SSSC is connected to the transmission line, ploss is not zero. It charges the dc-link capacitors

and after a few seconds ploss changes to almost zero. The capacitors are charged by PIs controllers as follows:

ploss,n =Vdc,ref −Vdc,n (Kp +
Ki

s
) (6)

Some main parameters of the proposed system are illustrated in Table 2.

Table 2. The main parameters of the proposed system.

Busbar 1 voltage (rms, phase to phase) 132 KV ∠ 0◦

Busbar 3 voltage (rms, phase to phase) 152 KV∠ 13◦

Busbar 2 Active power (P) 78 MW
Busbar 2 Reactive power (Q) 58 MVar
Power system frequency 60 HZ
Series reactance of 1–2 line (XL1) 90Ω
Series reactance of 2–3 line (XL2) 40Ω
Flying capacitors 3 mF
dc-link capacitors 0.5 F
Main dc-link (E) 4500 V
Carrier frequency (fcr) 1200 HZ
Modulation index (m) 0.9
Transformer ratio 11.5 KV/29 KV
Reference reactive power (qref ) –11.3 MVar
PI controller Kp= 400 , Ki= 10

4. Simulation results

In order to validate the accurate performance of the proposed SSSC, simulation results are presented in this

section. The proposed SSSC is connected to the grid 0.2 s after starting the simulation. Figure 7 shows the

three-phase output voltage of the proposed SSSC. The output voltage has 21 levels. Figures 8 and 9 show the

instantaneous voltage of dc-link capacitors and flying capacitors of the CI-DFCM inverter, respectively, for one

phase. Figure 10 shows the THD of the output voltage.

Figures 11 and 12 show the instantaneous active and reactive power of the proposed SSSC, respectively.

As can be seen, the instantaneous active power after charging the capacitors changes to almost zero. The

instantaneous reactive power of the SSSC decreases from 0 to –11.3 MVar (qref ) after 11 s. The SSSC injects

qref into the line and increases the transmitted active power. As shown in Figure 11, before connecting the

SSSC to the grid, the line can transmit only 68% of active power that load requires.

Figure 13 shows the transmitted active power of 1–2 line. The transmitted active power increased by

30%.
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Figure 7. The three-phase output voltage of the proposed SSSC.

Figure 8. The instantaneous voltage of dc-link capacitors in the CI-DFCM inverter for one phase.

Figure 9. The instantaneous voltage of flying capacitors in the CI-DFCM inverter for one phase.
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Figure 10. The THD of output voltage.

Figure 11. The instantaneous active power of the proposed SSSC.

5. Conclusion

In this paper an SSSC based on the cascade connection of improved double flying capacitor multicell (CI-

DFCM) multilevel inverter is proposed to increase the power capacity of a 230 KV transmission line. The main

advantages of CI-DFCM multilevel inverter are the low number of power-electronic devices and reduction in

the number and voltage diversity of flying capacitors in comparison to other flying capacitor-based inverters.

As demonstrated by the simulation results, the transmitted active power increased by 30%. The theory of
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Figure 12. The instantaneous reactive power of the proposed SSSC.

Figure 13. The transmitted active power of 1–2 line.

instantaneous p-q power applied for controlling the proposed SSSC and the modulation method for the CI-

DFCM multilevel inverter was a modified PS-PWM technique. By increasing the number of cascade cells

and as a result increasing the maximum output voltage of the proposed inverter can eliminate the coupling

transformer. Moreover, the proposed inverter can be used in other FACTS devices, adjustable speed ac

motor drives, renewable systems, etc. The simulation results verify the accurate performance of the proposed

compensator.

Abbreviations and nomenclature
FACTS flexible alternating current transmission system
SSSC static synchronous series compensator
DFCM double flying capacitor multicell
CDFCM cascade connection of double flying capacitor multicell
I-DFCM improved double flying capacitor multicell
CI-DFCM cascade connection of improved double flying capacitor multicell
PS-PWM phase shifted PWM
ICA imperialist competitive algorithm
BFOA bacterial foraging optimization algorithm
THD total harmonic distortion
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Vref reference voltage of PS-PWM modulation
P loss instantaneous active power of the proposed SSSC
P t transmitted active power
XL series reactance
XL1 series reactance of line 1–2
XL2 series reactance of line 2–3
p and q active and reactive power
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