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Abstract: In recent years, increasing energy demand has resulted in more loading in power transmission lines and

correspondingly more electric and magnetic field occurrence. In this paper, electric and magnetic field levels around high

voltage power transmission lines are measured and then calculated analytically by simulating the realistic case. Moreover,

the field levels around these power lines have been predicted using multilayer perceptron artificial neural network (ANN)

and generalized regression neural network models. Typical 154 kV power transmission line facilities of Turkey have been

studied. Electric and magnetic field levels in the proximity of power transmission lines have been predicted with ANN

models with high accuracies. Particularly, the MLPNN algorithm predicts the electric and magnetic field intensities with

very high precision. The aim of this research is to create a reference for researchers focused on topics of occupational

and general public exposures and also biological effects of electric and magnetic fields emitted from low-frequency power

transmission lines.

Key words: Power transmission lines, magnetic and electric field exposures, multilayer artificial neural networks,

occupational and general public safety

1. Introduction

High voltage power line researchers have mostly focused on magnetic field exposure studies. Power frequency

electric and magnetic fields have received important attention due to concerns that exposure to such fields might

cause undesired health effects [1–6]. One of the recent studies showed that the leukemia risk for children and

the cancer risk of adults have been increasing due to residential exposure to ELF-EMF. People who live in 50-m

vicinity of transmission line have 33% higher cancer risk to people who live in the field of 50 m to 100 m [7–9].

The analytical and numerical studies of the electric field are less than the magnetic field studies. However,

outdoor exposure to the electric fields around power transmission lines may have harmful effects and should be

taken into account for human health.

Well-known environmental health organizations have determined limit values for magnetic field exposure

levels. Most organizations accept 0.4 µT and a few of them 0.2 µT for long-term exposure as a critical

leukemia level [8,10–12]. The level of 0.3–0.4 µT has been declared as a critical value for leukemia by the

National Institute of Environmental Health Sciences and the International Agency for Research on Cancer

(IARC, member of WHO) accept this limit value as the Group-B level [11–14]. The limit value recommended by

the International Non-ionizing Radiation Committee (ICNIRP) for the public is 200 µT (2000 mG) [12], which

is considerably higher than the other well-known authority health organizations. In residential life, childhood
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cancers and occupational cancers such as breast and brain cancer and leukemia have been dramatically increasing

due to the harmful effects of power frequency electromagnetic fields on human health. There are also other

undesired detrimental effects of electromagnetic field exposure, i.e. the increase in the risk of miscarriage [15,16],

neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer’s disease [7], suicide mortalities [17],

and susceptibility to depressive illness and to myocardial infarctions [18].

In recent years, artificial neural network techniques have been effectively used to predict the electro-

magnetic fields in overhead power transmission lines [19–22]. This study will shed light on the comparison of

traditional methods with artificial neural network methods to estimate the electric and magnetic fields around

power transmission lines. For this goal, electric and magnetic field variations around typical power lines are

investigated. Analytical and numerical methods for the calculation of electric and magnetic fields around power

transmission and distribution lines are implemented.

In this study, residential electric and magnetic fields radiated from typical high voltage power lines are

measured, and then the prediction of magnetic and electric fields around the typical power transmission lines

is performed with respect to the measurement data and compared with measurement and analytical results.

Artificial neural network algorithms, namely multilayer perceptron neural networks (MLPNNs) and generalized

regression neural networks (GRNNs), are investigated as an alternative approach to predict magnetic and electric

field levels.

2. Electric and magnetic field measurements

Residential electric fields radiated from typical high voltage power lines in Turkey are measured by using a

CA42 LF field meter, which is made by Chauvin Arnoux. Electric field measurements are taken at 1-m height

from ground level, and the coordinates of the 154 kV power lines are given in Table 1. Since 154-kV power

lines pass through urban areas in Turkey, measurements are acquired particularly for this voltage level. The

instantaneous current value of the transmission line is recorded about 156.3 A in the measurement period.

Magnetic field strengths emitted by 154-kV typical high voltage power lines in Turkey are measured by using

the Magnetic Field Hitester 3470 with the magnetic field sensor 3471. Measurements are taken at different

heights from ground level. The location and coordinates of the 154-kV power transmission line are denoted in

Table 1. The data of the electric and magnetic field measurements are expressed in Tables 2 and 3.

Table 1. Coordinates of the power transmission line conductors.

Coordinates Phase R Phase S Phase T
x (m) -6.6 0.0 6.6
y (m) 17.5 17.5 17.5

2.1. Analytical calculation of electric and magnetic fields

The electric and magnetic fields are determined by the prediction methods and measurements. In this study,

the charge simulation method (CSM) is implemented to obtain the electric fields around the high voltage

transmission lines and the Biot–Savart rule is used to calculate the magnetic field by using time-dependent

current [23]. For a long-term prediction, load characteristics of the lines are considered for a year period. In the

literature, there are a limited number of studies on electric and magnetic field exposure analysis using multilayer

artificial neural network algorithms, which present an alternative approach beside traditional methods.
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Table 2. Electric field measurement data.

X-Coordinates (m)

Y-Coordinates (Height)
0.2 m 0.5 m 1 m 1.5 m 2 m
Emeasured (kV/m)

0 1.124 1.160 1.224 1.294 1.369
2 1.109 1.144 1.207 1.275 1.348
4 1.079 1.113 1.173 1.238 1.308
6 1.036 1.068 1.123 1.183 1.248
8 0.972 1.000 1.049 1.102 1.159
10 0.902 0.926 0.969 1.015 1.064
12 0.826 0.847 0.883 0.921 0.961
14 0749 0.766 0.796 0.827 0.860
16 0.675 0.689 0.713 0.738 0.764
18 0.604 0.615 0.634 0.653 0.674
20 0.542 0.551 0.566 0.581 0.598
22 0.485 0.492 0.504 0.516 0.529
24 0.432 0.438 0.447 0.457 0.467
26 0.389 0.394 0.401 0.409 0.417
28 0.350 0.354 0.360 0.366 0.372
30 0.315 0.317 0.322 0.327 0.332
32 0.286 0.288 0.292 0.296 0.300
34 0.259 0.261 0.264 0.268 0.271
36 0.235 0.237 0.240 0.242 0.245
38 0.215 0.217 0.219 0.221 0.223
40 0.197 0.199 0.200 0.202 0.204

2.2. Prediction of electric and magnetic fields with artificial neural network algorithms

2.2.1. Multilayer perceptron neural networks (MLPNNs)

The MLPNN method is used as one of the most common neural network algorithms and it may include two or

more layers as shown in Figure 1. The number of input layer neurons is equal to the number of selected specific

features and the output layer determines the desired output classes, which decide the number of neurons in the

output layer. The hidden layers between the input and output layers may be used for optimizing the MLPNN

method especially for nonlinear systems. The most common method of finding the optimum number of neurons

and hidden layers is using the process of trial-and-error [24].

For one perceptron, the MLPNN is shown as

x =
R∑
i=1

wipi + b, (1)

where R is the number of inputs and their weights, pi is the input value of a perceptron, wiwi is the weight

for each input, and x is the summation of a perceptron. The summation of the perceptron is scaled with a

tangent sigmoid activation function (in hidden layers) and linear transfer function (in the output layer). The

output y of a perceptron for the tangent sigmoid function in the hidden layers is denoted as

y = f (x) =
ex − e−x

ex + e−x
(2)
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Table 3. Magnetic field measurement data.

X-Coordinates (m)

Y-Coordinates (Height)
0.2 m 0.5 m 1 m 1.5 m 2 m
Hmeasured (µT)

0 1.532 1.590 1.649 1.760 1.850
2 1.512 1.578 1.630 1.710 1.810
4 1.458 1.530 1.610 1.700 1.800
6 1.389 1.465 1.500 1.590 1.720
8 1.324 1.378 1.410 1.480 1.600
10 1.225 1.260 1.320 1.390 1.480
12 1.125 1.140 1.270 1.280 1.300
14 1.010 1.023 1.070 1.100 1.200
16 0.962 0.980 0.990 0.960 1.000
18 0.851 0.820 0.850 0.890 0.950
20 0.731 0.740 0.745 0.820 0.770
22 0.654 0.680 0.670 0.680 0.680
24 0.572 0.579 0.580 0.600 0.620
26 0.514 0.520 0.530 0.540 0.530
28 0.473 0.500 0.469 0.470 0.470
30 0.412 0.430 0.410 0.450 0.400
32 0.382 0.369 0.375 0.400 0.380
34 0.321 0.356 0.340 0.367 0.340
36 0.301 0.300 0.297 0.280 0.300
38 0.280 0.290 0.270 0.282 0.280
40 0.261 0.245 0.245 0.290 0.260
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Figure 1. The structure of the MLPNN model.

Linear transfer function y = f(x) = x can be calculated at the one perceptron in the output layer. The
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structure of the MLPNN model is shown in Figure 1. {(pn, tn)} are training patterns, n is the pattern number,

R and Q are the dimensions of the input vector pn and the desired output vector tn , respectively, and vector

yn is the network output of the n -th pattern. For the I -th hidden unit, the net input net n(I)and the output

activation On(I) for the n-th training pattern are

netn (i) =

R+1∑
j=1

ω (i, j) .pn(j), 1 ≤ i ≤ N (3)

On (i) = f (netn (i)) , (4)

where ω(I, j) shows the weight connecting the j−th input unit to the I−th hidden unit. The k−th output

for the n−th training pattern is ynk , given as the following equation:

ynk =
R+1∑
j=0

ωjo (k, j) · pn (j) +
Nh∑
i=1

ωho (k, i) ·On (i) , 1 ≤ k ≤ Q, (5)

where ωio(k, j)denotes the output weight connecting the j−th input unit to the k−th output unit and who(k, I)

denotes the output weight connecting the I−th hidden unit to the k−th output unit. The mapping error for

the n−th pattern is given by

En =

Q∑
k=1

[tnk − ynk]
2, (6)

where tnk denotes the k−th element of the n−th desired output vector. Training a neural network in batch

mode, the mapping error for the k−th output unit is formulized by

E(k) =
1

Nh

Nh∑
n=1

[tnk − ynk]
2 (7)

The overall performance of an MLPNN can be determined by evaluating the mean square error (mse) function,

which can be given as

E =

Q∑
k=1

E (k) (8)

2.2.2. Generalized regression neural networks (GRNNs)

The GRNN comprises four layers: input layer, pattern layer, summation layer, and output layer (see Figure 2).

This regression tool consists of a dynamic network structure [25]. The GRNN model includes vectors that have

X input values and Y output values. Thus, x and y are measured as values of X and Y, respectively, and f̂(x, y)

is the joint continuous probability density function of X and Y. The joint probability density in the GRNN can

be expressed as

f̂ (x, y) =
1

(2π)(d+1)/2
× 1

n

∑[
exp

(
(x− xi)

T (x− xi)

2σ2

)
exp

(
(y − yi)

2

2σ2

)]
, (9)
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Figure 2. The structure of the GRNN.

where n is the sample observations, σ is the spread parameter, xi is the 2-th training vector, and vector yi is

the corresponding value. The regression of Y on x can be formulated as

E [Y |x] =
∫∞−∞ Y.f(x, Y )dY

∫∞−∞ f(x, Y )dY
(10)

and

ŷ (x) = E [Y |x] =

∑n
i=1

[
yiexp(

−d2
i

2σ2 )
]

∑n
i=1 exp(

−d2
i

2σ2 )
, (11)

where di is the distance between the input vector and the i-th training vector, which can be formulated as

d2i = (x− xi)
T (x− xi) (12)

The estimate ŷ(x) is a weighted average of all observed yi values.

3. Results

An MLPNN algorithm is implemented for the electric and magnetic field predictions. Neural network study is

performed by applying the following procedures.

1. The normalization of the input and output dataset is implemented with maximum–minimum mapping

ranging between –1 and 1. Input values are selected as the horizontal and vertical distance values. Electric

field measurement values are inserted as the output values. The ANN structure has two input values and

one output value.

2. Three-fold cross validation is implemented for the electric and magnetic field dataset. The database is

divided into 66.67% train and 33.33% test data randomly.

3. The determination of target values is performed according to maximum–minimum mapping.
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4. The MLPNN structure comprises an input layer including two neurons and three hidden layers. While the

first and third layers have two neurons, the second layer has three neurons, which have a tangent sigmoid

transfer function. The output layer has a single neuron, which has a linear transfer function.

5. The structure is determined experimentally and this structure achieves the highest score.

6. The structure is trained using the Levenberg–Marquardt algorithm that determines the optimum training

results between other back propagation training algorithms used as an experimental comparison.

7. Test accuracy of training and testing simulations is determined according to mse scores.

8. The success of this method is compared with the other methods with regard to mse scores.

The second method used in electric and magnetic field predictions is the GRNN method. Three-fold

cross validation is also implemented for the GRNN algorithm. The database comprises 66.67% train data and

33.33% test data. It has an input layer with two neurons, one pattern layer including radial basis functions, a

summation layer, and an output layer including a single neuron. Spread factor, which is the only adjustable

parameter of GRNN structure, is selected as 0.5 for this study. The spread parameter is the distance of an

input vector from the weight vector of a neuron.

The MLPNN method has the best accuracy results (Table 4). The mse of the MLPNN algorithm is

obtained as 0.000952051 for electric field and 0.00073935 for magnetic field studies. On the other hand, the

GRNN algorithm has 0.002818 mse for the electric field and 0.001344 mse for the magnetic field with respect to

the measurement database. The comparison of MLPNN and GRNN methods and analytical and measurement

results of the electric and magnetic field are depicted in Figures 3 and 4. The results of the MLPNN algorithm

match almost perfectly the measured data (see Figures 3 and 4). According to the mse analysis with respect

to the measured values, the best results are obtained using the MLPNN algorithm. Numerical mse results are

shown in Table 4.

Table 4. Mean square error values for the proposed methods.

MSE MLPNN GRNN
EF 0.000952051 0.002818
HF 0.00073935 0.001344

Analytical results of electric field intensities at different heights are denoted in Figure 5, and Figure 6

depicts the magnetic field intensities with respect to different coordinates. These results are obtained using

MLPNN and GRNN methods.

To make a comparison and see the accuracy and precision, measured values are also denoted in Figures

7 and 8. The other method allows one to alter just one parameter. However, MLPNN allows one to change

more parameters, which are neuron numbers, layer numbers, activation function types, etc. Therefore, the most

accurate result can be obtained by the MLPNN algorithm.

The prediction of electric and magnetic field intensities at different heights and corresponding coordinates

around power transmission lines are denoted in Figures 9 and 10. Results are obtained very precisely by using

the MLPNN algorithm (see Figures 9 and 10). Figures 3 and 4 depict the accuracy of the neural network

algorithms. In Figures 5–10, electric and magnetic field intensity values are shown with respect to horizontal

and vertical locations. In Figures 5 and 6, analytical calculations are denoted, measured values are found in

Figures 7 and 8, and MLPNN results are depicted in Figures 9 and 10. The results of measurement, theoretical

(analytical calculation), and prediction algorithms are obtained in a consistent manner.
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Figure 3. Electric field intensities at different heights. The results are obtained by measurement, analytical calculation,

and artificial neural network algorithms (MLPNN and GRNN methods).
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Figure 4. Magnetic field intensities at different heights. The results are obtained by measurement, analytical calculation,

and artificial neural network algorithms (MLPNN and GRNN methods). The critical magnetic field exposure value (0.3–

0.4 µT) is exceeded in 40-m proximity of the power-transmission line.
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Figure 5. Electric field intensities with respect to horizontal and vertical coordinates. Electric field intensity values are

obtained by analytical calculation.

-40 -30 -20 -10 0 10 20 30 40

0
0.5

1
1.5

2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Horizontal Distance (m)Vertical Distance (m)

M
ag

n
et

ic
 F

ie
ld

 (
μ

T
)

Figure 6. Magnetic field intensities with respect to horizontal and vertical coordinates. Magnetic field intensity values

are obtained by analytical calculation.
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Figure 7. Electric field measurement values with respect to horizontal and vertical coordinates. Measurements are

obtained from typical high-voltage power lines in Turkey.
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Figure 8. Magnetic field measurement values with respect to horizontal and vertical coordinates. Measurements are

obtained from typical high-voltage power lines in Turkey.
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Figure 9. Electric field intensities with respect to horizontal and vertical coordinates. The MLPNN algorithm is

performed to obtain electric field intensity values.
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Figure 10. Magnetic field intensities with respect to horizontal and vertical coordinates. The MLPNN algorithm is

performed to obtain magnetic field intensity values.
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4. Conclusions

The studies on environmental and health effects of electric and magnetic field exposure have dramatically

increased due to the increasing energy demand and requirement. Especially to perform risk analysis of the

electric and magnetic field occurrences around the transmission lines passing through the urban areas, prediction

methods are required.

In this study, ANN methods, namely multilayer perceptron neural networks (MLPNNs) and generalized

radial basis neural networks (GRNNs), are compared with the measurement and analytical results to evaluate

the success of neural network algorithms for the determination of electric and magnetic field intensities around

the low-frequency power transmission lines. The MLPNN method has the best accuracy results.

The mse of the MLPNN algorithm is acquired as 9.52051 × 10−4 for the electric field and 7.3935 ×
10−4 for the magnetic field with respect to the measurement database. The error values of the MLPNN

algorithm are very low compared to the GRNN method. Three-fold cross-validation is also performed to

demonstrate the accuracy of the Neural Network results. Cross-validation reveals the accuracy of the neural

network algorithms with different combinations of train and test data and determines how realistic they are.

Thereby, the reproducing situations of ANN structures are minimized. Numerical analysis denotes that the

MLPNN algorithm is the best neural network method for the prediction of electric and magnetic field intensities.

The prediction of the electric and magnetic field intensities can be implemented with very low error by neural

network algorithms, especially the MLPNN method, by defining the line voltage level and the physical properties

of the line.

The results reveal that magnetic field exposure limits are exceeded in 40-m vicinity of the 154-kV typical

high voltage power lines in urban areas. Since the injected current values increase with the power demand,

these electric and magnetic field exposure levels will also improve, and exposure to these fields will take place

in wider areas. Therefore, electromagnetic field safety corridors should be set up for power transmission lines

passing through urban areas. The results of this study indicate that neural network algorithms, particularly

MLPNNs, can be used as a complementary tool with the conventional methods for the prediction of electric and

magnetic field intensities around low-frequency power transmission lines for the study of bioelectromagnetic,

occupational health and safety, electromagnetic risk analysis, and determination of the electromagnetic safety

corridors for power transmission lines. To keep the general public and occupational exposure under control

safely, electromagnetic field analysis of power transmission lines should be seriously implemented periodically

for existing power transmission lines and the designs of new electric power line projects. Moreover, the prediction

of the current densities induced in the bodies of electrical workers and people living in the vicinity of power

lines might be implemented with the proposed ANN algorithms. Such a study would be beneficial in providing

data for epidemiological studies to be carried out in this area.
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