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Abstract: This paper presents a robust adaptive nonlinear proportional–integral (ANPI) scheme to control the speed

of a direct-current (DC) motor. Unlike proportional–integral–derivative (PID) controllers, PI controllers have a simpler

structure and they deliver effective control effort. However, due to inadequate controller gains, they are often unable to

simultaneously improve the transient as well as the steady-state response of the system. A nonlinear PI (NPI) controller

alleviates these issues and delivers a good response. In this research, the proportional and integral gains of the NPI

controller are dynamically modulated via a nonlinear sigmoidal function (SiF) of the error dynamics of the motor’s

angular speed. The variation rates of these functions are manually tuned via trial-and-error method. These rates are

also dynamically updated via an extended Kalman filter (EKF)-based adaptation mechanism. The performances of

a linear PI controller, an NPI controller having fixed variation rates, and an NPI controller equipped with the EKF-

based self-regulated SiFs are tested and compared in real time. The experimental results are analyzed to validate the

effectiveness of the proposed ANPI controller in optimizing DC motor speed control.
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1. Introduction

Permanent magnet direct-current (DC) motors exhibit good servo performance, which makes them a popular

choice as actuators in various household, automotive, and robotic applications [1]. High-precision machines

require DC motors to demonstrate superior error-tracking capability and susceptibility to noise. Therefore, they

must be equipped with robust speed controllers that are capable of adapting to random and abrupt changes

in system’s states. Conventional linear proportional–integral–derivative (PID) controllers are widely used in

the process control industry due to their simple structure and ability to provide reliable control effort [2]. PI

controllers are easier to implement in practice than PID controllers for speed control applications [3–5]. This is

because the rate-of-change of error in speed is often a noisy signal. However, due to insufficient controller gains,

PI controllers cannot simultaneously improve the steady-state and the transient response. Furthermore, fixed-

gain PI controllers lack efficiency and robustness when confronted with complex electromechanical systems and

systems with exogenous disturbances. Their capability to track the errors degrades significantly if the controlled

system undergoes large input speed variations. Fuzzy logic-based self-tuning controllers are found to be quite

effective [6–8]. However, the heuristically developed fuzzy rule-base(s) and membership functions cause several

uncertainties in the system. Nonlinear PI controllers offer a viable solution to overcome the above-mentioned

drawbacks by modulating the controller gains via a nonlinear function of error [9,10]. Several options are
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available for the choice of nonlinear functions [11]. A smooth sigmoidal function (SiF) is chosen in this research

to adaptively tune the controller gains [12].

A typical NPI controller, with nonlinear gain functions having fixed variation rates, lacks robustness when

faced with rapidly varying perturbations. Thus, an effective adaptation mechanism is required to self-regulate

the variation rates and alleviate the weakness. These mechanisms include the derivative-free as well as the
derivative-based methods [13]. The derivative-free methods do not depend on the derivative of the objective

function and they converge to find the global minimum. However, their convergence rate is very slow. On the

other hand, the derivative-based methods converge to find the local minimums at a faster convergence rate.

Due to its faster convergence, a derivative-based method is adopted in this research for adaptive tuning of

variation rate. The gradient-descent method is a widely used derivative-based autotuning technique. However,

pertaining to its first-order characteristics, it converges slowly and cannot deliver good solutions [14]. The

extended Kalman filter (EKF) is also an efficient and effective derivative-based optimization method. It can

provide the best estimate of the variation rates in each step because it considers additional information (the

actual estimates and their variances) regarding the system’s state and error dynamics from the current and

previous iterations [15,16]. Therefore, an EKF mechanism is investigated in this paper for the adaptive tuning

of variation rates of an NPI motor speed controller.

2. Experimental setup

The proposed control law is tested on a QNET DC-Motor Control Trainer and NI-ELVIS II board [17,18]. It

is shown in Figure 1. The trainer is integrated with LABVIEW software to visualize the motor’s response [19].

The trainer comprises a permanent magnet DC motor that operates at ±24 V and 5 A, and has a 0.05 kg disc

mounted at its shaft. Among other sensors, it contains a tachometer to measure the motor’s angular speed (ωr).

The moment of inertia (Jeq) of the motor armature is 9.46 × 10−6 kg m2 , and its maximum torque is 0.14

Nm [20]. Since the motor has a small inertia, inductance, and torque, its mathematical model is approximated

as first order, instead of the typical second order [21], and is given by Eq. (1).

Figure 1. QNET DC motor control trainer.

ωr(s)

Vm(s)
=

Km

JeqRms+K2
m

, (1)

where Vm is the voltage signal applied to the motor, Km is the motor’s back-emf constant (0.028 V/(rad/s)),

and Rm is the motor armature resistance (3.3 Ω). The instantaneous angular speed of the motor (ωr) is acquired
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via a tachometer and then serially transmitted (at 9600 bps) to the LABVIEW application on computer, where

the proposed controller applies appropriate commands (Vm) to correct the motor response. The system is

operated at a sampling frequency of 250 Hz.

3. Control system design

The proposed controller is used to efficiently track the reference speed of the motor, even in the presence of

bounded exogenous disturbances. It minimizes the error in the motor’s angular speed (eω), given by Eq. (2). Its

nonlinear nature improves the transient response by enhancing the error convergence rate and suppressing the

overshoot and oscillation in the system. Initially the motor is tested with a linear PI controller. The proportional

and integral gains are hard coded, at 0.085 and 1.65, respectively, via trial-and-error tuning method. The motor

is then tested by introducing the SiFs in the controller to dynamically modulate its PI gains based on the

changes in eω and its time-derivative ( ėω). In this case, the trial-and-error method is again used to fix the

variation-rates of the SiFs. Finally, these variation-rates are self-regulated via the EKF. This enhancement

transforms the controller into the proposed ANPI controller. The control law is given by Eq. (3).

eω (t)=ωd (t)−ωr (t) (2)

u (t)=Kp (eω,ėω) . eω (t)+

∫ t

0

[Ki (eω,ėω) .eω (t)] dt, (3)

where ωd (t) is the reference speed in rad/s, ωr (t) is the actual motor speed in rad/s, and Kp and K i are

the SiFs to update the proportional and integral gain, respectively. The architecture of the proposed ANPI

controller is shown in Figure 2.

Figure 2. The proposed control architecture.

4. Nonlinear gain function

In a closed-loop system, a linear PI controller can either converge slowly (and monotonically) towards the desired

output without any apparent overshoot, or it can exhibit a faster convergence with considerable overshoot and

oscillations. Hence, the generic PI controllers are equipped with nonlinear gain functions so they can have a

negligible overshoot and a faster convergence, simultaneously. Several options are available to be used as a

bounded nonlinear gain functions of error dynamics to adaptively update the PI gains, such as the sigmoidal,

hyperbolic, Gaussian, and the piece-wise linear function [22,23].
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The sigmoidal function is preferred because it increases monotonically and is easily differentiable. Initially,

when eω is large, the NPI controller delivers a large control command to reduce the rise-time so that the motor

could reach the desired speed quickly. The SiFs continue to update the PI gains to optimize the correctional

control effort as ωr converges toward the reference value. This effect decreases the residual energy, increases the

motors damping against oscillations, and inhibits the overshoot. Thus, the controller exhibits a faster response

with less overshoot. In order to robustify the controller against external perturbations, the information regarding

the changes in eω and ėω is incorporated in the SiF, given by Eq. (4), to tune the PI coefficients [12].

Kz (eω,ėω)=kz1+
kz2−kz1

1 + exp (αz.eω.sgn (ėω))
, z is ′p′ or ′i′, (4)

where sgn( ėω) is the signum function that extracts the sign of ėω , αz is the variation rate of proportional or

integral nonlinear gain functions, and kz1 and kz2 are the minimum and maximum values of proportional and

integral gain, respectively. These parameters are experimentally tuned via trial-and-error method and their

fitness is evaluated by the function given in Eq. (5).

Fitness =
1

1 +OS+Trise+Tsettling+ |Ess|
, (5)

where OS is the overshoot of the response, Trise is the rise time, Tsettling is the settling time (within ±1% of

final value), and Ess is the root-mean-square (RMS) value of the steady state eω . The parametric estimates

and their fitness values are recorded in Table 1. The waveform of the SiF (for different values of variation rate)

is shown in Figure 3.

Table 1. Parameter identification of the sigmoidal function.

Controller kp1 kp2 αp ki1 ki2 αi

NPI
Parameter value 0.055 0.175 2.23 0.652 1.95 1.94
Fitness value 0.429 0.638 0.613 0.527 0.419 0.664

ANPI
Parameter value 0.055 0.175 Auto-tuned 0.652 1.95 Auto-tuned
Fitness value 0.429 0.638 - 0.527 0.419 -

Figure 3. Wave form of sigmoidal function.

5. EKF-based self-regulation mechanism

The Kalman filter is a stochastic estimator. It approximates the system states and predicts the measurement

that could result from that approximation. The process occurs recursively in real time until the algorithm
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has converged to deliver the best estimate. When it is linearized about the current mean and covariance, it

is denoted as the EKF [24]. The variation rates (αz) of the proportional and integral nonlinear functions are

dynamically optimized via EKF to minimize the error. The nonlinear function tunes the PI coefficients after

receiving the estimate of αz . Consider a nonlinear system represented by Eqs. (6) and (7).

xn+1=f(xn)+gn (6)

dn= h (xn)+vn (7)

where xn is the system state vector at the nth instance, gn is the process noise, dn is the observation vector,

vn is the observation noise, and h(.) is the nonlinear function of the state. Since the objective is to update the

variation rates of the proportional and integral functions, the state vector of the system is represented by Eq.

(8).

xn=
[
αp αi

]
(8)

The jacobians of the state-transition matrix, Fn , and the observation matrix, Hn (measurement model with

respect to the estimated states), of the filter are represented via Eqs. (9) and (10), respectively.

Fn= (9)

Hn=
∂h(xn)

∂xn
=

∂ω

∂xn
=
[

∂ω
∂αp

∂ω
∂αi

]
(10)

The updated covariance estimate of the prediction error, Pn+1 , is given by Eq. (11). The near optimal Kalman

gain, Kn , is given by Eq. (12). The updated state estimate of the system, x̂n+1 , is given by Eq. (13).

Pn+1= Pn−KnHnPn+Qn (11)

Kn=PnH
T
n

(
Rn+HnPnH

T
n

)−1
(12)

x̂n+1=x̂n−1+Kn (dn−1−Hnx̂n−1) (13)

where x̂n is the state estimate at the nth instance, Pn is the covariance of the prediction error, and Qn

and Rn are the covariance matrices associated with gn and vn , respectively. The partial derivative of the

system output with respect to α is calculated via Eq. (14).

∂ωr

∂αZ
=

∂ωr

∂Vm
× ∂Vm

∂KZ
×∂KZ

∂αZ
(14)

The relationship of the partial derivative expressions given in Eq. (14) is elaborated in Eqs. (15)–(17),

respectively.

∂ω

∂Vm
=

ω (t)−ω(t− 1)

Vm (t)−V (t− 1)
(15)

∂Vm

∂KZ
=

{
∆kp×e (t) , proprotional − tuner

∆ki×
∫
e (t) dt, integral − tuner

(16)

∂KZ

∂αz
= −kz2.eω.sgn (ėω) .exp (αz.eω.sgn (ėω))

(1 + exp (αz.eω.sgn (ėω)))
2 (17)
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6. Tests and results

The hardware-in-the-loop feature of the experimental setup serves to acquire the analogue measurements of ωr

and apply the voltage control command (Vm) to the motor [25]. The graphical interface of the LABVIEW

application is used to apply the reference signals and record the corresponding response of the motor. The speed

control performance of the ANPI controller is analyzed in real time against an NPI controller (having fixed

variation rates) and a linear PI controller via five different test cases. These test cases and their experimental

results are presented as follows.

Test case A: A step-input of 100 rad/s is applied to the motor and the consequent responses of the

controllers are shown in Figures 4, 5, and 6. The variations in αp and αi , due to changes in error dynamics,

are illustrated in Figure 7.

Figure 4. Step response of PI without disturbance. Figure 5. Step response of NPI without disturbance.

Figure 6. Step response of ANPI without disturbance.

Figure 7. Self-regulation of variation rate of Kp and K i without disturbance.
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Test case B: Bounded impulsive disturbance signals, having amplitudes of ±20 rad/s, are randomly

applied to perturb the motor’s step response. The applied disturbance signals (blue) and the resulting variations

(or sudden peaks) occurring in the responses (red) are illustrated in Figures 8, 9, and 10. The changes in αp

and αi , introduced by EKF to mitigate these disturbances, are shown in Figure 11.

Figure 8. Step response of PI with disturbance. Figure 9. Step response of NPI with disturbance.

Figure 10. Step response of ANPI with disturbance.

Figure 11. Self-regulation of variation rate of Kp and K i with disturbance.

Test case C: The controllers are tested under varying load torque by applying a step input of 100

rad/s to the motor. The load torque is incremented, in steps, by manually applying a braking force to the disc

spinning on the motor shaft. As the load torque increases, the controller proportionally increases the Vm in

order to regulate the angular speed at 100 rad/s. A specimen of the variation in Vm due to the application
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of incremental load torque is shown in Figure 12. A similar scenario is used to test each controller. The

corresponding controller responses are shown in Figures 13, 14, and 15.

Figure 12. Variation in Vm due to load torque applica-

tion.

Figure 13. Speed regulation with PI controller under

varying load torque.

Figure 14. Speed regulation with NPI controller under

varying load torque.

Figure 15. Speed regulation with ANPI controller under

varying load torque.

Test case D: A square-wave signal swinging between 100 rad/s and 20 rad/s at a frequency of 0.25 Hz

is applied to the motor. The responses are shown in Figures 16, 17, and 18. The disturbance signals (as used

in Test B) are also applied to this system. The resulting peaks in the system’s response (red) are illustrated in

Figures 19, 20, and 21.

Figure 16. Square-wave response of PI without distur-

bance.

Figure 17. Square-wave response of NPI without distur-

bance.

Test case E: A triangular-wave signal varying between 100 rad/s and 20 rad/s at a frequency of 0.25 Hz

is applied to the motor. The responses are shown in Figures 22, 23, and 24. The disturbance signals (as used

in Test B) are also applied to this system. The resulting peaks in the system’s response (red) are illustrated in

Figures 25, 26, and 27.
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Figure 18. Square-wave response of ANPI without dis-

turbance.

Figure 19. Square-wave response of PI with disturbance.

Figure 20. Square-wave response of NPI with distur-

bance.

Figure 21. Square-wave response of ANPI with distur-

bance.

Figure 22. Triangular-wave response of PI without dis-

turbance.

Figure 23. Triangular-wave response of NPI without

disturbance.

Figure 24. Triangular-wave response of ANPI without

disturbance.

Figure 25. Triangular-wave response of PI with distur-

bance.
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Figure 26. Triangular-wave response of NPI with distur-

bance.

Figure 27. Triangular-wave response of ANPI with dis-

turbance.

The comparison of the response graphs attained for the three controllers (via tests A, B, and C) is given

in Table 2. The average time taken by the motor to return to its reference speed, after a disturbance (or load

torque) is applied, is defined as Trecovery . The MAE is the maximum-absolute-error incurred in the response

upon the application of a disturbance (or load torque).

Table 2. Comparative performance assessment of controllers.

Controller
Test A Test B Test C
Trise (s) OS (%) Tsettling (s) Ess (rad/s) MAE (rad/s) Trecovery (s) MAE (rad/s) Trecovery (s)

PI 0.29 29.18 0.80 2.21 37.05 0.48 27.62 0.32

NPI 0.24 20.26 0.72 2.13 22.15 0.29 15.54 0.23

ANPI 0.13 3.93 0.21 1.10 27.31 0.11 9.86 0.18

7. Conclusions

This paper addresses the self-tuning of nonlinear PI gain functions to regulate the speed of a DC motor. The

variation rates (α) are adaptively tuned via EKF. The test results demonstrate that the ANPI controller yields

a superior performance, when compared with a generic NPI and a linear PI controller. It effectively brings the

motor to the reference speed quickly and nullifies the overshoot, even in the presence of bounded disturbances,

varying load torques, or rapidly changing reference speed.
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