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Abstract: In this paper, a new version of very large scale integration (VLSI) layouts compaction problem is considered.

Bar visibility graph (BVG) is a simple geometric model for VLSI chip design and layout problems. In all previous works,

vertical bars or other chip components in the plane model gates, as well as edges, are modeled by horizontal visibilities

between bars. In this study, for a given set of vertical bars, the edges can be modeled with orthogonal paths known as

staircases. Therefore, we consider a new version of bar visibility graphs (BsVG). We then present an algorithm to solve

the s-visibility problem of vertical segments, which can be implemented on a VLSI chip. Our algorithm determines all

the pairs of segments that are s-visible from each other.
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1. Introduction

Visibility problems are very popular in many application areas, particularly in very large scale integration

(VLSI) circuit layout. Bar visibility graph (BVG) is a simple geometric model for VLSI chip design and layout

problems [1–4]. In this model, vertical bars in the plane model gates, other chip components, and edges are

modeled by horizontal visibilities between bars. The problem of determining the visible pairs of n given vertical

segments in the horizontal visibility model was studied by Lodi et al. in 1986 [5]. They proposed a parallel

algorithm to solve the visibility problem among n vertical segments in a plane, considered by Bose et al. in

1997 [6]. They studied the problem of computing rectangle visibility graphs (RVGs) of a set of vertical bars

[7–9]. In 2015, Carmi et al. studied the problem of computing the visibility graph of a set of vertical segments

(known as walls). There is an edge between two walls if, and only if, they are weakly visible to each other.

They presented an O
(
n3 log n

)
time algorithm for a scene consisting of n walls of varying heights parallel to

the yz -plane, where visibility is restricted to directions with horizontal projections on the xy -plane [10].

2. Preliminaries

In this section, we will introduce a new version of the VLSI chip design problem. In general, the problem

concerns finding the BVG of a set of given vertical bars in the plane with model gates or other chip components.

In the previous studies, the edges were modeled by horizontal visibilities between bars. In other words, two

vertical bars may connect to each other or “see each other” if there exists a horizontal line segment h , whose

endpoints are on these bars and h does not hit the other bars.
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In our model, the edges can be modeled by orthogonal paths called staircases. A set of n vertical line

segments is given. We aim to determine all pairs (bi,bj) in such a way that a “staircase path” exists between

them.

Let x0 and xn be two points in the plane. An orthogonal path from x0 to xn is a sequence of points

x0, x1 ,x2, . . . , xn , so that xi−1xi is a horizontal or vertical line segment, where i = 1, 2, . . . , n

Definition 1 A staircase is a monotone orthogonal path, whose turns alternate between 90
◦
left and 90

◦
right.

If the segments of a staircase are oriented from x0 to xn , a staircase can be classified into four types:

SE,NE, SW , and NW . If the segments are either toward the south or the east, it is called a SE staircase.

The other types are defined similarly.

Definition 2 Let p and q be two points and O be a set of obstacles in the plane. We say that q is s-visible

from p if there exists a staircase path from p to q that does not intersect with obstacles. Additionally, if this

staircase path is a SE staircase, we say that q is SE -visible from p . The other types of s-visibility (NE -

visible, SW -visible, and NW -visible) are defined similarly. Note that if q is SE -visible from p , then p is

NW -visible from q.

Let B = {b1b2, . . . , bn be a set of n vertical line segments called bars. The endpoints of bi are named by

Li = (xili) and Hi = (xihi) , such that li < hi . Without loss of generality, assume that xi ̸= xj for all i ̸= j .

Note that these bars may block visibility; this means that O = B .

Definition 3 Let bi and bj be two bars in B . We say that bi is s-visible from bj if there exists a point on bi

that is s-visible from a point on bj .

Note that if bj is SE -visible from bi , for some i < j , then bi is NW -visible from bj .

Definition 4 The s-visibility graph of B has a node vi for every bar bi and an edge for every pair of s-visible

bars in B . We denote this graph as BsVG.

In this model, we calculate some extra paths between bars, which were not visible in previous models. In

other words, BsV G reports more visibility paths than BVG. See Figures 1 and 2 for an illustration.

Figure 1. The set of seven bars in the plane.

Graphs BVG and BsVG can yield from a given set of bars as follows: for every bar bi , graph BVG has a

node i (see Figures 1 and 2). If bi and bj are horizontally visible to each other, we add an edge between nodes
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Figure 2. BVG (left) vs. BsVG (right), derived from the bars of Figure 1 in two visibility models: horizontal and

staircase visibilities.

i and j . Similarly, we can construct graph BsVG for the bars of Figure 1. For every bar bi , we add a node i

to graph BsVG, and for each s-visible pair bi and bj , an edge will be added between i and j .

Lemma 1 bj is s-visible from bi for i < j if, and only if, one of its endpoints is s-visible from one of the

endpoints of bi .

Proof It is obvious that if one of the endpoints of bj is s-visible from one of the endpoints of bi , then bj

is s -visible from bi . Assuming that bj is s -visible from bi , there are two points, p ∈ bi and q ∈ bj , so that q

is s-visible from p . We will show that one of the endpoints of bj is s -visible from one of the endpoints of bi .

There are nine cases for these two points, shown in the Table.

Table. The two visible points p and q of bars of bi and bj may jointly have nine positions on bi and bj .

Clearly, for all these nine cases, each staircase path from p to q can be extended to a staircase path from

the endpoints of the bars. See Figure 3 for an illustration of these extensions. The evidence is summarized in

the Table.

From now on, we only consider s -visibility of the endpoints of the bars.

3. SE-visible pairs

Without loss of generality, assume that B = {b1, . . . ,bn is a set of bars sorted on increasing x -coordinate, i.e.

x1<x2< . . .xn .

In this section, we propose an algorithm to compute all SE-visible pairs (bi,bj) of B for i < j . In the

next section, we propose the main algorithm, which reports all s-visible pairs.

Initially, we construct a graph called orthogonal graph, which contains all SE -staircase paths between

bars in B . We denote the orthogonal graph of a set of B as OG(B). Then we compute all SE -visible pairs

(bi,bj) of B for i < j with a dynamic programming approach.
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Figure 3. Illustration of Lemma 1.

The set of the vertices and the edges of OG(B) are denoted as V and E , respectively. Set V includes

all endpoints of bars and several intermediate vertices. Set E includes all east- or south-oriented edges between

the vertices, as will be detailed below.

There are three types of OG (B) vertices:

• Type I: the endpoints of bars, i.e. LiHi|1 ≤ i ≤ n .

• Type II: lie on the bars.

• Type III: lie on the supporting line of the bars (not on the bars).

The second- and third-type vertices will be explored in detail in the algorithm.

For 1 ≤ i ≤ n , let Vi be a subset of V that contains the vertices from all three types with the same

x -coordinate, precisely xi . Then V =
n∪

i=1

Vi .

Let us assume that the vertices of each Vi are sorted on the decreasing y -coordinate. Let Vi= {vi
1,v

i
2, . . . ,v

i
mi

,

where mi is the number of vertices in Vi . By this notation, if we set vi
j= (xiy

i
j), for all 1 ≤ i ≤ n and

1 ≤ j ≤mi , then yi
j+1<yi

j .

The orthogonal graph of the set of bars in Figure 1 is shown in Figure 4. The white nodes are the

endpoints of the bars (Type I). The green nodes are second-type and the blue ones are third-type.

Let A be the adjacency matrix of OG(B). The first two rows (columns) correspond to the vertices of

V1 , i.e. H1 and L1 , respectively. The next m2 rows (columns) of A correspond to v2
1,v

2
2, . . . ,v

2
m2

, i.e. the
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Algorithm 1 Constructing orthogonal graph

Input: Set of bars B .

Output: Orthogonal graph of B , OG(B).

1. Vi= ∅; E = {(H1,L1)}; i = 1;

2. Vi= {LiHi; Li and Hi are labeled as first-type vertices.

3. For all u = (xi−1y) ∈Vi−1 do

If (u is not a second type vertex), then

• Add u′ = (xiy) to Vi so that Vi remains sorted.

• Add edge (uu) to E.

• If (li< y <hi), then u is labeled as a second type vertex, otherwise it is labeled as a third type
vertex.

4. For all uj= (xiyj) ∈Vi , add edge (ujuj+1) to E .

5. i++; if ( i < n), go to 2.

By Algorithm 1, note that mi≤ 2i .

next mi rows (columns) of A correspond to vi
1,v

i
2, . . . ,v

i
mi

for 2 < i ≤ n (Figure 5). Therefore, the number

of rows and columns of A is m =
n∑

i=1

mi .

The directed graph OG(B) contains all possible SE -staircase paths between the vertices. To report all

SE -staircase paths between the type-one vertices that are SE -visible, we define a solution matrix P by using

a dynamic programming approach. Matrix P is an m×m matrix, whose rows (and columns) are labeled the

same as the rows (and columns) of A . Its elements, P[vk
av

l
c] , are defined below:

P
[
vk
a ,v

l
c

]
=

 1 vl
c is SE− visible fromvk

a or vk
a=vl

c

0 otherwise

For all i and j , where 1 ≤ ij ≤ n , we define an mi×mj matrix as follows: it is a submatrix of A that is

restricted to the rows labeled by Vi and columns labeled by Vj , and is denoted as Ai,j . Its rows and columns

are labeled as the vertices of Vi and Vj , respectively. Therefore, we have:

Ai,i

[
vi
a,v

i
c

]
=

 1 c− a = 1

0 otherwise

Additionally, for i ̸= j and i ̸= j− 1 , we always have: Ai,j

[
vi
a,v

j
c

]
= 0 . Similarly, we define Pi,j . Obviously,

we have:

Pi,i

[
vi
a,v

i
c

]
=

 1 a ≤ c

0 a > c

Furthermore, for i > j , we have Pi,j

[
vi
a,v

j
c

]
= 0 . We propose an algorithm to compute Matrix P.In this
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Figure 4. Orthogonal graph of the set of bars of Figure 1.

algorithm, i ≥ j, we initialize the values of submatrices Pi,j as described above. Next, for 1 ≤ i ≤ n− 1 , we

compute Pi,i+1 directly from A . Then, for 1 ≤ i ≤ n− 2 , we compute Pi,i+2 . Next, we can report all pairs

(vk
a v

l
c) that are type-one vertices and P

[
vk
a ,v

l
c

]
= 1 In fact, if for two type-one vertices vk

a andvl
c we have

P
[
vk
a ,v

l
c

]
= 1 this means that bl is SE -visible from bk .

In Step 2, we initialize the values of Pi,i . In Step 3, we compute the elements of Pi,i+1 . For this purpose,

in Step 3.1 we compute the last row of Pi,i+1 and in Step 3.2 we compute the remaining rows with an inductive

approach. Note that in Step 3.1 there exists only a unique index a , so that the vertex vi
mi

is connected to

vi+1
a by an edge. Therefore, we can store these indices for each i . In other words, the time complexity of

searching for index a is constant. Clearly, if there exists an edge between vi
mi

and vi+1
a , then for all c ≥ a ,

vi+1
c is SE-visible from vi

mi
. In Step 3.2, we calculate the SE -visible vertices from the remaining vertices of

Vi . Firstly, we consider that if v
i+1
c is SE -visible from vi

j+1 , then it is SE -visible from vi
j (Step 3.2.1). Next,

in Step 3.2.2, if there exists an edge between vi
j and vi+1

a , then all the next vertices of Vi+1 after vi+1
a are

SE -visible from vi
j .
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Figure 5. Structure of Matrix A .

Finally in Step 4, we calculate the elements of Pi,i+d by using Pi+1,i+d , which is computed before it.

This step is similar to Step 3. Initially we compute the last row of Pi,i+d and in Step 4.2 we compute the

remaining rows with an inductive approach.

In Step 4.1, if there exists an edge between vi
mi

and vi+1
a , then all vertices of Vi+d that are SE -visible

from vi+1
a are SE -visible from vi

mi
.

In Step 4.2, we calculate the SE -visible vertices from the remaining vertices of Vi . In Step 4.2.1, we

consider that if vi+d
c is SE -visible from vi

j+1 , then it is SE -visible from vi
j . Next, in Step 4.2.2, if there exists

an edge between vi
j and vi+1

a , then all vertices of Vi+d that are SE -visible from vi+1
a are SE -visible from vi

j .

Now we can report all SE -visible pairs (bk,bl) by scanning Matrix P for two type-one vertices vk
a

and vl
c so that P

[
vk
a ,v

l
c

]
= 1

Now we consider the time complexity of Algorithm 2. Steps 1– 3 can run in O
(
n3

)
, and the time

complexity of Step 4 is O
(
n4

)
. Note that the number of nodes of OG(B) is m =

∑n
i=1 mi ≤

∑n
i=1 2i =O(n2).

This algorithm can compute all O(n4) paths between all pairs of nodes in time O(n4).

4. Results

In this section, we consider the main problem, which concerns reporting all s -visible pairs of bars. Note that

s -visible pairs are either SE-visible or NE-visible; therefore, we should compute all SE -visible and NE-visible

pairs. We compute SE -visible pairs by deploying Algorithms 1 and 2. Then, to compute NE-visible pairs,
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Algorithm 2 Computing SE-visible pairs

Input: The orthogonal graph of a set of bars B , OG(B) and its adjacency matrix, A .
Output: Solution Matrix P .

1. P =0̄;

2. For i = 1 to n do

∀ac : 1 ≤ a ≤ c ≤mi, set Pi,i

[
vi
a,v

i
c

]
= 1;

3. For i = 1 to n− 1 do

3.1. If (A[vi
mi

vi+1
a ] == 1) then

For c = a to mi+1 do

set Pi,i+1

[
vi
mi

,vi+1
c

]
= 1;

3.2. For j =mi−1 to 1 do

3.2.1. For c = 1 to mi+1 do

If (Pi,i+1

[
vi
j+1,v

i+1
c

]
== 1) then

set Pi,i+1

[
vi
j,v

i+1
c

]
= 1;

3.2.2. If (there exists an index a so that A[vi
jv

i+1
a ] == 1) then

For c = a to mi+1 do

set Pi,i+1

[
vi
j,v

i+1
c

]
= 1;

3.2.3. For d = 2 to n− 1 do

For i = 1 to n− d do

4.1. If (A[vi
mi

vi+1
a ] == 1) then

For c = 1 to mi+d do

If (Pi+1,i+d

[
vi+1
a ,vi+d

c

]
== 1) then

set Pi,i+d

[
vi
mi

,vi+d
c

]
= 1;

4.2. For j =mi−1 to 1 do

4.2.1. For c = 1 to mi+d do

If (Pi,i+d

[
vi
j+1,v

i+d
c

]
== 1) then

set Pi,i+d

[
vi
j,v

i+d
c

]
= 1;

4.2.2. If (there exists an index a so that
A[vi

jv
i+1
a ] == 1) then

For c = 1 to mi+d do
If (Pi+1,i+d

[
vi+1
a ,vi+d

c

]
== 1) then

set Pi,i+d

[
vi
j,v

i+d
c

]
= 1;

we temporarily change the coordinate system and swap “South” and “North” in Algorithms 1 and 2 to report

NE-visible pairs. For this purpose, we should modify the edges of OG(B) (constructed by Algorithm 1) by

adding upward edges, i.e. in Step 4 of Algorithm 1, we add (ujuj+1) to E instead of downward ones. With this

new OG(B) as the input, Algorithm 2 will calculate all NE-visible pairs. Consequently, all s -visible pairs can

be reported.
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To consider the time complexity of our approach, we need to know the time complexity of Algorithms 1 and

2. Algorithm 1 has a main loop of size n , containing two loops of size mi−1 (Step 3 of Algorithm 1) and size mi

(Step 4 of Algorithm 1). Hence, Algorithm 1 can run in time
∑n

i=1 mi+
∑n

i=1 mi−1≤
∑n

i=1 2i+
∑n

i=1 2(i− 1)=

O(n2). Then we consider the time complexity of Algorithm 2. Step 2 can run in O
(
n3

)
, because it has a

loop of size n that contains a loop of size
(
mi

2

)
. (See Step 2 of Algorithm 2 for choosing integers a and

c .) Therefore, this step can run in time
∑n

i=1

(
mi

2

)
≤
∑n

i=1

(
2i
2

)
=
∑n

i=1 i(2i− 1)=O(n3). Step 3 may also

run in O
(
n3

)
time, because it has a loop of size n containing two steps, 3.1 and 3.2. Step 3.1 has a loop

of size mi+1 . Step 3.2 has two nested loops of a total size (mi−1)(mi+1+mi+1). Then Step 3 runs in

time
∑n−1

i=1 (2mi−1)mi+1≤
∑n−1

i=1 (4i− 1)× 2 (i+ 1)= O(n3). The time complexity of Step 4 of Algorithm

2 is O
(
n4

)
. This step has two nested loops that contain Steps 4.1 and 4.2. Step 4.1 has a loop of size

mi+d . Step 4.2 has two nested loops of a total size (mi−1)(mi+d+mi+d). Then Step 4 runs in time∑n−1
d=2

∑n−d
i=1 (2mi−1)mi+d≤

∑n−1
d=2

∑n−d
i=1 (4i− 1)× 2 (i+ d)= O(n4). Consequently, Algorithm 2 has a time

complexity O(n4). This means that determining all s-visible pairs can be done in time O(n4).

Note that the number of nodes for OG(B) is =
∑n

i=1 mi≤
∑n

i=1 2i=O(n2) , meaning that there are

at most O(n4) paths between all pairs of nodes of this graph, and this algorithm can compute these O(n4)

visibility paths in time O(n4). It appears that the time complexity is close to efficient.

5. Conclusion

In this study, we considered a new version of the VLSI chip design problem: the problem of finding the bar

s -visibility graph (BsV G) of a set of given vertical bars in the plane. In previous studies, two vertical bars

may connect with each other if there exists a horizontal line segment h whose endpoints are on these bars and

h does not hit the other bars. However, in our model, the edges are modeled by staircase paths, i.e. two bars

bi and bj can see each other if there exists a point on bi that is s-visible from a point on bj . In this model,

we report more edges. These extra edges of BsVG, which were not presented in BVG, cause extra visibility

paths between bars that were not reported in BVG. Actually, if there is no horizontal path between two bars,

we cannot report a connection between them in the horizontal visibility model. However, in our model, a path

may be found between them. This means that in our model there are more opportunities for connecting bars,

and a problem that cannot be solved by previous models may find a solution in our model through these extra

paths. We proposed an O(n4)-time algorithm to find BsV G of a given set of n vertical bars.
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