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Abstract: Referenceless image quality assessment is a challenging and critical problem in today’s multimedia applica-
tions. Texture patterns in images are normally at high frequencies compared to lower ones. Due to the effect of distortions
during acquisition, compression, and transmission, texture deviation artifacts are generated that cause a granular effect
in the image. Other artifacts, such as blocking, affect high frequencies in an image, causing distorted edges. Combining
the analysis of texture deviation and other artifacts helps in determining the quality of an image. The proposed approach
uses variation in the energy of pixels to quantify the quality of an image. These variations are calculated using texture
energy measures and pattern strength-based statistical features. In the proposed approach, machine learning-based
classifiers are used to predict the quality score for an image. The performance of the proposed method is tested for all
images ranging from pristine to poor quality from LIVE and TID2008 databases. For different distortions, results are
shown to have good correlation if they lie between the predicted score and the differential mean opinion score. Results
obtained with this approach are compared with other widely used referenceless approaches. It is observed that the

proposed approach shows better performance in the quantification of the quality of an image.
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1. Introduction

With the rapid evolution of smart devices capable of handling multimedia contents on social networking media,
an enormous amount of visual information is generated and exchanged. For efficient transmission and storage
space management of the generated visual data, the compression of images and videos is highly essential. Widely
used lossy compression schemes involve a transformation and quantization process. This transformation and
quantization generates artifacts like blocking and ringing, which degrade the quality of images and videos to
some extent [1]. In order to assure good quality of experience, the assessment of image quality is of the utmost
importance. Quality assessment is mainly performed using objective and subjective means. Since the user is
ultimately the final judge, subjective assessment is the preferred approach for quality assessment, but it has
some drawbacks. In this approach, all images ranging from those that are pristine to distorted are tested, and
the mean opinion score (MOS) or differential mean opinion score (DMOS) is computed. As these methods

include manual interventions, they are slow and often expensive [2].
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Objective quality assessment includes categories such as full reference (FR), reduced reference (RR), and
no reference (NR) [2,6]. In FR, a pristine or original image is used as a reference, and mathematically defined
measures are used for quality assessment. These evaluations are computationally simple and inexpensive,
but unfortunately these matrices do not correlate with human perception [3,4]. In order to have better
correlation, human visual system-based measures like the mean structural similarity index (MSSIM) and edge-

based structural similarity index have been developed [5-7].

In the RR method, a few possible degradation-based features are extracted before compression and stored
or transmitted as additional information. These are later compared with the decompressed noisy image at the
receiver end [8-10]. In various applications, the unavailability of the original image is a crucial issue in the area
of quality assessment.

In the NR method, the quality of an image is assessed without reference. This assessment is very similar
to a human visual system that assesses image quality without reference. The NR technique follows three
basic methodologies: the first is a distortion-specific method that is based on quantifying various distortions
or artifacts such as blocking and ringing. The features of the distortion-specific method are correlated with
MOS or DMOS through some fitting algorithms or other regression techniques. The second technique uses a
machine learning approach in which several features in the spatial and frequency domain depicting distortions
are extracted from certain images and then given as input to the neural networks or other similar classifiers.
The training of the classifier is done by taking MOS or DMOS as a target. Finally, the natural scene statistics
(NSS) method presumes that natural or original images are a subset of the complete image set. The quality of
an image is evaluated on the basis of the distance between the subspace of natural images and distorted images
[11-13].

Most of the present methods are distortion-specific and work well for known distortions. As the texture
patterns are high frequencies in the image, these are heavily hit by distortions. Texture deviation is another
type of distortion that presents a granular effect in an image due to the loss of low and middle frequencies.
This loss of texture because of distortions can be modeled using texture analysis. In this paper, we propose a
generalized referenceless framework using texture energy measures and pattern strength features along with local
texture-based features like entropy and standard deviation. The proposed framework assesses the quality of an
image without an original image as a reference; as the extracted features exhibit nonlinear behavior patterns, a
machine learning approach is proposed. This feature vector is presented as an input to the supervised machine
learning-based classifier, and DMOS will be an expected output. In this paper, we present the comparative
performance of an artificial neural network (ANN) and multiclass support vector machine (SVM) for different
types of images. The feature vectors extracted from pristine to bad images are then presented as input to the
classifier. The proposed approach is tested on the LIVE [14] and TID2008 [15] databases. Prediction accuracy
for the neural network is around 85%; for the SVM, it is about 90%. The proposed method is also compared
with other NR methods used. It shows better accuracy than the other NR methods.

The paper is organized as follows. Section 2 presents the previous work done in the field of NR image
quality assessment. Feature extraction techniques are discussed in Section 3. The proposed technique for quality
score estimation and experimentation is described in Section 4. Section 5 presents the experimental results and

finally, in Section 6, the discussion and conclusion are presented.
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2. Related work

Earlier NR methods focused on distortion specific approaches. In earlier algorithms, blockiness was estimated
by extracting features like the average absolute difference and the zero-crossing rate. The parameterized
mathematical model was used to compute the quality score and the results were tested for JPEG images
[16]. Many algorithms were developed for blockiness and ringing estimation [17-19]. Sazzad et al. [20] worked
on spatial features, whereas other authors proposed statistical information on the gradient profile along strong
edges in [21]. Several authors worked with the noise and blur present in images [22,23].

Establishing a relationship between features, the subjective score, and the estimated quality score is
a complex task. Due to the nonlinear nature of this relation, mathematical predictors sometimes lead to
incorrect assessments [24,25]. The machine learning approach is used to solve this problem. Gastaldo et al.
[26] addressed nonparametric statistical features for the NR metric. The quality score is predicted by the
circular back propagation algorithm. Preprocessed images are used for feature extraction. Suresh et al. [27]
proposed edge-based features along with the extreme machine learning algorithm for image quality assessment.
In recent times, researchers have estimated the quality score on the basis of changes in discrete coefficient
transform (DCT) coefficients due to distortion [11,28]. In [29], the authors demonstrated a model based on
special features like local spatial and spectral entropies.

Social networking websites are becoming popular and are heavily used for sharing photographs. Natural
images are also transmitted on these sites. Natural images follow different statistics that vary according to
distortion. Many researchers have contributed to the study of this issue. Sheikh et al. [30] proposed a
mathematical model of wavelet coefficients of images, while Chen et al. [31] worked with the gradient histogram
model. Esteemed groups in the area of NR development have contributed many algorithms like the DITVINE
index, BLINDS-II, NIQE, BRISQUE, and C-DIIVINE [32-36]. Fang et al. [37] defined the NSS model for
contrast-distorted images using moments and entropy features. Authors used the support vector regression
model in the estimation of quality score. Liu et al. [38] proposed a curvelet transform for NR quality assessment.
Extracted features are log-histograms of curvelet coefficient values and the energy distribution of both orientation
and scale.

Since the last decade, researchers have worked with specific distortion types and images. Most of the
parameters are tested with specific types of images like JPEG and JPEG 2000. These parameters work well for
specific distortions and images. Various compression schemes introduce blocking and ringing artifacts. These
artifacts are well represented by the blocking and edge distortion types of parameters. These distortions also
affect the texture of the image. Along with these artifacts, other noises are introduced during transmission
that affect the texture of images. As a result, there is a need to evaluate the textual parameters for quality
assessment. In this paper, we propose textual parameters for image quality assessment.

Researchers have proposed textual parameters with first-order statistical parameters and the gray level
cooccurrence matrix (GLCM) [26]. First-order statistics compute the characteristics of single pixels overlooking
the spatial relationship with other pixels. The GLCM, which is a second-order statistical parameter, estimates
the spatial relationship between adjacent pixel values. The GLCM is heavily dependent on directional informa-
tion. It does not work well with isotropic images, whereas Laws filters use spatial filters or frequency domain
filters for the frequency analysis of the texture. They are also able to define a spatial relationship between more
pixel values. Laws filters recognize texture characteristics like uniformity, density, coarseness, and roughness.

The GLCM is heavily dependent on the magnitude of gray-level differences, but noise and change in

luminance is not addressed well. The local binary pattern (LBP) handles the noise. It finds the relation
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between pixels P on a circle with radius R around the central pixel. LBP codes are rotation invariant. Laws
filters and the LBP operator are applied on an image, and texture-based local statistical features are also
extracted to obtain the textual features for quality assessment that are presented in this paper. These features
are used as input to the multilayered back propagation artificial neural network-based prediction model to
estimate the quality score. DMOS is then given as the target during training, and the multiclass SVM is also
used to predict the class of the feature vector for the DMOS that it belongs to.

3. Feature extraction
In the proposed technique, two texture-based parameters, namely texture energy measures and pattern strength,

are used to assess the quality of the images.

3.1. Texture energy measures

Laws [39] developed a texture energy measure that is utilized in different applications. These features are
calculated by applying a small convolution mask to the image followed by a nonlinear windowing operation. A
2D convoluted kernel is applied for texture differentiation. This is created from 1D kernel Ls = [1 4 6 4 1], E5
=[-1-2021],S5 =[-1020-1],R; =[1-46—4 1]. Feature extraction convolves the mask on an image and
calculates energy information. The 2D kernel is defined as the convolution of the vertical 1D kernel and the
horizontal 1D kernel; for example, LsFEs5 is computed as vertical L5, which is convolved with horizontal E5. In
matrix notation, it is expressed as LsEs = LI E5. The 2D kernel is then convolved with an image. The sample
image of size M x N is convolved with a selected mask of size 5 x 5, which results in the set of gray images,
each of which has the dimensions N —windowsg;.e +1 X M —windowg; .. + 1, where the window size is the kernel
size. It is mathematically expressed as y; = X ,x; X m;, where m represents mask weight and x represents
the pixel value in the input image. A windowing operation is then performed on each of these images. Each
pixel in the image is obtained by applying a different size of window around the pixel and calculating statistical
descriptors like the mean of neighboring pixels and the standard deviation of neighboring pixels, which generate
a set of images. Mathematically, it is defined for window size N = C x Cas z; = f(y1, Yz, .....Yn), where z,; can
be the mean of neighborhood values, mean of absolute values, or standard deviation of neighborhood values.
The next step involves the generated images being normalized using the min—max normalization method in
the present study. The normalization process is used in order to present the image well. In the normalization

process, an n-dimensional image I : {X - RN} — {Min, .., Max}, with intensity values in the range of (Min,

Max), transforms into a new range (newMin, newMax), i.e. I: {X C RN} — {newMin,...,newMaz}. The
output results in nine maps: L5Ss5,LsRs5,FE5FEs,E5Ss,E5Rs,5555,S5R5, and RsRs. When LsFEs is applied
to an image horizontally, it detects the edge. When it is applied vertically, it gives gray-level intensity. Other

maps also work in a similar fashion.

3.2. Pattern strength

Ojala et al. [40] developed an LBP image operator based on the fact that texture is defined by two complemen-
tary measures, namely its pattern and its strength. The original version of the LBP operates on a 3 x 3 block of
an image. The central pixel is subtracted from 8 neighbor pixels in the block. The sign of this difference is con-
sidered for thresholding. The LBP is computed as the summation of threshold differences weighted by a power
of two. The texture descriptor is defined as the histogram of these 28 = 256 values. This is mathematically

presented as follows:
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Consider an image I(p,q) and let . denote the gray level of an arbitrary pixel (p, q), i.e. .= I(p,q).
Let [, denote the gray level of a sample point in evenly spaced circular neighbors of X sample points

and let R represent the radius around the point (p,q).

lo =1(pzyqz),2=0,...,. X —1 (1)
Py = ¢ + Rcos(2llx/X) (2)
¢z =y — Rsin(2lz/X) (3)

The texture of an image I(p, q) is characterized as the joint distribution of gray values of X + 1 pixels.
LT =m(l.,lo, 11y ey la1) (4)
Subtracting the center pixel from the neighborhood,
LT =m(le,lo —leyly — Loy ooy lp1 — 1e), (5)
the sign of the difference is considered for thresholding.
LT =m(si(lo — 1), si(ly —1¢), oy si(lo—1 — 1)), (6)

where si(t) is the thresholding function.

The LBP operator is defined as:

x—1
LBPX,R(pCa QC) = ZI:O Si(lz - l0)2:C (8)

By applying the LBP operator on an image, this results in a vector size of 256 values. Wu et al. [41] proposed
the LBP for structural degradation on a spatial distribution for full reference image assessment.

The feature vector is formed by calculating the statistical measures from the texture energy measures,
the local binary pattern, and the texture-based statistical features. Texture energy measures give nine 9D map
vectors. Two statistical measures, mean and standard deviation (SD), are computed for each vector, which
produces 18 values. The size of the vector produced by pattern strength is 256. Statistical measures like SD,
skewness, and kurtosis are computed for this vector. The size of the feature vector is now 21, and this fuses
with local texture-based statistical features entropy and standard deviation. To compute local texture-based
statistical features, the image is divided into overlapping 9 x 9 blocks and local descriptors for these blocks are
calculated. Furthermore, the average of the local descriptors is calculated to define the global descriptor. In
this study, the size of the feature vector is 23.

Figure 1 depicts the plots of the mean and SD of 9 maps for the original image and its five variants. The
nature of the discrete white noise signal is a sequence of serially uncorrelated random variables with uniform

distribution. Thus, statistical parameter values show higher impact for the entire set of masks. In fast fading,
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Figure 1. Plots for mean (a) and standard deviation (b) of 9 maps, respectively, for image number 1 (the original) and
its variants: 2- JPEG; 3- JPEG2k; 4- Gaussian blur; 5- white noise; 6- fast fading.

each mask obtained fewer values due to the loss of frequencies and blurring effect. Texture is not prominently
identified due to the blur, and it is observed that both parameters exhibit nonlinearity.

Figure 2 shows the plot for SD, skewness, and kurtosis of the LBP for the original image and its five
variants. The LBP calculates the difference between the pixels and thus the issue of blocking artifacts is
positively addressed. Therefore, data analysis shows higher values of statistical measures for JPEG, and these

parameters show nonlinear behavior.

4. Methodology

Since the energy measure parameters and pattern strength show nonlinearity, it is difficult to model the nonlinear
relationship between features and MOS by using different fitness and regression functions. An efficient way to
characterize this nonlinear relationship is the use of the neural network-based model. Bagade et al. [24,25]
presented blocking and frequency domain statistical features in their earlier work with 95% accuracy for JPEG
images. The authors concluded that sometimes quality scores predicted by mathematical predictors do not
correlate with MOS and may lead to incorrect prediction.
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Figure 2. Plot for standard deviation, skewness, and kurtosis of local binary pattern for image number 1 (the original)
and its variants: 2- JPEG; 3- JPEG2k; 4- Gaussian blur; 5- white noise; 6- fast fading.

The methodology for experimentation is depicted in Figure 3. The feature vector obtained as an output
of the feature extraction process is given as an input to the classifier ANN or SVM. The classifier predicts a
score or a class. The backpropagation neural network and the multiclass SVM are trained using the vector of
the extracted features as an input. DMOS is used as a target for the backpropagation neural network. This
trained classifier predicts the quality score for the test dataset. To train the SVM, the feature vectors of the
training dataset images are categorized into four classes, namely best, good, average, and bad. This trained

classifier classifies the test images in one of the four classes.

Input _y,| Feature | 3| Feature | 3] Classifier p|Predicted Quality
Image Extraction Vector (ANN/SVM) score/class

Figure 3. Block diagram for methodology.

In the present study, a three-layered feedforward network with the Levenberg—Marquardt training algo-
rithm is used. The architecture of the ANN comprises 23 neurons in the input, 9 neurons in the hidden, and one
neuron in the output layer. The log-sigmoid transfer function and linear transfer function were used in hidden
neurons and output neurons, respectively. Nonlinear transfer functions of neurons in the hidden layers permit
the network to gain knowledge about correlation between the input and the output [42]. The SVM needs a
significantly smaller number of parameters than the ANN. The ANN is stuck with local minima, whereas the
SVM is global and unique. The computational complexity of the SVM is independent of input space dimension.
The SVM has simple geometric interpretation and provides the sparse solution.

The SVM model represents a feature vector obtained from an input image, as a point that is mapped in
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the feature space, so that input vectors of different categories are classified. New input vectors are mapped into
the same space and predict the class for the vector. Along with linear classification, the SVM can also be used
for nonlinear classification. Nonlinear behavior is achieved through the kernel function. It implicitly maps the
input vector to a high dimension space. The selection of the kernel depends on the nature of the problem. In
the proposed study, the radial basis kernel is used [43]. The SVM is implemented with 23 input nodes and a
hidden layer with a radial basis kernel function with 4 output nodes.

5. Experimentations and results

To model the framework, the LIVE [14] database is used. The training set is composed of 20 original images
and its five variants: JPEG, JPEG2000, Gaussian blur, white noise, and fast fading. The testing set contains 9
original images and their variants. In the training and testing phases, 29 original images, each of which has five
distortions, and three images along with five distortions from the training dataset are used. Each image has
five variants that eventually result in 960 images. The classifier is trained and tested on the 960 images. The
feature vector is used to train the classifier. The trained classifier predicts the class for the test dataset. This
model was also validated for the TID2008 [15] dataset. Eighteen original images along with different distortions
like JPEG, JPEG 2000, Gaussian blur, and white noise are used as training data. Seven original images with
their distortion variants are used as the testing dataset.

In the first experiment, the quality score computed by the neural network is compared with DMOS. The
combination of extracted features is given as an input to the network for a particular image type. The linear
coefficient between predicted scores by network and DMOS is obtained for the LIVE dataset, which is shown
in Table 1. Table 2 depicts the performance of the ANN for the TID2008 dataset. Figure 4 depicts regression
plots for the ANN for both of the datasets.

Table 1. Performance evaluation of classifiers using the LIVE dataset for the proposed features.

Image type/parameters Correlation coefficient
ANN | SVM
JPEG 0.85 | 0.85
JPEG2k 0.88 | 0.85
Gaussian blur 0.93 0.95
White noise 0.91 0.95
Fast fading 0.86 | 0.80
Overall 0.85 | 0.90

Table 2. Performance evaluation of classifiers using the TID2008 dataset for the proposed features.

Correlation coefficient
Image type / parameters ANN | SVM
JPEG 0.89 0.85
JPEG2k 0.89 0.85
Gaussian blur 0.90 0.95
‘White noise 0.90 0.95
Overall 0.90 0.92

In the second experiment, the mentioned features are used to train the SVM. The SVM requires classes
as the target. Therefore, DMOS values are grouped into four groups. Class 1 is defined as a DMOS range from
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Figure 4. Regression plots for the ANN for the LIVE database and TID2008 databases, respectively.

0 to 25. DMOS values between 25 and 50, between 50 and 75, and above 75 are considered as Class 2, Class 3,
and Class 4, respectively. From the training dataset, the corresponding feature vectors that are categorized into
different classes are used to train the SVM. The trained classifier predicts the class for the test images. The
obtained linear coeflicients for testing the datasets are given in Tables 1 and 2. Figure 5 shows the regression
plot for the SVM. It depicts the relationship between the expected class for the test image and the actual class
predicted by the SVM. The SVM classifier shows better performance than the ANN. The proposed method,
when compared with other NR methods, shows better performance, as shown in Table 3.
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Figure 5. Regression plot for the SVM for LIVE database.
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Figure 6. Sample images from the LIVE and TID2008 datasets.
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Table 3. Comparison between the proposed approach and other referenceless approaches using the LIVE database.

Linear Spearman
Sr. no. | Approach coefficient C(I))efﬁcient
1 Proposed method 0.90 0.90
2 DCT-based (NR-IQA) [11] | 0.79 0.79
3 BIQ I [36] 0.82 0.81
4 RCGA-ELM [27] 0.70 0.69
5 CBP [26] 0.86 0.85

Table 4 shows the performance of the proposed method against widely used full reference assessment
methods using the TID2008 database. Sample images used from both datasets are depicted in Figure 6. The
proposed method exhibits good accuracy for both of the databases.

Table 4. Comparison of different FR approaches with the proposed approach using the TID2008 database.

Sr. no. | Approach Spearman coefficient
1 Proposed method | 0.92
2 uQl 0.60
3 SSIM 0.80
4 MSSIM 0.85

6. Conclusion

Texture is an important feature of an image but it can be seriously impacted by distortion. Texture energy
measures compute the energy present in an image, and this was the basis of the current study. As quality is
degraded, the texture energy that helps to assess quality also decreases. The pattern strength that works with
differences between pixels addresses the issue of blockiness and noise. In fast fading distortion, there is a loss in
frequencies, and these parameters are not able to handle the loss in frequencies. Unclassified images generated
by the classifier are mostly fast fading images. Mathematical predictors often exhibit incorrect predictions
for complex and nonlinear relations between features, expected output, and predicted score. Thus, a machine
learning-based classifier is a good solution for the classification problem. Considering textual-based parameters,
image quality assessment is done with different types of images and distortions. Original and distorted images
are given as input to the neural network and the support vector machine trained with DMOS. The observed
accuracy for the neural network is around 85%, and it is around 90% for the SVM. This approach works well
because most of the distortions change the textual information of an image. Textual feature extraction is a
good technique to evaluate the quality of an image. Extracted features work well with various distortions for
best to worst quality images. This is achieved through the uniqueness of the machine learning approach to
obtain the nonlinear relationship between extracted features and DMOS. The result from the ANN depends on
initialization of weights, whereas the SVM is used to get stable results. However, there is definitely a need to
define other parameters to address fast fading distortion. In the future, nontextural features should be extracted
to address fast fading.
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