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Abstract:This paper proposes a method of robust optimal stabilization for balance systems such as rocket and missile

systems, Segway human transportation systems, and inverted pendulum systems. Constant-gain controllers such as

linear-quadratic regulators may not guarantee stability let alone optimality for balance systems affected by parametric

variations. The robust stability and robust performance achieved through the proposed variable-gain controller are better

than those of the linear-quadratic regulator. The proposed controller consists of two components, one of which is designed

offline for nominal values of parametric variations and one of which is updated online for off-nominal values of parametric

variations. A salient feature of the proposed method is a linear transformation that converts the vector control input of

balance systems into scalar control input for application of the proposed method. A fourth-order linearized model of an

inverted pendulum system is simulated to show the efficacy of the proposed method.
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1. Introduction

Balance systems appear in commercial, industrial, military, and academic applications. Segway human trans-

portation systems, missile and rocket guidance, and inverted pendulums are examples of balance systems that

have gained importance in their respective application fields. All balance systems share a generic mathematical

model commonly known as the linear parameter-varying (LPV) system. A common control methodology for

LPV systems may suffice for all balance systems. Control of balance systems affected by parametric variations

is critical in certain applications. One such example is the control of missile systems experiencing rapid change

in total mass due to fuel consumption. LPV control of quadcopters affected by mass variation and battery

drainage is discussed in [1]. LPV control of wind power systems is given in [2], in which the variable speed of

wind makes the rotor inside the turbine variable, too.

The control method for balance systems proposed in this paper advances our research presented on the

subject in an earlier publication [3]. In [3], we proposed switchable linear-quadratic regulators (LQRs) that

could provide optimal stabilization for LPV systems when parametric variations switch between a set of nominal

values and a set of perturbed values. The proposed controller in this paper allows parametric variations to take

on any values around nominal values because it incorporates parametric variations into its state-feedback gain.

Since the control methods in [1] and [2] both involve notions of optimality in the design of their respective

controllers, we discuss these now for comparison. In [1], the control law is a linear combination of gains of four

LQRs designed for four sets of values of mass and battery drainage. A particular LQR becomes dominant when
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these parametric variations are inside its corresponding set. The control law in [1] has not proven to be optimal.

In [2], the controller is a gain-scheduled proportional-integral controller. Since gains of proportional and integral

parts are functions of rotor velocity, the controller does not lose the desired performance with varying rotor

velocity.

Model predictive control (MPC) is a suboptimal control method that has been utilized in the control of

LPV systems. An example is min–max MPC as a solution to the problem of controlling uncertain discrete-

time linear systems [4]. MPC of LPV systems with rate constraints on parameter variations was given in [5].

Recently, an MPC approach yielding a controller that adapts to parametric variations was discussed in [6].

The theoretical novelty of the work presented in this paper is that it extends the linear-quadratic

regulation theory analytically to LPV systems. This theory is well-established in cases of linear-time-invariant

(LTI) and linear-time-varying (LTV) systems. Mathematically, this novelty is manifested as an extension of

the algebraic Riccati equation (ARE) into a perturbed algebraic Riccati equation (PARE). The solution of this

PARE forms a robust optimal controller for LPV systems just as the solution of the ARE forms a robust optimal

controller, i.e. an LQR, for LTI systems.

The proposed controller consists of two components, one of which guarantees robust stability when

parametric variations are at their nominal values, whereas the other ensures robust performance when parametric

variations are at their off-nominal values. This two-component controller is constructed by employing the linear-

quadratic regulation theory and the Lyapunov theory. A linear-invertible transformation is used to convert the

vector control input of an LPV system into scalar control input for application of the proposed method. The

proposed transformation is invertible to invert back the proposed control from transformed coordinates to

original coordinates. Robust performance achieved with the proposed controller is found to be superior to

constant-gain LQRs as shown in the simulation results.

The aforementioned treatment of the LPV system distinguishes the proposed work from modern LMI-

based optimal control approaches for LPV systems on three accounts. First, the proposed work extends the

historical evolution of optimal control theory to LPV systems purely analytically. Second, parametric variations

and corresponding controllers are not constrained to be polytopic in nature as is usually the case with LMI-

based approaches [7,8]. Third, the computational complexity of solving an LMI is greater than that of solving

an ARE.

This paper is organized as follows: Section 2 discusses the problem statement; Section 3 presents the

main result; Section 4 discusses the construction of a two-component controller; Section 5 discusses the stability

analysis of the closed-loop system with the proposed controller; Section 6 discusses a motivating example of

a fourth-order model of an inverted pendulum system on a cart; Section 7 provides simulation results for the

motivating example; and Section 8 discusses the simulation results qualitatively. Finally, Section 9 concludes

the paper.

2. Problem statement

A SISO linear system affected by parametric variations can be defined in the LPV framework [7] as given below:

ẋ = A(θ)x+Bu, (1)

where x ∈ Rn and u ∈ R1 . System matrices are defined as A(θ) ∈ Rn×n and B ∈ Rn×1 . Note that input

matrix B is such that the LPV systems are assumed to be driven by scalar control input. This means that
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input matrix B can be either

[
0

1

]
or

[
1

0

]
for a second-order LPV system. The variable nature of system

matrix A(θ) is due to stationary-exogenous parameters with fixed mean. A second-order system matrix A(θ)

with maximum possible parametric variations is given as A (θ) =

[
a b

c d

]
, where parameters a, b, c, d are not

known in advance but are assumed to be observable. A robust optimal controller for LPV systems must satisfy

the following two requirements:

• It must achieve asymptotic stability and optimality of the equilibrium point x = 0 without any bounds

on time.

• It must nullify the effect of parametric variations, which makes it difficult to achieve the first requirement.

The desired controller is required to have a one-to-one relationship with parametric variations to guarantee

optimality.

All the aforementioned stipulations are to be met by having a variable Lyapunov function in the structure of

LQR controller as shown below:

u = −R−1.BTΨ(P, a)x (2)

where P is the gain of a traditional LQR and a is representative of all parametric variations. This controller

must simplify into an LQR when parametric variations tend to their nominal values, as given below:

u = lim
∗a→a0

(
−R−1BTΨ(P, a)x

)
= −R−1BTPx, as u = lim

∗a→a0

Ψ(P, a) = P ,

where a0 is representative of all parametric variations at their nominal values.

3. Main results

The main result of this paper is as follows: if the parametric variations do not affect the controllability of the

LPV system in Eq. (1), then with the following decomposition of system matrix A(θ) for a second-order LPV

system,

A (θ) = A0 +Aδ ⇒ A (θ) =

[
a0 b0

c0 d0

]
+

[
a− a0 b− b0

c− c0 d− d0

]
, (3)

where A0 represents nominal values of parametric variations and Aδ represents off-nominal values of parametric

variations, the controller

u = −R−1.BT .(P + Pu).x,

where P and Pu are respective solutions of

AT
0 P + PA0 +Q− PBR−1B

T
P = 0 and

AT (θ)Pu + PuA (θ) +AT
δ P + PAδ − PBR−1B

T
Pu − PuBR

−1BTP − PuBR
−1BTPu = 0,

guarantees the robust optimal stabilization of Eq. (1).

A salient result of this paper is as follows: a linear transformation T : x →x∗ converts input matrix B

from vector form to scalar form, i.e. Bscalar = T−1 Bvector , facilitating the application of the proposed method.
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4. Synthesis of two-component controller

The problem of robust optimal stabilization of an LPV system can be dealt with by assuming two Lyapunov

functions. One Lyapunov function, V ∗ = xTPx with P > 0, is used for optimal stability at nominal values

of parametric variations, whereas the other Lyapunov function, Vu = xTPux with Pu ≤

[
0 pu2

pu2 pu3

]
, is used

for optimal stability for off-nominal values of parametric variations. This choice is due to the requirement that

the proposed controller act as an LQR at nominal values of parametric variations. Cumulative P + Pu is to

remain positive definite and thus V = V ∗ + Vu = xT (P + Pu)x qualifies as a valid Lyapunov function for

ẋ = A(θ)x + Bu . Synthesis of the proposed controller begins with equating a quadratic cost functional with

the aforementioned cumulative Lyapunov function, also used in [8] and [9], as shown below:∫ T

t0

(
x(t)

T
Qx(t) + u(t)

T
Ru(t)

)
dt = V (x(t)) = x (t)

T
(P + Pu)x (t) (4)

which, in differential form, for time-invariant infinite-horizon control problems, i.e. from t = 0 to t = ∞ , is

given as:

x(t)
T
Qx(t) + u(t)

T
Ru(t) = d(x(t)

T
(P + Pu)x(t))/d t|

∞
0 .

If the system ẋ = A(θ)x+Bu is controllable with fixed end, i.e.x(∞) = 0, it simplifies to

xT (0)Qx (0) + uT (0)Ru (0)

= − xT (0)
{
AT (θ) (P + Pu) + (P + Pu)A (θ)

}
x (0) − 2BT (P + Pu)x (0)u (0)

, (5)

whose rearranged form is given as

uT (0)Ru (0) + 2BT (P + Pu)x (0)u (0) + xT (0)
(
AT (θ) (P + Pu) + (P + Pu)A (θ) +Q

)
x (0)

= 0.
(6)

The above equation can be considered as a case of static optimization at initial conditions resulting in the

following objective function:

F (u (0) , x (0)) = min
u∗(0)

{
uT (0)Ru (0) + 2BT (P + Pu)x (0)u (0)

+xT (0) [A (θ) (P + Pu) + (P + Pu)A (θ) +Q]x (0)

}
, (7)

which can be made time-invariant, by knowing that this objective function is to be minimized at all times

from t = 0 to t = ∞ , by an optimal control signal u∗ , thereby converting the static optimization problem into

a dynamic optimization problem. Optimization theory is used to solve optimal control problems of dynamic

systems, as shown in [10]. It was also shown in [11] that optimal control theory and convex optimization are

dual problems. Hence, finally the objective function becomes the following.

F (u, x) = min
u∗

{
uTRu+ 2BT (P + Pu)xu+ xT [A (θ) (P + Pu) + (P + Pu)A (θ) +Q]x

}
(8)

This objective function can be minimized geometrically and its argument can be solved for the control signal u

as a quadratic equation of one variable. A single-variable quadratic equation is given as

az2 + bz + c = 0. (9)
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Quadratic matrix and quadratic vector equations also appear in the literature [12]. One such quadratic matrix

equation is the famous ARE, which is quadratic in a variable matrix P . Single-variable quadratic equations

can be solved by the following quadratic formula: z = −b±
√
b2−4ac
2a . Multivariable quadratic equations can be

solved through this quadratic formula as shown in [12]. The quadratic formula for the proposed control of LPV

system is shown below:

u =
(−2BT (P + Pu)x±

√
((2BT (P + Pu)x)2 − 4RxT [AT (θ)(P + Pu) + (P + Pu)A(θ) +Q]x))

2R
, (10)

where the discriminant is denoted by D for further discussions. An immediate benefit by looking at Eq. (10) is

that if its discriminant is set to zero, the form of optimal control appears as a variable-gain state-feedback law.

This is in accordance with the desired form of the proposed controller as u = −R−1BT (P + Pu)x . Setting the

discriminant in Eq. (10) equal to zero results in an equation that can be considered as a PARE, shown below.

AT (θ)(P + Pu) + (P + Pu)A(θ) +Q− (P + Pu)BR
−1BT (P + Pu) = 0 (11)

The difference between the PARE and an ARE lies in the presence of modified system dynamics as A0+Aδ and

the solution matrix as P +Pu . This solution matrix has a desired form that is used in the proposed controller.

Before moving on to solve the PARE, more information can be extracted from the objective function as shown

below.

• Existence of minimum: In order to ensure that the objective function in Eq. (10) has a minimum, the

coefficient R of the nonlinear term u2 must be positive definite.

• Asymptotic stabilization: In order to ensure asymptotic stability of the LPV system, setting D = 0 yields

two benefits, which are the form of control law u that appears as that of an LQR, and the minimum of

the objective function, which lies at the u-axis having value u = −R−1BTPx , as shown in Figure 1a.

Figure 1. Minimum of the objective function lying at x = 0 when D = 0.

4.1. Solution of the PARE

Solving the PARE in Eq. (11), denoted as φ , for a closed-form solution ofP , Pu , or P +Pu can be challenging

but it can be conveniently done by a rearrangement of the PARE. Hence, the PARE is rearranged with labeling
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as follows:

ARE︷ ︸︸ ︷
AT

0 +PA0 +Q− PBR−1BTP +AT (θ)Pu+PuA (θ)+AT
δ P+PAδ = PuBR

−1BTPu+PBR
−1BTPu+PuBR

−1BTP.

(12)

The rearranged PARE consists of an expression that is exactly the same as that of an ARE; thus, its division

into two components is proposed. One component, φacausal , is concerned with nominal values of parametric

variations, whereas the other component, φcausal , is concerned with off-nominal values of parametric variations.

These components are given below.

ϕacausal (A0, P,Q,B,R) ≜ AT
0 P + PA0 +Q− PBR−1BTP (13)

ϕcausal (A(θ), P, Pu) ≜ AT
u (θ)P +PA(θ)+AT

δ P +PAδ −PBR−1BTPu −PuBR
−1BTP −PuBR

−1BTPu (14)

Sequentially solving ϕacausal (A0, P,Q,B,R) and ϕcausal (A (θ) , P, Pu) for a second-order system provides

variable gain, P + Pu , in the following control law:

u = −R−1BT (P + Pu)x. (15)

It is to be noted that since u ∈ R , u = −R−1BTPux can be considered as a correction factor for u =

−R−1BTPx ,making the proposed controller in Eq. (15) optimal for LPV systems. Graphically, as shown in

Figure 1b, this correction factor u = −R−1BTPux augmented to u = −R−1BTPx renders u = −R−1BT (P +

Pu)x optimal for LPV systems. The robust performance and robust stability achieved with the proposed

controller are now explained through a second-order system.

4.2. Robust performance

The solution of ϕcausal (A (θ) , P, Pu) in Eq. (14) with the following system matrices:

A (θ) =

[
a0 b0

c0 d0

]
+

[
a− a0 b− b0

c− c0 d− d0

]
, B =

[
0

1

]
, P =

[
p1 p2

p2 p3

]
, Pu =

[
0 pu2

pu2 pu3

]
,

Q =

[
1 0

0 1

]
, and R = 1, in terms of pu2 and pu3 , is given as:

pu2 = −p2 + c0 + cδ ±
√
p22 − 2c0p2 + c20 + 2p1aδ + 2c0cδ + c2δ (16)

and

pu3 = −p3 + d0 + dδ ±
√
p23 − 2d0p3 + d20 + 2d0dδ + d2δ + 2bδp2 + 2b0pu2 + 2bδpu2. (17)

Expressions for pu2 and pu3 look more complicated than they actually are, as will be shown in a motivating

example. These two expressions when inserted into the proposed controller result in

u = −(p2 + pu2)x1 − (p3 + pu3)x2

= −(c0 + cδ ±
√
p22 − 2c0p2 + c20 + 2p1aδ + 2c0cδ + c2δ)x1

−(d0 + dδ ±
√
p23 − 2d0p3 + d20 + 2d0dδ + d2δ + 2bδp2 + 2b0pu2 + 2bδpu2)x2.

(18)
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When parametric variations are at their nominal values, then all the factors aδ, bδ, cδ, and dδ become zero,

rendering the control law in Eq. (18) as

u = −p2x1 − p3x2 (19)

and conforming with the requirement that u = lim∗a→a0

(
−R−1BTΨ(P, a)x

)
= −R−1BTPx .

4.3. Robust stability

If an off-nominal value of parametric variation tends to destabilize the closed-loop system, then the ϕacausal

(A0, P,Q,B,R) is proposed to be solved for heavier state penalizations, leading to stronger state-feedbacks in

the form of p2 and p3 in u = −p2x1 − p3x2 .

5. Stability analysis of the closed-loop system

There are two methods of control system design [13]. Traditionally, controllers are first designed for systems

followed by stability analysis of the closed-loop system. The other approach is to set conditions of stability in the

beginning, followed by controller design within constraints for stability. The proposed controller is constructed

through the latter approach; however, for the sake of completeness, stability analysis is now carried out through

the former approach, too.

Taking the time-derivative of the Lyapunov function V = xT (P + Pu)x where P + Pu is assumed to be

positive definite in consistency with the Lyapunov theory yields

V̇ = ẋT (P + Pu)x+ xT (P + Pu)ẋ = (A(θ)x+Bu)T (P + Pu)x+ xT (P + Pu)(A(θ)x+Bu)

Inserting u = −R−1BT (P + Pu)x above gives the following.

V̇ = {AT (θ)x−B.(R−1BT (P + Pu)x)}T (P + Pu)x+ xT (P + Pu){A(θ)x−B.(−R−1BT (P + Pu)x)}

V̇ = xT {AT (θ)(P + Pu) + (P + Pu)A(θ)− (P + Pu)R
−1BT (P + Pu))}x

(P + Pu)A(θ)− (P + Pu)R
−1BT (P + Pu)− xT {(P + Pu)R

−1BT (P + Pu)}x

Adding and subtracting xTQx gives the following.

V̇ = xT {AT (θ)(P +Pu)+(P +Pu)A(θ)− (P +Pu)R
−1BT (P +Pu)+Q}x−xT {(P +Pu)R

−1BT (P +Pu)+Q}x

The first two terms in the above expression are φ , which, as described in Eq. (12), has to be set to zero;

therefore:

V̇ = −xT
{
Q+ (P + Pu)BR

−1BT (P + Pu)
}
x (20)

Without loss of generality, in the case of a second-order LPV system, the time-derivative of the Lyapunov

function will read as:

V̇ = −xT
{[
P1 0
0 q2

]
+

[
p1 pu2
pu2 pu3

]
BR−1BT

[
p1 pu2
pu2 pu3

]}
x

resulting in

V̇ = −xT
[
q1 + P 2

u2 pu2pu3
pu2 q2 + p2u3

]
x (21)
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Note that the since pu2 and pu3 both contain parametric variations in their expressions the time-derivative of

the Lyapunov function may not remain negative definite for lower values of q1 and q2 . Negative-definiteness of

the time-derivative of the Lyapunov function can be guaranteed with large enough values of q1 and q2 .

6. Motivating example

Let us consider a fourth-order linearized model of an inverted pendulum on a cart (IPS), as in Figure 2. The

IPS is representative of more complex balance systems such as rocket and missile systems. At nominal values

of parametric variations:

Figure 2. Model of inverted pendulum.

Nominal mass of cart = Mc0 = 2 kg,

Nominal mass of ball = Mb0 = 0.5 kg,

Length of rod connecting cart to ball = L = 0.5 m, and

Acceleration due to gravity = g = 9.8 m/s2 ,


ẋ∗1(pendulum angle)

ẋ∗2(pendulum
angular velocity)

ẋ∗3(cart displacement)

ẋ∗4(cart velocity)

 =


0 1 0 0
α 0 0 0
0 0 0 1
γ 0 0 0



x∗1
x∗2
x∗3
x∗4

+


0
−2β
0
β

u with Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R = 1 ,

(22)

where α = (Mc+Mb)g
McL

, γ = −Mbg
Mc

, and β = 1
Mc

.

The problem is to ensure robust optimal stabilization when the mass of the ball, Mb0 , varies around

the nominal value of 0.5 kg. The linearized model of the IPS has a vector control input; hence, this model is

not suitable for the method proposed for synthesizing the proposed controller. A coordinate transformation

is being proposed in this paper that will transform the current model to one with a scalar control input; the
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transformation and the transformed system are given below:

x∗ = Tx⇒ x = T−1x∗, T =


1 0 0 0
0 1 0 −2β
0 0 1 0
0 0 0 β

 ,

ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 −2β
2g 0 0 0
0 0 0 β
ψ 0 0 0



x1
x2
x3
x4

+


0
0
0
1

u,
where ψ = γ

β = −gMb . Note that the cost functional,
∫ T

t0
(x∗TQx∗ + uTRu)dt , needs to be transformed too

into the new coordinate system, which is shown as follows:
∫ T

t0
(xTQNx+ uTRu)dt , where QN = TQT . Now

the parts of the systems matrix A(θ) for nominal and off-nominal values of parametric variations are:

A0 +Aδ =


0 1 0 −2β0
2g 0 0 0
0 0 0 β0
ψ0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 0
ψ − ψ0 0 0 0

 .
The steps for synthesizing the proposed controller for the IPS are shown below.

• Solving φacausal = 0: The ARE in Eq. (13) is solved for a 4 × 4 matrix P as shown below:

P =


p1 p2 p4 p7
p2 p3 p5 p8
p4 p5 p6 p9
p7 p8 p9 p10

 .
• Solving φcausal = 0: Solving Eq. (14) using Eq. (13) yields

pu7 = −p7 + ψ −
√
p27 + 2p7ψ − 4p7ψ0 + ψ2

0 , pu8 = 0, pu9 = 0,

pu10 = −p10 +
√
p210 − 4pu7β0 + 2pu9β0.

Thus, the proposed controller in transformed coordinates becomes

u = −(p7 + pu7)x1 − (p8 + pu8)x2 − (p9 + pu9)x3 − (p10 + pu10)x4
u = −(ψ −

√
p27 + 2p7ψ − 4p7ψ0 + ψ2

0)x1 − p8x2 − p9x3 − (
√
p210 − 4pu7β0)x4

. (23)

Note that the proposed controller in Eq. (23) remains robust and optimal only in transformed coordinates. This

whole expression needs to be transformed back into the original coordinate system using the same transformation

x = T−1x∗ yielding the following:

u = −(ψ −
√
p27 + 2p7ψ − 4p7ψ0 + ψ2

0)x
∗
1 − p8x

∗
2 − p9x

∗
3 − (2p8 +

√
p210 − 4pu7β0

β0
)x∗4 . (24)
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7. Simulation results

Finally, the simulation results are presented to show the efficacy of the proposed method. Two different cases

of variation in the mass of the ball, Mb0 , are considered. These are described below.

Case I: Mass of ball at nominal value

When the mass of the ball, Mb0 , is at its nominal value, i.e. 0.5 kg, ψ = ψ0 in Eq. (24) simplifies it as

u = −p7x∗1 − p8x
∗
2 − p9x

∗
3 − (2p8 +

p10
β0

)x∗4 . (25)

With the following system matrices, solving φacausal = 0 results in matrix P as

A0 =


0 1 0 −1
19.6 0 0 0
0 0 0 0.5
−4.9 0 0 0

 , QN =


1 0 0 0
0 1 0 −1
0 0 1 0
0 −1 0 1.25

 , B =


0
0
0
1

 ,

R = 1, P =


570.1 118.2 49.6 −73.2
118.2 25.6 11.0 −15.7
49.6 11.0 20.3 −3.1
−73.2 −15.7 −3.1 12.4

 .
Figure 3 shows the convergence of states of the proposed controller and an LQR determined through Eq. (22)

to the origin at the nominal value of the mass of ball, i.e. Mb0 = 0.5 kg. Figure 4 shows the costs incurred

through the proposed controller and an LQR at the nominal value of mass of ball, i.e. Mb0 = 0.5 kg.

Figure 3. Convergence of states of the proposed controller

and an LQR at nominal value of mass of ball, i.e. Mb0 =

0.5 kg.

Figure 4. Costs incurred through the proposed controller

and an LQR at nominal value of mass of ball, i.e. Mb0 =

0.5 kg.

Case II: Mass of ball at off-nominal values

When the mass of ball, Mb0 , is at off-nominal values then the proposed control law may not be able to

stabilize the system properly. Figure 5 shows the state trajectories controlled through the proposed controller

experiencing oscillatory behavior with the mass of the ball fixed at Mb = 1.5 kg and state penalizations of

Case I.

In order to check the optimality of the proposed controller in real time, Figure 6 shows a more severe

variation in the mass of ball Mb tending to its nominal value of Mb = 0.5 kg from an initial value of Mb =
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Figure 5. State trajectories controlled through the pro-

posed controller experiencing oscillatory behavior with the

mass of the ball fixed at Mb = 1.5 kg and state penaliza-

tion of Case I.

Figure 6. Mass of ball M b tending to its nominal value

of Mb = 0.5 kg from an initial value of Mb = 1.5 kg.

1.5 kg. Robust stability and robust performance can be recovered by an increase in state penalization through

matrix Q in the cost functional. With Q =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 ⇒ QN =


10 0 0 0
0 10 0 −10
0 0 10 0
0 −10 0 12.5

 , Figure 7

shows the convergence of states of the proposed controller and an LQR for Mb0 changing from 1.5 kg to 0.5 kg.

Figure 8 shows the comparison of costs incurred through the proposed controller and an LQR for Mb0 changing

from 1.5 kg to 0.5 kg. Figure 9 shows the variables gains pu7 and pu10 tending to 0 for Mb0 changing from 1.5

kg to 0.5 kg. Finally, Figure 10 shows the proposed control signal to be continuous during stabilization for Mb0

changing from 1.5 kg to 0.5 kg.

Figure 7. Convergence of states of the proposed controller

and an LQR for M b0 changing from 1.5 kg to 0.5 kg.

Figure 8. Costs incurred through the proposed controller

and an LQR for M b0 changing from 1.5 kg to 0.5 kg.

8. Discussion

The quantitative aspect of the work in this paper has been highlighted in Sections 5, 6, and 7, followed by

a discussion on the qualitative aspect in this section. Parametric variations have the potential to render a
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Figure 9. Variables gains pu7 and pu10 tending to 0 for

M b0 changing from 1.5 kg to 0.5 kg.

Figure 10. Proposed control signal being continuous

during stabilization for M b0 changing from 1.5 kg to 0.5

kg.

control system suboptimal, unstable, and uncontrollable. Linear-quadratic regulation theory provides optimal

stabilization of LTI and LTV systems because the system dynamics, ẋ = Ax+ Bu in the case of LTI systems

and ẋ = A(t)x + B(t)u in the case of LTV systems, are known a priori. In the case of LPV systems, where

the exogenous parametric variations are unknown a priori, linear-quadratic regulation theory cannot provide

optimal stabilization. Thus, this work reports that if parametric variations are assumed available through any

observation method then linear-quadratic regulation can be extended for optimal stabilization of LPV systems.

Figures 3 and 4 show that the proposed controller acts just like a traditional LQR at nominal values of

parametric variations; thus, the purpose of including Figures 3 and 4 is to show that the proposed controller is

indeed an extension of LQR. Next, Figure 5 is used to show the destabilizing effect of fixing the mass of ball at

an off-nominal value. In Figure 6, parametric variation is made even more severe by allowing the mass of the

ball to vary from the fixed value towards the nominal value. Figures 7 and 8 show that the proposed controller

is indeed optimally stabilizing as the cost incurred by it is less than that of LQR while the mass of ball tends

to its nominal value as shown in Figure 6. Figure 9 is important as it shows the satisfaction of the following

requirement:

u = lim
∗a→a0

(
−R−1BTΨ(P, a)x

)
= −R−1BTPx, as lim

∗a→a0

Ψ(P, a) = P .

Comparing Figures 6 and 9 shows that the values of pu7 and pu10 in variable gains of the proposed

controller tend to zero as the mass of ball tends to its nominal value from an off-nominal value. Thus, the

proposed controller becomes a traditional LQR at nominal values.

9. Conclusion

A new method has been proposed in this paper for robust optimal stabilization of linear parameter-varying

systems. The proposed controller is shown to have variable gains, dependent upon parametric variations, which

simplify into a traditional LQR at nominal values of parametric variations. A coordinate transformation is

utilized to cover those linear systems that have vector control inputs. The proposed controller has its controller

gains influenced in real time by constant gains of LQR and instantaneous values of parametric variations.

Incorporation of a variation estimation mechanism in the form of an observer is proposed as future work.

Simulation results for the example of a fourth-order inverted pendulum system are also given for the efficacy of

the method.
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