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Abstract: This research presents an active-only low-pass (LP) filter whose pole frequency and gain are independently

tunable by means of bias current manipulation. The realization of the proposed LP filter required one operational

amplifier, two operational transconductance amplifiers, and two MOS transistors. The multiphase sinusoidal oscillator

(MSO) was subsequently realized by cascading n LP filters (n = 3) and loop-backing the output of the last LP filter to

the input of the first LP filter. Simulations were carried out and the results revealed that the MSO could simultaneously

achieve low impedance voltage and high impedance current outputs without the circuit topology alteration. The

frequency of oscillation and the condition of oscillation could also be electronically tuned without disturbing each other.

Furthermore, the sinusoidal signal of the MSO exhibited relatively low total harmonic distortion of about 0.8% at 2.75

MHz. To verify, a prototype of the active-only LP-based MSO (n = 3) was constructed and experiments were performed.

The experimental findings were agreeable with the simulation results.
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1. Introduction

Essential to the communications and special-function integrated circuits (ICs) is the analog signal processing ca-

pability, which typically requires the amplifier, filter, and oscillator. Furthermore, modern ICs have incorporated

programmable features and downsized the die area. Nonetheless, certain passive elements, e.g., the resistors and

capacitors, are still present in the majority of modern ICs, contributing to the die area minimization problem.

In [1,2], a continuous time filter was proposed using both the active and passive elements; however, it

suffered from the lack of tunability feature and poor high-frequency performance. In [3], the VLSI current-

mode circuit was adopted for the high-performance filter and it has since gained wide acceptance due to the

low voltage, small die area, and tunability features.

In [4], the author discussed different current-mode filters of diverse active elements. In [5], the current-

mode universal filter was realized using the second-generation current conveyor (CCII) with the resistors and

capacitors. In addition, the capacitors as the passive element were integrated into OTA- [6] and CC-DDCC-

based [7] filters to generate the frequency response. Meanwhile, the universal filters with only-active elements

(i.e. without the passive elements) were proposed in [8,9]. It is an interesting method for realizing the filter
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by making it unnecessary to use the passive elements. The active-only filters were generally designed based

on lossless integrators. Specifically, the design of the filters was based on the operational amplifier (OA) and

operational transconductance amplifier (OTA) and could achieve the multifunction filtering and tunability with

low voltages. However, the complex structure of the lossy integrator using two OAs and three OTAs was reported

[10]. Due to the high number of active elements used it required a large die area and power consumption.

In [11,12], the active-R circuit was adopted to implement the sinusoidal oscillator, in which the second-

order function was realized by the OA internal pole and some resistors. However, the frequency of oscillation

(FO) and the condition of oscillation (CO) were not independently adjustable. In [13], an active-only oscillator

circuit using OA and OTA was realized to achieve the FO-CO independency. In addition, a multiphase oscillator

was deployed in the phase modulator [14] and vector signal generator [15]. The cascading of all-pass filters with

an integrator [16] and two lossless integrators [17] in the absence of the passive elements was implemented for

the quadrature sinusoidal oscillators (QSOs).

Multiphase sinusoidal oscillators (MSOs) could achieve multiple (>2) outputs and are deployed in a

variety of applications. The common MSO realization method is the cascading of lossy integrators, including

the CCII [18,19], the OA [20], the current differencing transconductance amplifier (CDTA) [21], and the current

amplifier (CA) [22]. Nevertheless, some of these circuits required capacitors and resistors, contributing to the

circuit design challenge.

Thus, the resistorless-based MSOs using the OTA [23] and the current-controlled current conveyor

transconductance amplifier (CCCCTA) [24] were proposed; however, capacitors were still required. In [25–27],

an all-pass filter based on various active devices and a passive element were introduced. The cascading of all-pass

filters was utilized to realize the MSO [26,27], but the capacitors were necessary for the pole frequency. More

recently, the active-only QSO based on the cascading of all-pass filters was proposed [28]. Despite the active-

only all-pass filter being introduced, the gain of filter was unable to adjust. The variable gain is an important

feature for oscillator realization and due to the nonadjustability of the gain the condition of oscillation (CO)

was unachievable. Importantly, no research exists on active-only MSOs with the independent tunability of the

FO and CO.

This current research thus proposes an active-only low-pass (LP) filter whose pole frequency and gain

are independently adjustable, and the MSO circuit was subsequently realized by cascading the LP filters. The

active-only LP-based MSO could achieve low impedance voltage and high impedance current outputs, in addition

to the independent adjustment of the CO and FO. Table 1 tabulates the previous research on three-phase MSOs

and this current research.

2. Theoretical discussion

2.1. OA as the lossless integrator

The OA is an active element that produces the output with a very high-voltage gain [8]. It has been utilized

in various applications, e.g., in amplifiers and filters. The open-loop gain (Av(s)) of the OA can be expressed

as a function of the LP filter, as shown in Eq. (1). Considering Eq. (1), at a very low pole frequency (ωi), ωi

can be neglected and the function approximated and rewritten as a lossless integrator function.

Av(s) =
VO(s)

Vin(s)
=

B

s+ ωi
≈ B

s
(1)

Here, B is the gain bandwidth andωi is the pole at very low frequency of the OA.
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Table 1. Existing research on the three-phase MSO compared to this current research.

Ref.

Active Type of Number Number CO + FO High Low
element cascaded of active of electronic impedance impedance

filter elements R + C tunability current output voltage output
[17] CCII LPF 3 6 + 3 No + No No No
[18] CCCII LPF 3 0 + 6 No + Yes Yes No
[19] OA LPF 3 6 + 3 No + No No Yes
[20] CDTA LPF 5 0 + 3 Yes + Yes Yes No
[21] CA LPF 3 0 + 3 No + Yes Yes No
[22] OTA LPF 4 + 2 MOS 0 + 3 Yes + Yes No No
[23] CCCCTA LPF 3 0 + 3 Yes + Yes Yes No
[24] CCCDTA APF 3 3 + 3 Yes + Yes Yes No
[25]* OA+OTA APF 3OA + 6OTA 0 + 0 No + Yes Yes No
Proposed OA+OTA LPF 3OA + 6OTA 0 + 0 Yes + Yes Yes Yes

+ 6MOS

*The research in [25] concerns the QSO topology, from which the MSO topology of this current research is adopted.

2.2. Active-only low-pass filter

The LP filter, or the lossy integrator, can be realized using the negative loop-back of the lossless integrator, as

shown in Figure 1a. In addition, to realize the gain-adjustable LP filter, an additional proportional block (k)

has to be integrated, as shown in Figure 1b.

Figure 1. The low-pass filter realized by the lossless integrator (a, b).

Figure 2a illustrates the active-only unity gain LP filter, which is generally realized by one OA and two

multioutput OTAs. For the variable-gain LP filter, it required one more electronic resistor as shown in Figure

2b. In Figure 2b, two current replicas (+iin , -iin) of the input current (iin) could be obtained at the remaining

output terminals of OTA2 . The current replicas are required for the current-mode MSO. Meanwhile, the voltage

and current relationships of the active-only LP filter can be expressed as:

V1 = iin/gm2 (2)

V3gm1R=V2 (3)

V3 = (V1 − V2)

(
B

s

)
=

−iout
gm1

(4)
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Figure 2. The active-only low-pass filter: (a) variable-gain, (b) unity-gain.

Thus, the current transfer function can be expressed as:

iout
iin

=
−1

Rgm2

(
1

s/gm1RB + 1

)
(5)

Here, k = −1/Rgm2 is the gain and 1/τ = ω = gm1RB is the pole frequency (ω). Note that the gain and the

pole frequency of the LP filter could be independently tuned by varying the transconductance, gm2 and gm1 ,

respectively. In fact, this experimental research utilized two MOS transistors in place of the electronic resistor

[29] and obtained the resistance (R) as:

R =
L

2µCOXW (VDD − VT )
(6)

Here, µ , Cox ,W , L , VT , and VDD represent the surface mobility, channel oxide capacitance, channel width

and channel length, threshold voltage of the MOS transistor, and voltage supply, respectively.

2.3. The n-cascaded LP-based oscillator

In this experimental research, the MSO was realized by cascading of the LP filters [22], as shown in Figure 3.

Figure 3. The MSO with the n -cascaded negative LP filters (n = odd).

Specifically, the LP network was realized by cascading n negative-LP filters, and the MSO was realized

by looping the output of the final LP filter back to the first LP filter. It is imperative that n be an odd integer

to obtain the negative closed-loop (MSO) function, as shown in Eq. (7).

H(jω0) =

(
−k

1 + jω0τ

)n

= 1 (7)
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In Figure 3, given the different phases (ϕ), each LP filter can produce 2ϕ and the phase function of the low-pass

network (LPN) can be expressed as:

∠H(jω0) = 2nϕ = 2n(0− tan−1(ω0τ)) = 2π (8)

Then the frequency of oscillation (FO) can be rewritten as:

ω0 =
1

τ
tan

(π
n

)
(9)

Furthermore, the condition of oscillation (CO) can be derived from Eq. (9) and expressed as:

k =
√

1 + (ω0τ)2 (10)

3. Circuit description

In this research, the proposed active-only LP filter was realized using one OA, two multioutput OTAs, and two

MOS transistors. Due to the die area minimization, the CMOS OA [30] (Figure 4) and the simple three-output

CMOS OTA (Figure 5) were used for the LP filter design.

Figure 4. Schematic of the CMOS OA.

Figure 6 illustrates the schematic of the three negative LP sections (A, B, C), given that n is an odd

integer for the negative closed-loop MSO (i.e. n = 3). The three voltage (Vo) and six current outputs (io)

could thus be achieved.

From Eqs. (9) and (10), the FO and CO for n = 3 can be expressed as in Eqs. (11) and (12), respectively.

ω0 =
√
3gm1RB (11)

k = 1/Rgm2 = 2 (12)

4. Nonideality study

The performance of the active-only LP filter is subject to the OTA output current gain (α), the parasitic

resistance (RPi), and capacitance (CPi). Figure 7 illustrates the schematic of the proposed LP filter with
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Figure 5. Schematic of the simple three-output CMOS OTA.

Figure 6. The active-only LP-based MSO (n = 3).

the OTA current gain (α) and the parasitic elements (RPi and CPi). In the figure, RP1 = Ri + RO1 ,

RP2 = Ri +RO2 , CP1 = Ci +CO1 , and CP2 = Ci +CO2 , given that RPi and CPi are the parasitic elements,

where Ri and Ci are the resistance and capacitance of the OA input and ROi and COi the resistance and

capacitance of the OTA i output.

4.1. Effect of the nonideal OTA current gain ( α)

Neglecting the parasitic resistance (RPi) and capacitance (CPi), the transfer function of the LP filter, given

the nonideal current gain (α), can be rewritten as:

Hn1(s) =

(
−α1

α2Rgm2

)
Rgm1B

s+ α1Rgm1B
(13)

From Eq. (13), the pole frequency (ω) of the LP filter is minimally influenced by the OTA1 current gain (α).

Similarly, the gain (k) is slightly affected by the current gains of OTA1 and OTA2 .
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Figure 7. Schematic of the low-pass filter with nonideal parasitic elements.

4.2. Effect of parasitic resistance (RP )

Neglecting the nonideal current gain (α) and parasitic capacitance (CPi), the transfer function of the LP filter,

given the nonideal parasitic resistance (RPi), can be rewritten as:

Hn2(s) =
−(gm1BRP1RP2 +Rgm1BRP1)

Rgm1BRP2 +Rgm2gm1BRP1RP2 + s (gm2RP1RP2 +Rgm2RP1 +RP2 +R )
(14)

Given that the parasitic resistances (RPi) are larger than R (i.e. R << RP1, RP2), the transfer function in

Eq. (14) can be rewritten as:

Hn2(s) ≈
−gm1BRP1

(Rgm1B)(1 + gm2RP1) + s (gm2RP1 + 1)

From Eq. (14), it is obvious that the transconductance range of OTA2 is gm2 >> 1/RP1 .

4.3. Effect of parasitic capacitance (C P )

Neglecting the nonideal current gain (α) and parasitic resistance (RPi), the transfer function of the LP filter,

given the nonideal parasitic capacitance (CPi), can be rewritten as:

Hn3(s) ≈
−(gm1B + sRgm1BCP2)

Rgm2gm1B + s(gm2 +Rgm1BCP1)
(15)

From Eq. (15), the suitable electric resistor (R) is governed by the parasitic capacitance (CPi), which in turn

is dictated by the OA and OTA1 , given that R << (1/gm1BCP1) , (1/gm1BCP2).

5. Simulation and experimental results

In this research, the active elements were of the TSMC 0.25 µm CMOS technology [7] with ±1.5 V power

supply. The 3 pF compensated capacitor (CC) and 30 µA bias current (IB) were used to realize the OA with a
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3.6 MHz gain-bandwidth (GBW). In addition, the OA, the simple three-output OTA, and the electronic resistor

were realized using the MOS transistors (Table 2).

Table 2. Dimensions of the MOS transistors for the OA, OTA, and electronic resistor.

OA OTA
Transistors W/L (µm/µm) Transistors W/L (µm/µm)
M1, M2, M10 1/1 M1, M2 5/2
M3, M4, M11 15/1 M3-M9 15/1
M5, M12 4.5/1 M10-16 10/1
M6 94/1 Electronic resistor
M7 14/1 MR1, MR2 10/10
M8 6/1
M9 2/1

The LP filter could achieve the independent tuning of the pole frequency (ω) and the gain (k), given that

k > 1. Figure 8 illustrates the magnitude and phase response of the negative LP filter, given varying IB1 and

IB2 = 80 µA. The results showed that, given IB2 of 80 µA, the pole frequency could be varied corresponding

to its phase response at 135 degrees (570 kHz to 2 MHz) by adjusting IB1 (6.25–100 µA) without disturbing

the gain (k = 5 dB or k = 1.8).

Figure 8. Magnitude and phase response of the negative LP filter given IB2 = 80 µA and varying IB1 .

Figure 9 depicts the magnitude and phase response of the negative LP filter, given IB1 = 10 µA and

varying IB2 . The results revealed that, given IB1 of 10 µA, the gain could be varied by adjusting IB2 (20–320

µA) without disturbing the pole frequency and its phase response at 135 degrees is also constant at 900 kHz.

It is obvious from Figures 8 and 9 that the gain and pole frequency could be independently tuned by

manipulating the particular bias current.

Figure 10 shows the noise output of the negative LP filter, given IB2 = 80 µA and varying IB1 . The

results show that low output noises are observed lower than 130 pV/
√
Hz along the frequency. Figure 11
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Figure 9. Magnitude and phase response of the negative LP filter given IB1 = 10 µA and varying IB2 .

illustrates the THD measurement based on IB1 = 30 µA and IB2 = 40 µA (f0 ≈ 1 MHz and k ≈ 2).

Sinusoidal current inputs of in-band frequency (10 kHz and 100 kHz) are applied while varying the amplitude.

The THD of the proposed active-only variable gain LP filter is satisfied at less than 1% for 10 µA of input

current.

Figure 10. Noise output of the negative LP filter given IB2 = 80 µA and varying IB1 .

In the simulation, given the n = 3 MSO configuration (Figure 6) with IB1 = 30 µA, IB2 = 39.7 µA

fork = 2, and the three voltage and six current output terminals respectively connected to the 200 kΩ and 1 Ω
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Figure 11. THD measurement of the negative LP filter given IB1 = 30 µA and IB2 = 40 µA.

load resistors, the proposed MSO could achieve the frequency of oscillation (FO) of approximately 2.75 MHz.

In Figure 12, the voltage outputs (Vo1 to Vo3) were 120◦ equally spaced in phase and 150mV in amplitude,

while the current outputs (±Io1 to ±Io3) were 60◦ equally spaced in phase and 18 µA in amplitude.

Figure 12. The voltage and current sinusoidal outputs of the proposed active-only LP-based MSO (n = 3).

Figure 13 depicts the corresponding frequency spectra of the sinusoidal signal outputs. In the figure, at

the voltage terminal, the 3rd harmonic component was 1.25 mV, while the fundamental component was 152.5

mV. At the current terminal, the 3rd harmonic component was 325.87 nA, while the fundamental component
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was 18.6 µA. The total harmonic distortions (THDs) of the voltage and current terminals at 2.75 MHz were

around 0.8% and 1.75%, respectively.

Figure 13. The voltage and current spectra of the proposed active-only LP-based MSO (n = 3).

To validate the simulation results, an active-only LP-based MSO (n = 3) prototype was fashioned using

the commercially available OTA (LM13600) and OA (LM324). Figures 14 and 15 respectively illustrate the

schematic of the experimental active-only LP-based MSO and the corresponding prototype.

Figure 14. The schematic of the experimental LP-based MSO (n = 3).
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Figure 15. Prototype of the active-only LP-based MSO (n = 3).

In Figure 14, the OTA bias currents of 50 µA were fed through VCi and the 30 kΩ resistors, while the

OA gain-bandwidth was around 1 MHz. For the sake of simplicity, the electronic resistor (R) and OTA2 (a

grounded resistor for the gain manipulation) were respectively replaced with a passive resistor (R = 500 Ω)

and a 5 kΩ variable resistor. The three voltage outputs were obtained at around 700 kHz with 120◦ roughly

spaced in phase and 120 mVp-p in amplitude, as shown in Figure 16, which is agreeable with the simulation

results. Figure 17 illustrates the spectrum of one voltage output with the 3rd harmonic distortion of around

–21 dB.

Figure 16. The experimental result of the three voltage outputs.
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Figure 17. The experimental result of the spectrum in one voltage output.

6. Conclusion

This experimental research has proposed an active-only LP filter (i.e. without the external passive element)

whose pole frequency and gain can be independently tuned by means of the bias current manipulation. The

proposed LP filter consisted of one OA, two MO-OTAs, and one MOS-based resistor. The MSO was subsequently

realized by cascading the LP filters (n = 3). Simulations were carried out and the results showed that the MSO

could concurrently achieve low impedance voltage and high impedance current outputs without circuit topology

alterations. The FO and the CO could also be electronically tuned without disturbing each other. In addition,

the sinusoidal signal of the MSO exhibited a relatively low THD of around 0.8% at 2.75 MHz. To validate, the

active-only LP-based MSO (n = 3) prototype was constructed and experiments were performed. The simulation

results are agreeable with the experimental findings.
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