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Abstract: This paper presents a two-step instrumental variable (IV) method to obtain the regularized and consistent

parameter estimates of the Hammerstein ARMAX model based on the bilinear parameterized form. The two-step

identification method consists of estimating the bilinear parameters in the first step, followed by parameter reduction

in the second step. An iterative identification method is proposed, based on the idea of separating the bilinear form

in the two separable forms with partial parameters and solving the decomposed model forms iteratively. The IV-based

estimation is integrated into the formulated decomposed structure by introducing the instruments constructed from the

estimated auxiliary model outputs. It is shown that in a stochastic environment the proposed IV method produces

consistent estimates in the presence of correlated noise disturbances. The validity of the proposed algorithm is verified

with the help of extensive simulations using a Monte Carlo study.

Key words: Parameter estimation, least square method, instrumental variable method, identification, nonlinear models,

Hammerstein models, stochastic models

1. Introduction

A Hammerstein system consists of an interconnection of the linear dynamic system and static non-linearity.

Several identification methods have been developed to identify the Hammerstein systems (see [1–3] and references

therein). These methods can be broadly classified as iterative and noniterative methods (see [4] for further

classifications). The estimation problem using the noniterative method was first proposed by Chang and Luus

[5] and an iterative identification method was proposed by Narendra and Gallman [1].

Most of the iterative identification methods transform the original single-input, single-output (SISO)

model form into a multi-input, single-output (MISO) form by using bilinear parameterization. The identification

scheme estimates the bilinear parameters in the first step followed by parameter reduction, resulting in a two-step

procedure [1,6–8]. Therefore, the efficiency of the estimation procedure depends on both steps. On the other

hand, some iterative methods estimate the two sets of parameters corresponding to the static nonlinearity and

the linear system separately. It estimates the two sets of parameters within the framework of prediction error

identification using nonlinear optimization. In general, the iterative procedure provides a simple and effective

mechanism and reduces the optimization to a least square (LS) problem under the assumption that the noise

affecting the output is white noise [5–9]. However, this assumption is too restrictive in practical applications

and the choice of noise model structure has great importance in identifying the consistent estimates [9,10].
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Even though there has been extensive research on Hammerstein system identification, there are limited

results on consistent and regularized estimation in the presence of correlated noise. An extended LS (ELS)

identification method and the nonlinear adaptive algorithm have been reported for Hammerstein ARMAX

models [11,12]. An iterative Hierarchical least squares method has been reported for controlled Hammerstein

nonlinear controlled autoregressive systems [13]. Ding et al. presented an auxiliary model based on a LS method

for Hammerstein OE models [14]. A data filtering-based iterative LS algorithm was proposed for MIMO linear

and Hammerstein models [15,16]. An instrumental variable (IV) method using the nonlinear transformed

instruments has been studied to improve the estimates’ consistency [17]. For Hammerstein Box–Jenkin models,

a refined IV method has been reported based on the extended framework [18]. Although the IV methods are

consistent, the parameter reduction step and the regularization of nonlinear basis functions were not discussed.

Recently, the regularization of basis function expansion was considered for the identification of a NL state space

model [19].

The objective of this paper is to present a regularized iterative identification method, based on the

IV estimation scheme to cope with correlated noise disturbances. The idea is to separate the Hammerstein

model form into two separable forms with partial parameters and transform the problem into estimation of two

decomposed forms. The consistent estimates are obtained by integrating the IV estimation in the proposed

decomposed model form, by introducing the instruments constructed from the estimated auxiliary model

outputs. The advantage of this procedure is the simultaneous regularization and an unbiased estimation of

model parameters. The second contribution is to provide the efficient transformation of the bilinear parameters

to the Hammerstein model parameters. The proposed method has been compared with the LS and the ELS

method for different noise levels through extensive Monte Carlo simulations.

The paper is organized as follows: Section 2 describes the problem formulation. In Section 3, the

regularized estimation based on the IV method along with certain conditions is proposed, followed by the

investigation of an efficient parameter reduction step. In Section 4, the proposed method is compared with

other methods through simulation examples. Finally, conclusions are drawn in Section 5.

In this paper R , Rn , Rn×m , and Im denote the sets of real numbers, n−dimensional real vectors,

n × m real matrices, and identity matrices of order m .The superscript T denotes the matrix transpose. For

M = MT ∈ Rn×n, M ≻ 0 means that M is positive definite.

2. Problem formulation and preliminaries

Consider the following discrete time Hammerstein ARMAX system:

y (k) =
B
(
q−1
)

A (q−1)
f (u (k)) + ϑ (k) =

B
(
q−1
)

A (q−1)
f (u (k)) +

C
(
q−1
)

A (q−1)
f (u (k)) (1)

where u (k) is the input signal, y (k) is the output signal, and ε (k) is a white noise with zero mean. Further,

A (·) , B (·) and C (·) are polynomials in the unit backward shift operator q−1 (q−1y (k) = y(k − 1)) of known

orders na, nb , and nc , and are defined by

A
(
q−1
)
= 1 + a1q

−1 + a2q
−2 + . . .+ anaq

−na (2a)

B
(
q−1
)
= b1q

−1 + b2q
−2 + . . .+ bnbq

−nb (2b)
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C
(
q−1
)
= 1 + c1q

−1 + c2q
−2 + . . .+ cncq

−nc (2c)

Let the nonlinearity f( · ) be modelled using the linear combination of known basis functions such that

f (u (k))=
nd∑
i=1

difi (u (k)). Introducing the notations a = [a1 · · · ana ]
T ∈ Rna , b = [b1 · · · bnb ]

T ∈ Rnb , d =

[d1 · · · dnd ]
T ∈ Rnd and substituting f (u (k)) in (1), we have

y (k) =φTy (k)a+φTu (k)β+e (k) = zT (k)θ+e(k), (3a)

where

e (k)=C
(
q−1
)
ε (k) (3b)

β =
[
b1d

T · · · bnbd
T
]T

∈ Rnbnd , φy (k) = [−y(k − 1) · · · − y(k − na)]
T ∈ Rna ,

φu (k) = [f1(u(k − 1) · · · fnd(u(k − 1) · · · f1(u(k − nb)) · · · fnd(u(k − nb))]
T
θ =

[
aT βT

]T
∈ Rna+nbnd and

z (k) =
[
φTy (k) φ

T
u (k)

]T ∈ Rna+nbnd .

For N measurements of the input–output data pair (u(k),y(k)) for k ∈ T where Card (T ) = N andT ⊂
Z+ , (3a) can be represented in a vector-matrix equation as given below:

Y=ϕya+ϕuβ + E = Zθ+E, (4)

where ϕy =
[
φy(1) · · ·φy(N)

]T ∈ RN×na , ϕu = [φ(1) · · ·φu(N)]
T ∈ RN×nbnd , Y = [y(1) · · ·Y (N)]

T ∈

RN , E = [e(1) · · · e(N)]
T ∈ RN and Z = [z(1) · · · z(N)]

T ∈ RN×(na+nbnd).

Let us introduce an assumption to make the parameterization of (4) unique. For this the coefficient of

the first basis function is assumed to be 1, i.e. d1= 1 [1,7,11–15,17–18]. Then the estimates of the coefficient

vectors a and β can be obtained by considering the following minimization problem:∥∥Y−ϕya−ϕuβ
∥∥2
2
, (5)

which provides LS estimates. However, the LS estimation of the coefficients of basis functions to be used to

model the nonlinearity often yields unregularized estimates and can suffer from high variance. On the other

hand, the regularized estimates can be obtained by imposing the constraint on β , i.e. by minimizing the

following cost function:

J (a,β) :=
1

2

(
Y−ϕya−ϕuβ

)T (
Y−ϕya−ϕuβ

)
+

λ

2
βTΩβ (6)

where Ω is some positive semidefinite weight matrix and λ ≥ 0 is a smoothing parameter that controls the

trade-off between fidelity to the data and roughness of the basis functions. In particular, when Ω =I , the

penalty function in (6) takes the form of a ridge penalty [20]. Moreover, the large values of λ will provide low

variance in the estimates because the estimates concentrate around zero.

The following standard assumptions are made:

A1 The input u(k) is a persistently exciting ergodic random signal with zero mean so that ensemble

average may be replaced by time averages over one sample function.

A2 The signals u(k) and ε(k) are assumed to be independent with each other.
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3. The extended IV identification method for the Hammerstein model

3.1. The decomposition based method

In this paper, we propose to employ the decomposition form to estimate a and using the resultant estimate to

yield a regularized estimate of β . Now differentiating (6) with respect to a and β respectively, we obtain

ϕTy ϕya+ϕ
T
y ϕu β = ϕTyY (7a)

ϕTuϕya+(ϕ
T
uϕu+λΩ) β = ϕTuY (7b)

Now two schemes can be adopted to obtain the estimates of a and β . In the first scheme, we rearrange (7a) in

the following block matrix equation:[
ϕTy ϕy ϕTy ϕu

ϕTuϕy

(
ϕTuϕu+λΩ

) ][ a
β

]
=

[
ϕTyY

ϕTuY

]
(8)

If the matrix on the left-hand side is nonsingular then the block matrix equation can be solved iteratively to

find the estimates of a and β . The second scheme employs the decomposed form. In order to proceed let

ϕTuϕu+λΩ ≻ 0; then using (7b), the partial term ϕuβ can be obtained as

ϕu β = ϕu(ϕ
T
uϕu+λΩ)

−1
ϕTu (Y−ϕya) (9)

Let K = ϕu(ϕ
T
uϕu+λΩ)

−1
ϕTu ∈ RN×N . Substituting (9) into (4), we obtain a decomposed form as follows:

Ỹ=ϕ̃ya+E, (10)

where Ỹ= [ỹ(1) · · · ỹ(N)]
T
=(IN−K)Y ∈ RN and ϕ̃y=

[
φy(1) · · ·φy(N)

]T
=(IN−K)ϕy ∈ RN×na . The

model form (10) is independent of the parameter vector β and is linear in the parameter vector a and therefore

can be solved using the LS method, i.e.

âLS=
(
ϕ̃
T

y ϕ̃y

)−1

ϕ̃
T

y Ỹ (11)

Substituting the estimate âLS into 7(b) and solving yields the following:

β̂LS=(ϕTuϕu+λΩ)
−1
ϕTu (Y−ϕyâLS) (12)

Note that the least square estimates âLS are biased and inconsistent due to the presence of correlated noise

disturbance e (k).

3.2. The extended IV identification method

In the identification literature, the IV method has been widely used to obtain unbiased estimates [14,21–24].

Let ψy(k) ∈ Rnψy be a vector of dimensions nψy ≥ na , called the vector of instruments. Define the following

matrix and vector in asymptotic terms as

1

N

N∑
k=1

ψy (k) φ̃
T
y (k) =R̂ψφ̃ (N) = Rψφ̃ = E

[
ψy(k)φ̃

T
y (k)

]
w.p.1 (13a)
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1

N

N∑
k=1

ψy (k) ỹ (k) =r̂ψỹ (N) = rψỹ = E
[
ψy (k) ỹ (k)

]
w.p.1, (13b)

where E represents the expectation operator and w.p.1 means convergence in probability. An extended IV

(EIV) estimator of model form (10) is given by

âIV (N) =
(
R̂T
ψφ̃WR̂ψφ̃

)−1

R̂φ̃Wr̂ψỹ (14)

The EIV estimates are consistent if the IV vector satisfies the following properties [21]:

Rank R̂T
ψφ̃R̂ψφ̃=na wp.1, and (15a)

1

N

N∑
k=1

ψy (k) e (k) =r̂ψe (N) = rψe = E
[
ψy (k) e (k)

]
= 0 w.p.1 (15b)

The IV vector can be defined by using noise-free output corresponding to the model form (10). Therefore, the

instruments are constructed based on the definition of an auxiliary model that has a structure similar to that

of (10). In order to proceed, the auxiliary model is defined by using the known input signals as

yaux (k) =
Baux

(
q−1
)

Aaux (q−1)
f (u (k)) , (16)

where Aaux
(
q−1
)
and Baux

(
q−1
)
are constant coefficient polynomials of the same order as polynomials A

(
q−1
)

and B
(
q−1
)
respectively. In addition, the function faux( · ) is given in terms of basis functions of the order nd

(see (3)).

Note that the computation of yaux (k) in (16) requires knowledge of the unknown coefficients of polyno-

mials and the basis functions. In order to overcome this problem, first the auxiliary polynomials Aaux
(
q−1
)

and Baux
(
q−1
)
, and the coefficients of the basis functions are identified from signals u(k) and y(k) using

the LS method (see Eqs. (11) and (12)). Then the noise-free signal yaux (k) is generated with the identified

model. The assumptions A1 and A2 together with (3) imply that u(k) and e(s) are independent for ∀k and

s ; therefore, the functions fi (u(k − j)) i = 1, . . . , nd are also independent of the noise e(k) (page 49 [25]),

provided the basis functions satisfy

(i) fi is continuous over R and is bounded in all bounded intervals in R .

(ii) fi(x) = O
(
e|x|

α)
as |x| → ∞ where α ∈ R and α < 2.

Then the estimated yaux (k) is independent of the noise e(s) for all k and s . Now referring to (10), the

auxiliary noise-free output is obtained by the following:

Ỹaux = (IN−K)Yaux (17)

where Ỹaux := [ỹaux(1) · · · ỹaux(N)] ∈ RN and Yaux := [yaux(1) · · · yaux(N)] ∈ RN . To formulate the IV

vector, collect the obtained auxiliary outputs in (17) and rearrange in the vector form with delay to give

ψy (k) =
[
−ỹaux(k − 1) · · · − ỹaux(k − nψy )

]T
(18)
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Since the asymptotic efficiency of the estimates depends on the instruments, the choice of instruments in (18)

can be refined to include some optimality properties. This allows an additional filtering of the instruments

with a filter such that the IV estimate obeys the minimum variance optimality criterion [9,24]. Therefore, the

efficient IV estimate can be obtained by using the following filtered IV vector:

ψy (k) =
[
−ỹaux(k − 1) · · · − ỹaux(k − nψy )

]T
(19)

In the above equation, ŷaux (k − i)∀ i = 1, . . . , nψy are obtained by filtering the estimated signal ỹaux (k − i)∀i =
1, . . . , nψy respectively with a linear time invariant filter given as

ŷaux (k − i) = C
(
q−1
)−1

ỹaux (k − i) ∀ i = 1, 2, . . . , nψy , (20)

where C
(
q−1
)−1

is the inverse of C
(
q−1
)
. It is assumed that C (z) (z being an arbitrary complex variable

replacing q−1) is stable and it has all zeros outside the unit circle. However, it is not feasible to use C
(
q−1
)
to

form efficient instruments. This requires a prior knowledge of C
(
q−1
)
, which is not available initially. In this

case, the parameter vector a is replaced with its estimate â in (10) to compute the residuals Ê = Ỹ− ϕ̃yâ and

therefore allows an iterative LS procedure to update the estimate Ĉ
(
q−1
)
. Then the iterative estimate âIV is

computed using (14) and the IV estimate β̂IV can be obtained as

β̂IV=
(
(Q̂T

ψφQ̂ψφ+λΩ
)−1

Q̂T
ψφq̂ψy (21)

In the above equation, the matrix and vector are defined as follows:

Q̂ψφ=
1

N

N∑
k=1

ψu (k)φ
T
u (k) (22a)

q̂ψy=
1

N

N∑
k=1

ψu (k)
(
y (k)−φTy (k) âIV

)
(22b)

and the filtered IV vector ψu (k) is given as

ψu (k)=
[
f̂(u(k − 1)) · · · f̂nd(u(k − 1) · · · f̂1(u(k−b)) · · · f̂nd(u(k − nb))

]T
, (23)

where

f̂i (u (k − j)) = C
(
q−1
)−1

fi (u (k − j)) ∀ i = 1, . . . , nd, j = 1, . . . , nb. (24)

The resulting two-step regularized EIV algorithm based on the decomposed form for the parameter

estimation of the Hammerstein ARMAX model is as follows:

Step-1

(i) Collect the data set (u(k), y(k))
N
k=1 . Fit the data set (u(k),y(k)) using the LS method (c.f. (11) and

(12)). Let the estimates obtained are âLS and β̂LS . Set â1=âLS , β̂1=β̂LS and l = 2.
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(ii) Compute the residuals Êl = Ỹ − ϕ̃yâl−1 . Compute the estimate Ĉl
(
q−1
)
using the estimated residual

vector.

(iii) Form the data vectors Y and Ỹ , and the information matrices φu (k) , φy (k) , ϕu,ϕy and ϕ̃y (c.f. (??),

(4), and (10)).

(iv) Compute yaux (k) using âl−1 and β̂l−1 (c.f. (16)). Filter ŷaux (k − r) , r = 1, . . . , nψy and fi (u (k − j)) i =

1, . . . , nd, j = 1, . . . , nb using Ĉl
(
q−1
)−1

(c.f. (20) and (24)).

(v) Form the instrumental vectors ψy (k) and ψu (k) using (19) and (23), respectively. Compute the IV

estimates âIV and β̂IV according to (14) and (21).

(vi) If convergence occurs stop, else set al=âIV , β̂l=β̂IV , l = l + 1 and go to (ii)

Step-2: Perform the parameter reduction step to get the estimate of the Hammerstein model.

3.3. Efficient parameter reduction

The parameter reduction step transforms the estimated bilinear parameters β̂IV to the model parameters b̂

and d̂ owing to the assumption d1 = 1. In the identification literature, the transformation is based on the

averaging principal [1,7,11–15,17,18]. In particular, let β̂IV (i) represents the ith element of β̂IV ; then referring

to (3) and assumption d1 = 1, the estimates of dj , j = 2, 3, . . . , nd , can be computed by

b̂i = β̂IV ((i− 1)nd + 1) , i = 1, 2, 3, . . . , nb (25a)

d̂j =
1

nb

nb∑
i=1

β̂IV ((i− 1)nd + j)

b̂i
j = 2, 3, . . . , nd (25b)

The estimates d̂j are the arithmetic average of nb estimates. However, in this paper, the estimates d̂j are

calculated using the weighted average as follows:

d̂j =

nb∑
i=1

β̂IV ((n− 1)nd + j)

nb∑
n=1

b̂n

j = 2, 3, . . . . . . , nd (26)

with the assumption that
nb∑
i=1

b̂i ̸=0. However, this assumption can be relaxed by redefining (26) in absolute

terms. The transformation of bilinear estimates is given by

d̂j =

(
sign(β̂IV (j))

sign(b̂1)

) 
nb∑
i=1

∣∣∣β̂IV ((i− 1)nd + j)
∣∣∣

nb∑
i=1

∣∣∣b̂i∣∣∣
 j = 2, 3, . . . . . . , nd, (27)

where |·| and sign represents the absolute value and the signum function, respectively.
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4. Results and discussion

In this section, two numerical examples are presented to illustrate the performance of the proposed EIV method.

For both examples, a data set (N = 3000) is generated from the system driven by input u (k) having zero mean

unit variance with normal distribution, covering the sufficient range of the input nonlinearity. The proposed

EIV method is implemented using two choices of weight matrix. First the EIV estimates are obtained using

identity matrix (W = I). The second choice of the weight matrix is W =
(
R̂ψψ

)−1

[22]. Further, the penalty

function in (6) is implemented in the form of a ridge penalty such that matrix Ω = I and the parameter λ is

calculated using cross validation. The stochastic properties are investigated based on the performance criterion,

i.e. statistical estimation error (SEE) and the average coefficient of variation (ACV). The SEE is defined as

SEE =

√√√√√√
∥∥∥m(θ̂

red
)−θred

∥∥∥
2∥∥∥θred∥∥∥

2

(28)

where m(θ̂red) represents the sample mean of estimator for 300 Monte Carlo simulation runs and

θ̂red=
[
âT b̂T d̂T

]T
, d1 = 1. The ACV is defined as

ACV =
1

na + nb + nd

na+nb+nd∑
i=1

σ
(
θ̂redi

)
∣∣∣m(θ̂redi )

∣∣∣ , (29)

where σ
(
θ̂redi

)
represents the standard deviation of estimates.

4.1. Example 1

Case 1: Consider the following discrete Hammerstein model given as

A
(
q−1
)
= 1− 1.60q−1 + 0.80q−2, B

(
q−1
)
= 0.85q−1 + 0.65q−2

C
(
q−1
)
= 1− 1.0q−1 + 0.20q−2 and f (u (k))=1.0u (k) + 0.50u2 (k) + 0.25u3(k)

In this case, two different noise levels corresponding signal to noise Ratio1 (SNR =14.29 dB, and 06.94

dB) have been considered. For the two noise levels, the estimates computed using the parameter reduction

steps discussed in section 3.3 are presented in Table 1. Note that the estimates obtained using (25a) and (25b)

are briefly written as arithmetic parameter reduction (APR) and using (25a) and (27) as weighted parameter

reduction (WPR). In addition, the proposed IV method is compared with the LS method (implemented without

decomposition and regularization) [1] and the ELS method [11]. For the EIV estimates, the dimension of IV

vector nψy is found to be 8, i.e. nψy = 8 > na = 2. This choice is selected among different values of nψy ranges

between 3 and 10 based on the best performance criterion, i.e. the one with minimum SEE. The statistical

properties, i.e. mean, standard deviation of estimated parameters, SEE, and ACV for SNR = 14.29 dB and

06.94 dB using the different methods are presented in Table 2.

1The SNR is calculated as SNR = 10log10


N∑
k=1

(y(k)−ϑ(k))2

N∑
k=1

(ϑ(k))2

 dB
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Table 1. Comparative performance of parameters reduction for Example 1 Case 1 (N = 3000, 300 runs).

Parameters b1 b2 d2 d3

SNR = 14.29

APR
mean 0.8550 0.6484 0.5023 0.2521

Std 0.0648 0.0467 0.0164 0.0142

WPR
mean 0.8550 0.6484 0.4996 0.2497

Std 0.0648 0.0467 0.0162 0.0143

SNR = 06.94

APR
mean 0.8635 0.6452 0.5136 0.2624

Std 0.1467 0.1072 0.0449 0.0376

WPR
mean 0.8635 0.6452 0.5002 0.2502

Std 0.1467 0.1072 0.0371 0.0330

True value 0.85 0.65 0.50 0.25

Table 2. Comparative performance of estimates for Example 1 Case 1 (N = 3000, 300 runs).

Parameters a1 a2 b1 b2 d2 d3 SEE ACV

SNR = 14.29

LS
mean –1.4864 0.6952 0.8542 0.7480 0.4947 0.2494

0.2775 0.0510
Std 0.0108 0.0101 0.0639 0.0640 0.0224 0.0196

ELS
mean –1.5959 0.7943 0.8512 0.6554 0.4957 0.2498

0.0645 0.0432
Std 0.0041 0.0039 0.0480 0.0668 0.0163 0.0151

EIV W = I
mean –1.6002 0.8002 0.8550 0.6484 0.4996 0.2497

0.0472 0.0404
Std 0.0028 0.0025 0.0648 0.0467 0.0162 0.0143

EIV W =
(
R̂ψψ

)−1 mean –1.6000 0.8000 0.8542 0.6499 0.4996 0.2497
0.0420 0.0404

Std 0.0037 0.0033 0.0645 0.0463 0.0162 0.0143

SNR = 06.94

LS
mean –1.2199 0.4578 0.8596 0.9760 0.4957 0.2505

0.5050 0.1079
Std 0.0253 0.0230 0.1373 0.1350 0.0502 0.0443

ELS
mean –1.5824 0.7758 0.8529 0.6681 0.4844 0.2512

0.1272 0.0993
Std 0.0100 0.0096 0.1104 0.1527 0.0371 0.0358

EIV W = I
mean –1.6003 0.8004 0.8635 0.6452 0.5002 0.2502

0.0777 0.0923
Std 0.0066 0.0058 0.1467 0.1072 0.0371 0.0330

EIV W =
(
R̂ψψ

)−1 mean –1.5998 0.8000 0.8615 0.6489 0.5000 0.2502
0.0697 0.0920

Std 0.0086 0.0077 0.1455 0.1057 0.0370 0.0329

True value –1.60 0.80 0.85 0.65 0.50 0.25

Table 1 shows the qualitative form of the variances and the biases for the estimated coefficients of basis

functions using APR and WPR steps. The variances of estimates (d1 and d2) using the WPR step are lower

than those obtained from the APR step. From Table 2, it is observed that the estimates obtained using the

LS method are heavily biased. This is expected since the LS method estimates the parameters based on the

assumption of noise to be white. Therefore, the biases in the estimates are due to the misfit of the noise

model. The ELS method improves the consistency and efficiency of estimates by suitably incorporating the

noise model parameters in the LS estimation procedure. However, in both SNR cases the estimates obtained

using the ELS method are slightly biased. The proposed method provides consistent estimates than the LS and

the ELS methods, which is evident from the lower SEE and ACV values. Further, the weighted solution of the

proposed method when implemented using W =
(
R̂ψψ

)−1

slightly improves the consistency and efficiency of

the estimates than the unweighted (W = I) estimates.
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Case 2: The entire configuration is the same as case 1 except that the nonlinearity is described using

the wavelet basis functions. In particular, the Mexican hat wavelet is chosen due to its attractive properties

(see [26,27] and references therein for details about the wavelet functions). Then the function f (u (k)) can be

expanded as

f (u (k)) =

imax∑
i=i0

∑
j∈Ji

di,jfi,j (u (k)) (30)

where Ji(i = i0, i0 + 1, . . . , imax) is a set, fi,j (u (k)) = 2i/2g
(
2iu (k)− j

)
and g(·) represents the Mexican

hat wavelet. Here i0 and imax are taken as 1 and 7, respectively. Note that the choice of imax is arbitrary to

include the multiresolution property. Given resolution level i , the translation parameter j can be determined

as −4 ≤ j ≤ 2i+4 [26]. Since the presented method includes the regularization for the wavelet basis functions,

the range of translation parameter is taken as −4 ≤ j ≤ t2i for some t ∈ Z+ such that t2i > 2i + 4. This

means that the coefficients have negligible contribution for j > 2i + 4 (for each resolution level i) and hence

redundant to estimate. The value of t is taken as 4 to satisfy t2i > 2i + 4. The dimension of IV vector ψy (k)

is chosen to be 80 (i.e. nψy = 80) using the cross-validation technique, i.e. this choice provides minimum SEE.

In this case, the Monte Carlo study has been done with 100 simulation runs. For the case of SNR = 14.29 dB

and SNR = 06.94 dB, the estimates are shown in Table 3, and the plots of estimated wavelet basis coefficients

are shown in Figure.

Table 3. Comparative performance of estimates for Example 1 Case 2 (N = 3000, 1 runs) .

Parameters a1 a2 d1 d2 SEE ACV

SNR = 14.29 dB

LS
mean –1.4874 0.6957 0.9059 0.9475

0.4035 0.1308
Std 0.0118 0.0114 0.3386 0.3664

EIV W = I
mean –1.6004 0.8009 0.8625 0.6654

0.0976 0.0593
Std 0.0125 0.0125 0.1207 0.1282

SNR = 06.94 dB

LS
mean –1.2224 0.4593 0.7818 1.3890

0.6570 0.2806
Std 0.0255 0.0237 0.8073 0.8035

EIV W = I
mean –1.5969 0.7998 0.8453 0.6321

0.0948 0.1299
Std 0.0509 0.0525 0.2385 0.2526

True value –1.60 0.80 0.85 0.65

It is observed that in low as well as high noise the LS estimates provide inconsistent estimates with

high SEE and ACV as compared to the EIV method. Note that in this particular case the SEE and ACV are

calculated using the estimates â and b̂ . Further, Figure shows that the estimates of wavelet basis coefficients

are regularized and unbiased using the proposed EIV method. The presented method provides regularization

and shrinks the wavelet basis coefficients estimates towards zero relative to the LS estimates. The shrinkage

of coefficients has the effect of reducing variance of estimates and the selection of appropriate wavelets basis

coefficients.

4.2. Example 2

The considered discrete Hammerstein model is given as follows:

A
(
q−1
)
= 1− 1.50q−1+1.10q−2−0.35q−3, B

(
q−1
)
=0.80q−1−0.55q−2+0.90q−3
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Figure. Comparative performance of wavelet basis coefficients estimates using the LS and the EIV (W = I) method

for the case (a) SNR = 14.29 dB (b) SNR = 06.94 dB.

f (u (k))= 1.0u (k) + 0.80u2 (k)+ 0.45u3(k)

Again, the statistical properties are investigated using the 300 Monte Carlo simulations. Two different stochastic

disturbance structures have been considered.

Case 1: The noise disturbances are generated by the constrained ARMA process, where the denominator

polynomial is forced to be A
(
q−1
)
. In particular, the noise is described as

v (k)=
C
(
q−1
)

A (q−1)
ε (k)=

1− 0.70q−1+0.85q−2−0.50q−3

1− 1.50q−1+1.10q−2−0.35q−3
ε (k) (31)

Two different noise levels corresponding to SNR = 13.61 dB and 05.70 dB are considered. Table 4 shows in the
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qualitative form the variances and the biases for the estimated coefficients of basis functions using APR and

WPR steps. The comparative performances of the LS, the ELS, and the EIV method are listed in Tables 5 and

6.

Table 4. Comparative performance of parameter reduction for Example 2 Case 1 (N = 3000, 300 runs) .

Parameters b1 b2 b3 d2 d3

SNR = 13.61

APR
mean 0.8030 –0.5509 0.9016 0.7992 0.4496

Std 0.0353 0.0326 0.0246 0.0331 0.0253

WPR
mean 0.8030 –0.5509 0.9016 0.7981 0.4489

Std 0.0353 0.0326 0.0246 0.0262 0.0220

SNR = 05.70

APR
mean 0.7994 –0.5485 0.9074 0.8103 0.4576

Std 0.0860 0.0768 0.0564 0.0860 0.0669

WPR
mean 0.7994 –0.5485 0.9074 0.7987 0.4500

Std 0.0860 0.0768 0.0564 0.0613 0.0484

True value 0.80 0.55 0.90 0.80 0.45

Table 5. Comparative performance of estimates for Example 2 Case 1 (N = 3000, SNR = 13.61 dB, 300 runs) .

Parameters a1 a2 a3 b1 b2 b3 d2 d3 SEE ACV

LS
mean –1.3037 0.7471 –0.1728 0.8023 –0.3949 0.7462 0.8387 0.4504

0.4292 0.0526
std 0.0165 0.0285 0.0144 0.0343 0.0376 0.0362 0.0341 0.0270

ELS
mean –1.4614 1.0227 –0.3036 0.8026 –0.5205 0.8646 0.8159 0.4497

0.2022 0.0361
std 0.0108 0.0189 0.0103 0.0286 0.0341 0.0359 0.0285 0.0231

EIV W = I
mean –1.5002 1.1002 –0.3499 0.8030 –0.5509 0.9016 0.7981 0.4489

0.0393 0.0306
std 0.0079 0.0112 0.0059 0.0353 0.0326 0.0246 0.0262 0.0220

EIV W =
(
R̂ψψ

)−1 mean –1.4997 1.0994 –0.3496 0.8018 –0.5497 0.9006 0.7988 0.4495
0.0303 0.0291

std 0.0068 0.0102 0.0058 0.0340 0.0292 0.0241 0.0258 0.0216

True value -1.50 1.1 -0.35 0.80 -0.55 0.90 0.80 0.45

Table 6. Comparative performance of estimates for Example 2 Case 1 (N = 3000, SNR = 05.70 dB, 300 runs).

Parameters a1 a2 a3 b1 b2 b3 d2 d3 SEE ACV

LS
mean -1.0199 0.2586 0.0923 0.7949 -0.1658 0.5459 0.9486 0.4552

0.6680 0.1625
std 0.0223 0.0363 0.0195 0.0698 0.0777 0.0716 0.0940 0.0638

ELS
mean -1.3439 0.8202 -0.1909 0.7975 -0.4240 0.7830 0.8685 0.4524

0.3877 0.0938
std 0.0276 0.0449 0.0226 0.0656 0.0762 0.0787 0.0706 0.0511

EIV W = I
mean -1.5016 1.1042 -0.3524 0.7994 -0.5485 0.9074 0.7987 0.4500

0.0588 0.0726
std 0.0218 0.0309 0.0156 0.0860 0.0768 0.0564 0.0613 0.0484

EIVW =
(
R̂ψψ

)−1 mean -1.4991 1.1000 -0.3505 0.7966 -0.5452 0.9031 0.8013 0.4523
0.0519 0.0689

std 0.0189 0.0284 0.0154 0.0825 0.0684 0.0558 0.0598 0.0470

True value –1.50 1.1 –0.35 0.80 –0.55 0.90 0.80 0.45

It can be seen from Table 4 that the parameter reduction step using the WPR steps provides estimates

of coefficients of basis functions with less bias and variance than using the APR steps, which is clearly evident
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in the low SNR case. From Tables 5 and 6, it is observed that the estimates obtained from the LS method

are inconsistent. In both SNR cases, in spite of improving the statistical properties of estimates, the ELS

estimates provide biased estimates. For the case of SNR = 14.29 dB , the proposed method provides more

consistent estimates than the ELS method and reduces both SEE and ACV even in the case when the SNR
reduces to 06.94 dB . The weighted EIV estimates are identical to the estimates obtained from the unweighted

EIV estimates with a slight improvement in the statistical properties.

Case 2: This case illustrates the robustness when the noise disturbances are generated using the low

pass finite impulse response (FIR) filter. The Hammerstein ARMAX structure can effectively represent the

stochastic FIR noise together with the deterministic part (Hammerstein system without noise). Further, the

deterministic part has no structural errors. The transfer function describing the noise is given as

v(k) = P (z−1)ε (k) , (32)

where P (z−1) is low pass FIR digital filter of 12th order with cut-off frequency equal to 0.1 using a Hamming

window technique in MATLAB. The ELS method is implemented using the ARMAX model structure with noise

model order taken as the 2nd and 3rd order polynomial, i.e. nc = 2, 3. The selection of the choice of noise

model order is based on the performance criterion, i.e. the one with minimum SEE. The noise model order and

the dimension of IV vector (nψy ) for the proposed EIV method are found as nc = 3 and nψy = 7, respectively.

The statistical properties for the cases of SNR = 13.47 dB and SNR = 05.94 dB are listed in Tables 7 and 8,

respectively.

Table 7. Comparative performance of estimates for Example 2 Case 2 (N = 3000, SNR = 13.47 dB, 300 runs).

Parameters a1 a2 a3 b1 b2 b3 d2 d3 SEE ACV

LS
mean –1.5314 1.1066 –0.3409 0.7994 –0.5756 0.8849 0.7877 0.4510

0.1315 0.0160
Std 0.0036 0.0026 0.0033 0.0099 0.0105 0.0111 0.0240 0.0179

ELS nc = 2
mean –1.5070 1.0796 –0.3341 0.8002 –0.5558 0.8791 0.7906 0.4504

0.1154 0.0144
Std 0.0023 0.0036 0.0036 0.0074 0.0093 0.0112 0.0211 0.0155

ELS nc = 3
mean –1.5066 1.0784 –0.3334 0.8001 –0.5557 0.8783 0.7903 0.4505

0.1178 0.0146
Std 0.0022 0.0037 0.0037 0.0075 0.0092 0.0115 0.0213 0.0156

EIV W = I
mean –1.5001 1.1000 –0.3500 0.7994 –0.5502 0.9000 0.8007 0.4505

0.0201 0.0100
Std 0.0023 0.0023 0.0016 0.0091 0.0070 0.0045 0.0147 0.0112

EIV W =
(
R̂ψψ

)−1 mean –1.5001 1.1000 –0.3500 0.7994 –0.5502 0.8999 0.8007 0.4505
0.0198 0.0083

Std 0.0022 0.0021 0.0014 0.0076 0.0053 0.0037 0.0130 0.0089

True value –1.50 1.1 –0.35 0.80 –0.55 0.90 0.80 0.45

It is observed from Tables 5 and 6 that the LS estimates are highly biased and provide higher SEE and

ACV. The ELS method reduces the SEE and ACV compared to the LS method. However, it still provides

biased estimation for the case of SNR = 13.61, which is more prominent when the SNR further reduces to

05.70 dB. On the other hand, the EIV method provides consistent estimates and reduces both SEE and ACV

significantly when compared with the values obtained using the LS and the ELS method.

5. Conclusions

In this paper, an IV-based formulation of the Hammerstein model based on the decomposed form has been

analyzed in order to cope with the correlated noise disturbance. The basic advantage of the presented method
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Table 8. Comparative performance of estimates for Example 2 Case 2 (N = 3000, SNR = 05.94 dB, 300 runs).

Parameters a1 a2 a3 b1 b2 b3 d2 d3 SEE ACV

LS
mean –1.6382 1.1391 –0.3155 0.7969 –0.6619 0.8410 0.7421 0.4566

0.2753 0.0360
Std 0.0115 0.0075 0.0066 0.0209 0.0245 0.0231 0.0502 0.0432

ELS nc = 2
mean –1.5368 1.0124 –0.2758 0.7985 –0.5812 0.8049 0.7580 0.4551

0.2461 0.0344
Std 0.0068 0.0106 0.0092 0.0164 0.0214 0.0248 0.0441 0.0369

ELS nc = 3
mean –1.5355 1.0064 –0.2721 0.7989 –0.5802 0.8009 0.7564 0.4548

0.2516 0.0346
Std 0.0065 0.0109 0.0097 0.0157 0.0210 0.0257 0.0439 0.0363

EIV W = I
mean –1.5000 1.0997 –0.3501 0.7990 –0.5503 0.8992 0.8005 0.4517

0.0290 0.0197
std 0.0052 0.0056 0.0028 0.0184 0.0124 0.0090 0.0295 0.0221

EIV W =
(
R̂ψψ

)−1 mean –1.4999 1.0997 –0.3502 0.7990 –0.5505 0.8991 0.8006 0.4519
0.0304 0.0191

Std 0.0052 0.0050 0.0028 0.0179 0.0116 0.0089 0.0292 0.0214

True value –1.50 1.1 –0.35 0.80 –0.55 0.90 0.80 0.45

is that it preserves the simpler structure and computational attractive properties of the IV method and provides

regularized estimates of bilinear parameters. Specifically, it allows the transformation of the model into two

decomposed forms by suitably incorporating the regularization of bilinear parameters. For the decomposed

model form, a suitable choice of instruments based on the auxiliary model outputs has been discussed. It has

been shown that the proposed algorithm allows consistent estimation of the model in low SNR environment

without losing too much estimation accuracy. The performance of the proposed method has been verified and

compared with the least square variants through relevant Monte Carlo study.
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