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Abstract:In this paper a combined controller is proposed for nonlinear dynamical systems. The controller is constructed

by a fuzzy wavelet network and nonlinear model predictive control. Chaotic optimization, which is fast and robust, is

applied to generate optimized controlled input in nonlinear model predictive control. The ability of the fuzzy wavelet

neural network and the proposed controller is shown by simulation. It is illustrated that the proposed method is able to

increase the speed of tracking in addition to having very little steady state error. Using chaotic optimization makes the

controller robust in the presence of noise.
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1. Introduction

Nowadays nonlinear model predictive control (NMPC) including a great degree of challenges has attracted many

researchers in the control area [1–8]. There are two requirements for NMPC to be designed successfully. On

one hand a strong model is needed to be considered as a predictor and on the other hand a fast optimization

algorithm capable of performing real-time optimization should be applied [1].

One of the successful strategies for dealing with the challenges related to NMPC is using intelligent

networks [2–6]. In [3] an adaptive neural network was used to compensate for the error made by parameters

variations. The method was suitable for model predictive control of nonlinear systems with parameter variations

and uncertainties but the optimization method applied was a simple gradient-based method, which is slow,

nonrobust in noisy conditions, and including high computation. In [4] a neurodynamic approach to NMPC

based on two recurrent neural networks was presented. In that work a nonconvex optimization problem was

decomposed via Taylor expansion and the high order unknown terms were estimated with an online supervised

learning algorithm. In spite of the good performance of their controller, the complexity of model computation

volume is very high since it needs to use Jacobian linearization. In [6] adaptive stable generalized predictive

control using a fuzzy model was proposed to control nonlinear discrete-time with time-delay systems. The

nonlinear model is constructed by some locally linear models so that GPC can be used as the predictive

controller. Even though that method was able to capture the advantages of GPC, it could not cope with all of

the nonlinearities in the system. As mentioned in [7] a combination of fuzzy logic, neural network, and wavelet

theory could be a strong model capable of dealing with highly nonlinear systems. Thus it would be a suitable

choice as the predictor in NMPC. While using this strong model they applied a gradient descent algorithm,

which requires a long time and high computation for optimization.
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One of the modern optimization algorithms is chaos-based optimization [9–14]. Chaos is a kind of charac-

teristics of nonlinear systems. It is a limited unstable dynamic behavior that represents sensitive dependence on

initial conditions and includes infinite unstable periodic motions [9]. Chaos optimization is a robust mechanism

that can escape from local minima and so it is suitable for global optimization. In [12], a stepped up chaos

optimization algorithm has been used in to achieve maximum efficiency in photovoltaic systems. A combined

algorithm that includes chaos optimization, particle swarm method, and local search has been applied in [13]

in order to find the best subset of features. In [14], the search capability of binary particle swarm optimization

has been upgraded using the chaotic search approach.

In the present paper a fuzzy wavelet neural network capable of capturing high nonlinearities of systems

is used as a model in NMPC. It is seen that the FWNN can represent a good model for use in NMPC. However,

as mentioned, another main problem about NMPC is having an effective optimization method that is suitable

for online applications. Therefore, here chaos-based optimization, which is global, fast, and robust in noisy

conditions, is applied to find the optimum control inputs. The simulation results show the very good and fast

performance of the proposed method.

This paper is organized as follows: Section 2 includes NMPC. Section 3 gives a brief description of

FWNN. In Section 4 optimization methods are completely described. In the next section, simulation results are

provided. Section 6 includes concluding remarks.

2. Nonlinear model predictive control

In the NMPC, the controller is designed by minimizing a cost function as below [15]:

J (k) =
1

2

Np∑
j=1

(r (k + j)− y (k + j))
2
+

1

2

Nu∑
j=1

qj∆u
2(k + j − 1), (1)

in which Np is the predictive output horizon, Nu is the control horizon, qj is the weight, r(k) is a known

reference input, and the index j represents the future times. In situations where there is no model of the system,

the exact values of y(k+ j) are not available. Thus, it is necessary to use an estimation ŷ(k+ j) instead. This

estimation is obtained here using FWNN, which is described in the next section. To design the controller, the

cost function in (1) is expressed in the vector form as follows:

Ĵ (k) =
1

2
ÊT (k) Ê (k) +

1

2
Q∆UT (k)∆U(k), (2)

where

Ê (k) = [ê (k + 1) , ê (k + 2) . . . ê(k +Np)]
T

(3)

ê (k) = r (k)− ŷ(k) (4)

Q = diag [q1, q2, . . . , qNu ]
T

(5)

∆U (k) = [∆u (k) ,∆u (k + 1) . . .∆u(k +Nu − 1)]
T

(6)

The control vector is obtained by minimizing the cost function (2). In this paper it is obtained using chaos

optimization, which is described in the next sections. The schematic of the proposed method is shown in Figure
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1. In the figure, the unknown plant is modeled by FWNN, which will be described in the next section. In fact,

the identification error shown in the figure, points to this procedure. Then the estimated output is applied to

the model predictive controller in order to be used in the optimization process.

Figure 1. Structure of the proposed controller.

3. Fuzzy wavelet neural network

The structure of the FWNN used in this paper is depicted in Figure 2. It is constructed using some fuzzy rules

[16,17]:

Ri : Ifx1isA
i
1, andx2isA

i
2....andxqisA

i
qThenyi = wi

q∑
j=1

ψij(xj), (7)

in which xj (1 ≤ j ≤ q) and yi (1 ≤ i ≤ c) is the jth input and the output of the local model for rule Ri
respectively ,

wi is the weight coefficient from the inputs and ith output, and ψij is a wavelet family defined in the following

form:

ψij(xj) = ψ(
xj − bij
aij

)aij ̸= 0 (8)

In (7), ψij(x) is produced from a single mother wavelet function by dilations and translations (a, b). According

to Figure 2, the output of FWNN is calculated as

ŷ =

c∑
i=1

µiyi

c∑
i=1

µi

, where µi(x) =

q∏
j=1

Ai
j(xj) (9)

for i = 1, 2, . . . , c , j = 1, 2, . . . , q . Here c is the number of fuzzy rules and q is the dimension of the input

vector. The Gaussian membership functions are selected to describe the linguistic terms.

Ai
j(xj) = exp

[
−(xj − cij)

2/σi2

j

]
(10)
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Figure 2. Structure of FWNN.

In (10) σi
j and cij determine the center and the half-width of the corresponding membership function. The

Mexican hat wavelet function, which is a symmetric function, is used in consequent parts of each fuzzy rule.

ψ(x) =
1√
|a|

(
1− 2x2

)
· exp

(
−x2/2

)
(11)

4. Optimization procedure

As discussed in the introduction section, using a fast and strong optimization method is an important factor

in NMPC. Here chaos-based optimization, which can escape from local minima, is applied. There is a group of

these kinds of algorithms [18]. Here, tent map chaos optimization is applied. To produce chaotic time series

the equation of the tent map is as follows:

xi+1 =

{
2xixi ∈ [0, 0.5)

2 (1− xi)xi ∈ [0.5, 1]
, (12)

where xi is the chaotic variable.

For NMPC the goal of tent map optimization is finding the vector of [u(t), u(t+ 1), ..., u(t+Nu − 1)] .

For this purpose, it is necessary to assign some initial chaotic variables as 0 ≤ x1,0, x2,0, ..., xNu,0 ≤ 1, which are

selected randomly. Then for each variable the lower bound and upper bound are defined and indicated by lbd

and ubd . Following that, the initial value for [u(t), u(t+ 1), ..., u(t+Nu − 1)] and E (cost function) should be
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determined and denoted as [u(t)∗, u(t+ 1)∗, ..., u(t+Nu − 1)∗] and E∗ . The main steps of the FWNN-NMPC

based on tent map chaos optimization are explained below:

Step1. At the start, compute the cost function and determine E([u(t), u(t+ 1), ..., u(t+Nu − 1)])

Step2. Using tent map chaos optimization, find a new control vector that minimizes the cost function:

- Substitute x1,k, x2,k, ..., xNu , k in (12) to produce new chaotic variables by tent map where the index k is

the number of steps.

- Compute the (k + 1)th input vector by the following formula, which is called the first carrier wave:


uk+1(t)

uk+1(t+ 1)

...

uk+1(t+Nu − 1)

 =


lbd−u(t)

lbd−u(t+1)

...

lbd−u(t+Nu−1)

+



ubd−u(t)

ubd−u(t+1)

...

ubd−u(t+Nu−1)

−


lbd−u(t)

lbd−u(t+1)

...

lbd−u(t+Nu−1)



 .


x1,k+1

x2,k+1

...

xNu,k+1


(13)

- Compute the cost function in (2) and assign the new values of inputs and cost functions as follows: If

Ek+1 ≤ E∗ then E∗ = Ek+1 and [u(t)∗, u(t+ 1)∗, ..., u(t+Nu − 1)∗] = [uk+1(t), uk+1(t + 1), ..., uk+1

(t + Nu − 1)] , else do nothing. Repeat the above steps until no improvement in the value of the cost

function is seen. Then follow the next steps:

- Again use the tent map equation in (12) to produce new chaotic variables. Then


uk+1(t)
uk+1(t+ 1)
...
uk+1(t+Nu − 1)

 =


u∗(t)
u∗(t+ 1)
...
u∗(t+Nu − 1)

+ β


x1,k+1

x2,k+1

...
xNu,k+1

 (14)

search by the second carrier wave.

In (14), β is a chaos variable with small ergodic interval. It is normally chosen as

a small positive constant, here β = 0.001.

- Compute the cost function in (2), and assign the new values such as follows:

If Ek+1 ≤ E∗ then E∗ = Ek+1 and

[u(t)∗, u(t+ 1)∗, ..., u(t+Nu − 1)∗] = [uk+1(t), uk+1(t+ 1), ..., uk+1(t+Nu − 1)] , else do

nothing.

Repeat the above steps until no improvement in the value of cost function is seen.

Step 3. Use the obtained optimum values as the vector of controlled input.

Step4. For the next sample time go to step1.
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5. Simulation results and discussion

In this section, two examples are considered for testing the suggested method. The software used for simulation

is MATLAB and the sampling times considered in both examples are 0.1 s.

Example 1 Consider the nonlinear dynamic plant as below:

y(k) = f(y(k − 1), y(k − 2), y(k − 3), u(k), u(k − 1)), (15)

in which

f(x1, x2, x3, x4, x5) =
x1x2x3x5(x3 − 1) + x4

1 + x23 + x22
(16)

and y(k − 1), y(k − 2), y(k − 3) are one-, two-, and three-step delayed outputs of the plant, u(k) and u(k − 1)

are current and one step delayed inputs of the plant. As described in the previous sections, the unknown plant

has been modeled and identified using FWNN. Here FWNN with only two rules has been constructed. Then

the network is trained by the algorithm introduced in [16]. After the learning phase, the below input is used to

motivate the trained network:

u(k) =



sin(πk/25)k < 250

1.0250 ≤ k < 500

−1.0500 ≤ k < 750

0.3 sin(πk/25) + 0.1 sin(πk/32)

+0.6 sin(πk/10)750 ≤ k < 1000

(17)

As can be seen from Figure 3 the FWNN has a high capability to identify the plant. Even though the plant

includes nonlinear dynamics, FWNN can afford modeling of the unknown plant precisely, thanks to the ability of

the wavelets used in the consequent parts of the network. After the identification stage, the proposed controller

is applied to the plant. The reference signal, which is a unit step, is tracked by the output as illustrated in

Figure 4. Figure 5 also shows the tracking error signal. As these figures show, the tracking is very fast, which

is a consequence of both the model predictive controller and the strong optimization algorithm. In addition to

the speed of tracking, this combination makes the proposed controller robust before the noise, as displayed in

Figure 6. A summarized comparison of the proposed controller with some other methods can be found in Table

1. In the table MAE stands for mean absolute of tracking error. Using the FWNN, let the plant be modeled by

fewer parameters in comparison to ANFIS. On the other hand, MPC along with the chaos optimization makes

a fast and strong controller in comparison to the PID as the controller structure and the gradient descent as

the optimization algorithm.

Table 1. Comparison of this work with other methods.

Method
Number Number of Settling Overshoot

MAE
of rules parameters time (s) (percentage)

Chaos-based FWNN-NMPC 2 18 25 6 0.012
Gradient-based FWNN-NMPC 2 18 35 15 0.018
Chaos-based ANFIS-NMPC 25 175 80 30 0.09
Chaos-based FWNN-PID 2 18 50 - 0.02
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Figure 3. The comparison between the actual output and

the output of FWNN (Exp. 1).

Figure 4. Performance of the proposed controller (Exp.

1).

Figure 5. Tracking error signal (Exp.1). Figure 6. Performance of the proposed controller with

output noise contamination (Exp. 1).

Example 2 In this example, a famous liquid level system is considered [19]. The following relations can describe

the dynamic of the plant:

h (t) = h (0) +
1

A

∫ t

0

(qin (τ)− qout(τ)) dτ, (18)

where

qin = Qin sin (θ (t)) , θ (t) ∈
[
0,
π

2

]
(19)

qout = aout
√

2gh (t), (20)

in which h stands for level of the liquid and plays as the output, aout= 0.01m2 , A = 1m2 , θ is the control

valve’s flap angle in rad , and g= 9.81m/s2 .

In this example, the plant is identified using the fuzzy wavelet network constructed with two rules as

well. The result of modeling is depicted in Figure 7. One can see that the FWNN can identified the plant very

accurately. Then, by utilizing the NMPC, the output is forced to track the reference signal. Figure 8 illustrates
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the performance of the controller. For more details, the error signal is shown in Figure 9. The tracking is fast

with very little steady-state error. The performance of the controller in the presence of noise is also verified

and shown in Figure 10. The proposed controller and some other kinds of controllers have been applied to this

nonlinear liquid level system and the results are summarized in Table 2 for a better comparison.

Figure 7. The comparison between the actual output and

the output of FWNN (Exp. 2).

Figure 8. Performance of the proposed controller (Exp.

2).

Figure 9. Tracking error signal (Exp. 2). Figure 10. Performance of the proposed controller with

output noise contamination (Exp. 2).

Table 2. Comparison of this work with other methods.

Method
Number Number of Settling Overshoot

MAE
of rules parameters time (s) (percentage)

Chaos-based FWNN-NMPC 2 18 16 3 0.005
Gradient-based FWNN-NMPC 2 18 38 12 0.012
Chaos-based ANFIS-NMPC 25 175 90 25 0.075
Chaos-based FWNN-PID 2 18 40 16 0.01

6. Conclusion

A combined controller constructed by fuzzy wavelet neural network and nonlinear model predictive control was

proposed. The chaotic optimization algorithm, which is a kind of global and robust optimization algorithm, was

3576



DAVANIPOUR and ASADIPOOYA/Turk J Elec Eng & Comp Sci

applied to obtain optimum inputs. The proposed controller was tested using simulation on both a nonlinear

dynamic system and a nonlinear liquid level system. The results illustrated that the controller tracked the

desired output in a high speed while having a small error.
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