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Abstract:Two nonlinear adaptive versions of the conventional seeker optimization algorithm (SOA) have been proposed

for the design of fractional-order controllers using frequency domain specifications. The highly nonlinear and undeter-

mined nature of equations resulting from controller design specifications rules out obtaining a closed-form solution. In

this regard, the controller design task has been formulated as an optimization problem and solved using modified vari-

ants of the SOA. With the nonlinear adaptation of tuning parameters, the proposed variants of the SOA increase the

probability of finding global optima along with improved convergence speed. This has been achieved by incorporating

exponential weighting and chaotic behavior in the search process. The validation of the proposed techniques on a set of

fractional-order controller design problems clearly exhibits their superiority over other algorithms and controller design

techniques. The hardware implementation of the controllers on a DSP TMS320F2812 board ensures applicability for

real-time applications.

Key words: Seeker optimization algorithm, exponential weighting, chaotic search, fractional-order controller, gain

margin and phase margin

1. Introduction

Recent times have witnessed tremendous growth in the development of fractional-order (FO) control systems

[1,2]. The use of arbitrary real numbers instead of fixed integers, for order of integration and differentiation,

allows incorporating long-term memory and distributed behavior in controller dynamics. The development of

computational tools in the field of fractional calculus has led to wide applications in different fields [3], including

dynamic system modeling and control [4]. As compared to classical PI/PID controllers, FOPI/PID controllers

provide greater flexibility in improving system performance due to the presence of extra tuning parameters, i.e.

the noninteger orders of the integral and differential operators [1]. These extra parameters impart additional

features to the fractional order controllers, such as robustness to plant uncertainties (iso-damping) [5], lesser

sensitivity to load disturbances, high-frequency noise rejection [6], and flexibility on system stability [1]. FO

controllers can achieve robustness similar to very high integer-order (IO) controllers. Some of the recent works

on the application of FO controllers on real-time systems include controller design for coupled-tank liquid level

systems [7] and magnetic levitation systems [8]. However, the extra flexibility arising out of the increase in the

number of tuning parameters makes the controller design and synthesis task quite challenging, which warrants

the use of nonlinear approximations or computational optimization tools [2].
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Optimization techniques have been widely adopted for designing FO controllers. In [6,7,9,10], local search-

based techniques were applied for fast tuning of FO controllers. However, their performance was sensitive to

the selection of the initial feed point and the solutions obtained were prone to getting trapped into local

optima. In this context, a number of works have adopted population-based evolutionary algorithms such as

particle swarm optimization [8], differential evolution (DE) [11], and the covariance matrix adaptation evolution

strategy (CMAES) [12] to obtain global solutions for fractional controller design problems.

As compared to the widely used controller tuning approaches in the time domain, controllers designed

in the frequency domain offer several advantages, such as robustness against system loop gain variations, high-

frequency measurement noise rejection, disturbance suppression, and reduced size of the actuator because of

the lesser magnitude of the control action [9]. The works reported on FO controller design in the frequency

domain include a graphical technique [5], a design based on the conflicting multiple objectives of phase margin

and gain crossover frequency using chaotic optimization [13], and the minimization of load disturbance and

high-frequency measurement noise rejection [6].

In the only reported work on optimization-based design of FO controllers using gain and phase margin

[14], a tuning procedure for the design of an FOID controller was proposed. The approach is applicable only

to a specified class of plants. Motivated by the correlation between gain and phase margin with robustness,

relative stability, and the dynamic response of the system, the present work aims at attaining a set of controller

parameters that satisfies a predefined gain and phase margin for a generalized class of plants. In this regard,

the controller design task has been formulated as an optimization problem.

Considering the ability of the evolutionary algorithm in solving complex multimodel functions, a relatively

new evolutionary technique, i.e. the seeker optimization algorithm (SOA) [15], has been used in the present

work. As compared to other evolutionary algorithms, the smaller number of control parameters in the SOA

makes it easier to implement. Recently the SOA has been employed in several engineering applications [16]

including identification of FO systems [17]. However, like other evolutionary techniques, the conventional SOA

suffers from the limitation of getting trapped into local minima for multimodal functions and, quite often, the

convergence is slow [18]. In this context, the present work proposes two modified versions of the SOA based on

the nonlinear adaptation of inertia weight in the solution (seeker position) updating process. Unlike the linearly

decaying inertia weight in the conventional SOA, an exponential decay is incorporated in the learning weight

in the first proposed variant, whereas in the second variant, a random component is included to chaotically

adapt the learning process. While the exponential weighting leads to faster convergence, the chaotic behavior

maintains the diversity in the population by exploiting the search behavior more effectively and hence increases

the probability of converging to a global solution.

The next section focuses on the formulation of the FO controller design as an optimization problem. The

proposed variants of the SOA and their convergence are discussed in Section 3, the simulation and experimental

results are dealt with in Section 4, and finally Section 5 provides conclusions.

2. Optimization-based FO controller design in frequency domain

2.1. FO controllers

FO controllers have been found to be suitable in rejecting high-frequency noise and ensuring good output

disturbance rejection [6]. The methodologies developed for tuning the FOPI/FOPID can be broadly classified

in terms of their specifications into time domain and frequency domain [9]. In the present work, frequency

domain specifications (gain margin and phase margin) have been used for the design of FOPI controllers.
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2.2. Optimization-based FOPI controller design

For a control system (Figure 1) consisting of a plant Gp(s) and a controller Gc (s), the gain margin (Am) and

the phase margin (φm) can be specified in the frequency domain using the following set of equations:

 

 
 

+  

−  

 
( )  ( )  ( ) ( )

 

Figure 1. Unity gain negative feedback control system.

arg [Gc (jωp)Gp (jωp)] = −π (1)

Am =
1

|Gc (jωp)Gp (jωp)|
(2)

|Gc (jωg)Gp (jωg)| = 1, (3)

arg [Gc (jωg)Gp (jωg)] + π = φm (4)

where ωp and ωg represent the phase and gain crossover frequency, respectively.

For proportional gain Kp and FO integral gain Ki , the transfer function of the FOPI controller can be

represented as:

Gc (s) = GFOPI (s) = Kp

(
1 +

Ki

sλ

)
(5)

Considering a prototype plant with constant gain K and time delay L the plant can be represented as:

Gp (s) =
K(1 + ωz1s)

z1(1 + ωz2s)
z2 · · · (1 + ωzns)

zn

(1 + ωp1s)
p1(1 + ωp2s)

p2 · · · (1 + ωpms)
pm

e−Ls (6)

The open loop transfer function is obtained using Eqs. (5) and (6) as:

GOLTF (s) = Kp

(
1 +

Ki

sλ

)
K(1 + ωz1s)

z1(1 + ωz2s)
z2 · · · (1 + ωzns)

zn

(1 + ωp1s)
p1(1 + ωp2s)

p2 · · · (1 + ωpms)
pm

e−Ls (7)

On substituting Eqs. (5) and (6) into Eqs. (1)–(4):

− tan−1

(
Kiω

−λ
p sin

(
λπ

2

)
1 +Kiω

−λ
p cos

(
λπ

2

))+ z1 tan
−1 (ωpωz1) + ...+ zn tan

−1 (ωpωzn)

−ωpL− p1 tan
−1 (ωpωp1)− · · · − pm tan−1 (ωpωpm) = −π (8)

AmKpK
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1 +Kiω
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p cos

(
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π

2

))2
+
(
Kiω

−λ
p sin

(
λ
π

2

))2)0.5
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− tan−1

(
Kiω

−λ
g sin

(
λπ

2

)
1 +Kiω

−λ
g cos

(
λπ

2

))+ z1 tan
−1 (ωgωz1) + ..+ zn tan

−1 (ωgωzn)

−ωgL− p1 tan
−1 (ωgωp1)− · · · − pm tan−1 (ωgωpm) = −π + φm (11)

The FOPI controller design involves determination of Kp , Ki , and λ from specifications (Am and ϕm) and

process parameters (K, ωz1 , ωz2 , . . . , ωzn , ωp1, ωp2 . . . ωpmL) using the above set of equations. The highly

nonlinear nature of the equations and the larger number of parameters avoids obtaining a closed-form analytical

solution and application of graphical techniques [5]. In this context, the present FOPI controller design task

has been framed as an optimization problem that aims at obtaining an approximate solution for Eqs. (8)–(11).

3. Nonlinear adaptive seeker optimization algorithm

3.1. Seeker optimization algorithm

The SOA [15] is a human intelligence-based heuristic search algorithm that operates on a population of position

vectors, with each vector (seeker) representing a possible solution to the optimization problem. The algorithm

starts with a randomly generated population of seekers, which is grouped into a set of three subpopulations.

After initialization, the position of each seeker is iteratively updated as:

xij (k + 1) = xij (k) + αij (k) dij (k) (12)

where k is the iteration count, and αij (k) and dij (k) represent the step length and search direction respectively

of the j th dimension of the ith seeker with αij(k)≥ 0 and dij (k)= {−1, 0, +1} . The search direction is

dependent on the trade-off between the seeker’s self-belief to follow its own personal best position, cooperative

nature to share its information among neighbors, and personal past exploration experience.

A suitable step length along the estimated search direction for each seeker in the population S is obtained
as:

µi = µmax − S − Ii
S − 1

(µmax − µmin) (13)

where Ii is the sequence number of the ith seeker after sorting the fitness in ascending order and µi is known as

the trust degree, which is proportional to the fitness value of the ith seeker. Its value ranges from µmax = 1 for

the global best to µmin = 0.2 for the worst seeker in the population. The conversion of fuzzy reasoning output

to a crisp value provides the step length for the j th dimension of the ith seeker using a Gaussian member

function as:

αij = δj

√
−ln

(
rand(µij)

)
(14)
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with µij < rand(µij) < 1 and δj is the j th component of the vector δgiven as:

δ = ωlinabs (xbest − xrand) (15)

where ωlin is the linearly descending inertia weight, whereas xbest and xrand represent the best and a randomly

selected seeker in the neighborhood of the ith seeker, respectively.

After updating the population using Eq. (12), the corresponding objective functions are evaluated and

hence the positions for personal best, subpopulation best, and overall best are updated. Furthermore, to perform

information exchange among the neighborhood, an inter-subpopulation learning strategy is applied, in which

the worst two positions of each subpopulation are replaced by the best position of the other subpopulations as:

xnthworst
p,j =

{
xbest
q,j ; if randj = 0.5

xnthworst
p,j ; else

(16)

where randj represents a uniformly distributed random real number between 0 and 1, xnthworst
p,j represents

the j th dimension of the nth worst position of the pth subpopulation, and xbest
q,j denotes the j th dimension

of the best position of the q th subpopulation. The learning strategy is an essential step for exchanging good

information among the subpopulations, leading to diversity of the seeker population.

3.2. Nonlinear adaptive seeker optimization algorithm

Any search-based optimization technique should involve high diversity during the early stage for wider explo-

ration, whereas minor variation is required for fine tuning at the near optimal solution. Based on these concerns,

a linearly decreasing inertia weight ωlin is considered in the standard SOA. However, a linear time-varying adap-

tive weight in heuristic search-based methods has been found to be ineffective for real-world applications. In this

context, the linear function has been replaced by an exponential decay function with the aim of faster reduction

in the weight, leading to rapid convergence. For exponential decay, the linear function ωlin is replaced as:

ωexp (k) = e−1.1ξ(1−k) (17)

where k represents the iteration count and ξ is the tuning parameter given as:

ξ =
log(ωexp,final)

Number of generations
(18)

Here, ωexp,final is the predefined final weight value corresponding to the last iteration. With the weight function

ωlin in Eq. (15) replaced by ωexp in Eq. (17), the resulting algorithm will henceforth be referred to as

exponential SOA (ESOA).

Furthermore, with the aim of increasing the search space in addition to faster convergence, chaotic

searching behavior has been incorporated by considering the chaotic evolution of variables for searching the

global optimum. For achieving this, the following weight function has been used to replace ωlin in Eq. (15):

ωlin, chaotic (k) = ωlin (k)ωchaotic (k) (19)

The chaotic term ωchaotic is implemented using the widely used logistic equation in chaos theory [19] as:

ωchaotic (k + 1) = µ(k)ωchaotic (k) (1− ωchaotic (k)) (20)
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where µ(k) is the control parameter that determines the extent of the chaos. The initial condition for the above

equation is chosen randomly, i.e. 0 ≤ ωchaotic(k) ≤ 1, for k = 1 and 2. The chaotic search leads to inclusion of

ergodicity, irregularity, and randomness in the SOA, so henceforth the algorithm is referred to as chaotic SOA

(CSOA). The flow chart of the proposed CSOA is shown in Figure 2. If the chaotic behavior of Eq. (19) is

replaced by the exponentially decaying behavior of Eq. (17) for updating the weighting factor in the flow chart

(Figure 2), the same would correspond to the ESOA.

Start

Random initialization of seeker population

Divide the seeker population into subpopulations

Evaluate the objective function for each seeker

Obtain the personal best position, neighborhood best

position and population best position

Determine the search direction and step size of

individual seeker by adopting chaotic behavior using

(19)

Based on search direction & step size, update the

position of individual seeker using (12)

Evaluate the objective function for each of the updated seekers

Evaluate and update position for personal best, subpopulation

best and over-all best

Set count

k=0

Inter-subpopulation learning using (16)

Increase count

k=k+1

Is convergence

satisfied?

Stop

yes

No

Figure 2. Flow chart of the chaotic seeker optimization algorithm (CSOA).
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3.3. Convergence of proposed variants of the SOA

Theorem 1 The stability and convergence of individual seekers for the ESOA with the exponential weighting

function of Eq. (17) are ensured if 0 < ωexp,final< 1 .

Proof Consider Eq. (12) as a first-order discrete time system, with xij (k) as the state variable and dij(k)

as input. Comparing Eq. (12) with the standard state space representation, X (k + 1) = AX (k) + Bu (k), we

have:

X (k + 1) = xij (k + 1) ;X (k) = xij (k)
A = 1;B = αij (k) ;u (k) = dij (k)

(21)

Using Eq. (21), the deviation in the state variable between successive iterations is given by:

∆xij (k) = xij (k + 1)− xij (k) = αij (k) dij (k) (22)

The stability of the system and hence the convergence of the state variable at steady state to a finite quantity

demands [20]

∆xij (k) = 0 (23)

for dij ∈ {−1, 0, 1} , and the above condition is achievable with

exp−1.1ξ(1−k) < 1 ∀k & log (ωexp,final) < 0, (24)

which leads to
0 < ωexp,final < 1. (25)

Theorem 2 The stability and the convergence of the individual seeker for the CSOA with chaotic search are

guaranteed if ωchaotic (k) > 1− 1
µ .

Proof Rewrite Eq. (20) as:

ωchaotic (k + 1) = µ̄ (k) .ωchaotic (k) (26)

where µ̄ (k) = µ (k) (1− ωchaotic (k)) is an iteration-dependent tuning parameter. The above assumption

converts the nonlinear discrete system of Eq. (20) into a set of an N piecewise linear discrete system, with linear

dynamics valid over a given iteration only. Using successive iteration with a finite initial condition ωchaotic(0),

the chaotic search component at instant k is given as:

ωchaotic (N) =
∏N

k=0
µ̄ (k) .ωchaotic (k) (27)

The stability of the piecewise linear autonomous system is ensured if all the linear systems constituting the

overall system are stable, i.e. µ̄ (k) < 1, ∀ k.

µ (1− ωchaotic (k)) < 1 (28)

ωchaotic (k) > 1− 1

µ
(29)
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4. Experimental results

4.1. Fractional-order controller design

The ability of the proposed variants of the SOA in designing a FO controller that meets a desired set of

specifications has been evaluated in this subsection. A first-order-plus-dead-time (FOPDT) plant model has

been considered to validate the proposed controller design procedure, as it has been widely used in the literature

to model/approximate a large number of higher order industrial plant dynamics and for the validation of control

strategies [21]. The plant considered in the present problem is given as:

Gp =
e−0.1s

(1 + s)
(30)

Initially, all three algorithms (SOA, ESOA, and CSOA) are compared in achieving a wide range of specifications.

The mean and standard deviation of the objective function values achieved by 30 independent runs for different

sets of gain and phase margin specifications are depicted in Table 1. It can be observed that for all the cases,

proposed variants of the SOA are able to minimize the deviations in the desired gain and phase margin and

hence the objective function to a significant extent as compared to the classical SOA.

Table 1. Mean and standard deviation of the objective function of the FOPI controlled closed-loop system for the

desired set of specifications for 30 independent runs.

GM↓ PM→ 30◦ 50◦ 80◦

3

SOA 4.03E-03 ± 8.14E-04 2.72E-03 ± 1.28E-03 3.22E-04 ± 2.33E-04
ESOA 2.10E-03 ± 8.39E-04 1.81E-03 ± 9.36E-04 2.12E-04 ± 9.60E-05
CSOA 7.32E-04 ± 3.89E-04 8.07E-04 ± 5.19E-04 1.20E-04 ± 3.79E-05

5

SOA 2.24E-03 ± 7.19E-04 2.79E-03 ± 9.99E-04 2.48E-03 ± 1.07E-03
ESOA 2.04E-03 ± 9.87E-04 1.82E-03 ± 7.24E-04 1.40E-03 ± 5.75E-04
CSOA 5.42E-04 ± 3.43E-04 6.03E-04 ± 3.71E-04 5.23E-04 ± 3.60E-04

12

SOA 2.15E-03 ± 1.15E-03 3.13E-03 ± 1.13E-03 3.80E-03 ± 1.41E-03
ESOA 1.85E-03 ± 9.47E-04 2.06E-03 ± 1.07E-03 3.28E-03 ± 1.37E-03
CSOA 5.23E-04 ± 3.11E-04 3.93E-04 ± 2.95E-04 4.76E-04 ± 3.24E-04

Further, a nonparametric test, i.e. the Wilcoxon signed rank test [22], has been carried out to statistically

justify the improved performance of the proposed algorithms over the classical SOA. The null hypothesis in

the test states that two samples under test belong to the same population and there exists no difference in the

behavior of two algorithms. Table 2 depicts the corresponding P-values associated with the test conducted at a

significance level of 5% (i.e. 0.05) for both the proposed algorithms over the standard SOA for 30 independent

runs. A value of P < 0.05 for most of the cases indicates rejection of the null hypothesis. In other words,

it reflects that the superior performance of the CSOA and ESOA over the conventional SOA is statistically

significant and has not been achieved by chance.

The appropriateness of the proposed variants of the SOA in designing the FOPI controller is also

compared with other global optimization techniques (DE [11] and CMAES [12]) and popular classical local

search techniques (Nelder–Mead simplex search (NM-SS) [9] and interior point method (IPM) [10]) in Table 3.

It can be observed that the CSOA outperforms the other algorithms under consideration, while the ESOA is

better than the other algorithms except for the CSOA and is comparable to DE.

The effectiveness of the proposed FOPI controller design technique as compared to a previously reported

technique [14] in terms of achieving desired gain and phase margin specifications is exhibited in Table 4.
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Table 2. P-values obtained by Wilcoxon signed rank test for objective function values obtained using proposed variants

with respect to the conventional SOA.

GM ↓ ESOA Vs SOA CSOA Vs SOA
PM→ 30◦ 50◦ 80◦ 30◦ 50◦ 80◦

3 1.73E-06 2.18E-02 2.06E-02 1.73E-06 1.36E-05 2.37E-05
5 3.82E-01 1.36E-04 7.51E-05 3.18E-06 1.73E-06 1.73E-06
12 3.09E-01 7.71E-04 1.31E-01 3.41E-05 1.73E-06 1.73E-06

Table 3. Mean of the objective function of FOPI controlled closed-loop system, obtained using different algorithms for

30 independent runs with the desired set of specifications.

Specifications Algorithms
GM PM IPM [10] NMSS [9] DE [11] CMAES [12] ESOA CSOA
3 30◦ 6.02E-01 6.90E-01 1.10E-03 1.16E-01 2.10E-03 7.32E-04
5 50◦ 6.29E-01 4.57E-01 9.96E-03 1.86E-01 1.82E-03 6.03E-04
12 80◦ 7.37E-01 1.91E+00 1.50E-03 2.19E-01 3.28E-03 4.76E-04

To the best of the authors’ knowledge, the FOID design technique proposed in [14] is the only reported

work on optimization-based FO controller design using the gain and phase margin. The noninclusion of any

approximation for nonlinear functions ensures the low deviation in achieving gain and phase margin specifications

with the proposed technique.

Table 4. Comparison of the proposed FOPI controller with the FOID controller for achieving desired gain and phase

margin.

Specifications

Proposed FOPI FOID [14]
Controller

Deviation
Controller

Deviation
parameters parameters

GM PM Kp Ki λ GM PM Ki = Kd α = 1− β GM PM
3 30◦ 5.19 5.47 1.27 2.8E-4 1.8E-3 7.71 1.38 4.1E-5 9.3E-5
3 80◦ 5.49 7.88 2.53 1.8E-5 2.4E-4 3.54 0.80 2.5E-5 2.8E-4
5 50◦ 3.21 2.75 1.26 9.9E-6 3.1E-3 4.32 1.23 1.6E-5 1.3E-4
12 30◦ 1.35 3.14 1.33 4.2E-5 1.8E-3 1.64 1.57 1.6E-4 7.7E-5
12 80◦ 1.36 0.79 1.29 5.4E-5 2.1E-5 1.37 1.02 1.3E-4 8.2E-5

4.2. DSP implementation of the FOPI controller

To experimentally validate the proposed controller design scheme, the designed FOPI controllers have been

implemented on a digital platform using the TMS320F2812 DSP board. The Texas Instruments Inc. DSP chip

is a 32-bit fixed-point high-end processor, which executes instructions at a rate of 150 MIPS. The processor has

been interfaced with a host PC running with MATLAB 2010a and Code Composer Studio (CCS) Integrated

Development Environment (IDE) v3.3 software. The embedded IDE link and the fixed-point tool of Simulink

are used to generate a CCSv3.3 compatible code, which is built in the DSP. The FOPI controller and time delay

plant (30) have been executed in closed loop for step input. The experimental set-up is shown in Figure 3.

For the digital implementation of the FOPI controller, discretization is a key step, which approximates

the continuous-time FO system into a discrete-time system of higher order [23]. In the present work, a direct

discretization scheme, i.e. an impulse-response-invariant method (also used in [5]) with fifth order has been
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used to approximate the FO operator, while the plant has been discretized using the Tustin rule. A sampling

rate of 0.01 s has been selected based on the Nyquist sampling theorem, stability in discrete domain, and the

hardware limitations. Figure 4 displays the simulated and experimental step response of the FOPI controlled

closed-loop system for gain margin = 5 and phase margin = 50◦ . The lesser deviation between the simulated

and experimental response is attributed to the effectiveness of the employed discretization technique. The

closed-loop step response of the system with FOPI controllers designed for different sets of gain and phase

margin specifications is depicted in Figures 5a, 5b, and 5c. The transient responses show the variation in the

degree of relative stability for different gain and phase margin requirements. The variation is because of the

difference in damping achieved for different cases, i.e. high damping (low overshoot) is observed for high phase

margin specification and vice versa.

1.    Host PC, 2.DSO (Agilent DSO1002A),  

3. DSP TMS320F2812 board, 4. Function 

Generator (Agilent 33522A) 

1 

3 
4 

2 

0 5 10 15 20 25
-0.5

0

0.5

1

1.5

2

2.5

Time (s)

L
ev

el

 

 
Simulated Step Response 
Step Input
Experimental Step Response

Figure 3. Experimental set-up. Figure 4. Comparison of simulated (continuous domain)

and experimental (discrete domain) step response of con-

trolled system for GM = 5; PM = 50◦ .

Figure 5. Step response of FOPI controlled system for different specifications: a) GM = 3, PM = 30◦ ; b) GM = 5,

PM = 50◦ ; GM = 12, PM = 80◦ .

5. Conclusions

An optimization-based methodology has been proposed for the design of FO controllers based on gain margin

and phase margin. The high nonlinearity and larger number of parameters in the design problem hinder the use
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of classical gradient-based techniques. Hence, for solving the FO controller design as an optimization problem,

two nonlinear adaptive variants of the conventional SOA have been developed. With the aim of overcoming

the limitations of the original SOA, modifications have been carried out by incorporating exponential weighting

and chaotic search behavior in the solution updating process. The superiority of the proposed FO controller

design scheme has been justified by a comprehensive comparison with other design methods and optimization

techniques. The effectiveness of the proposed controller design technique has been validated by implementing the

FOPI controller in the digital domain on the TMS320F2812 DSP board. Both the simulation and experimental

results validate the ability of the controller design technique in stabilizing the system and meeting a wide range

of robustness specifications. Future work in this direction is planned on extending the proposed FOPI controller

design technique for the fractional order plants.
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