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Abstract: In recent years, we have continually encountered multimedia files in daily life, as evidence in courts, medical

records in hospitals, etc. Many multimedia-editing software tools have been developed in parallel to the widespread

usage of multimedia files. Thus, forgery operations can be committed by anyone with this software, even if s/he does

not have any skill in this field. Authentication of the originality of multimedia files has recently become a popular

topic. In this work, we propose a new video forgery detection approach to detect forged frames with better execution

and detection capability. Features are extracted from the frames and their correlations are represented as a correlation

image. This method investigates a line on the correlation image to determine the forgery operation. Then two new

procedures (shrinking/expanding) are applied to the detected line to determine the exact location of the forgery. The

experimental results indicate that the proposed method can detect forgery operations with better execution time and

detection capability when compared to similar works in the literature.
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1. Introduction

The development of many easy-to-use multimedia editing tools renders the authenticity of the multimedia files

susceptible. Ensuring their authenticity is important, because they are used in all areas of life such as in

medical systems, military communications, or as evidence in court. Thus, developing new techniques to ensure

the originality of the multimedia files has become an active research topic because of their susceptibility.

In recent years, many techniques have been proposed to authenticate image files, and their number is

increasing every year. On the other hand, even if the video forgery detection problem has drawn the attention

of researchers, only a limited amount of work has been realized in this area compared to the image forgery

detection problem.

The techniques that determine the originality of the video files can be categorized into two types: active

and passive methods. Active methods, known as “video watermarking techniques”, embed specially created

information into the video to authenticate it later. Therefore, they necessitate specially equipped hardware to

embed information during the capturing operation, or specially written software after the capturing process.

However, passive methods only use statistical information about the video file to determine the forgery process.

These draw more attention from researchers due to their easy applicability.

Forgery operations on the videos can be grouped into two categories: frame-based forgery and region-

based forgery. In the first category, the malicious user can modify a video by using several of the following
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operations: insertion of frames from another video, deletion of frames, replacement of frames from another

video, replacement of frames from the same video, or insertion of frames from the same video. The second

category contains forgery operations, which copy a region on the frame and paste it onto another region on the

same frame. The methods proposed for “copy–move forgery detection on images” can be used to detect the

second type of forgery operation in the videos. However, detection of forgery operations in the first category

is harder and necessitates added effort from researchers. In this work, we focus on two forgery operations:

replacement of frames and insertion of frames from the same video, which we call ‘frame duplication’, as in the

literature.

Frame duplication modification can be used to remove scenes from the video or replicate them. Two

examples of these scenarios are given below.

• A person can read a secret document in a room that is monitored by cameras. Camera records can

be viewed by a particular person at a specific time each day. A malicious person can modify records,

indicating that s/he has not read any documents in that room, by replacing the frames that accommodate

him/her with ones that do not.

• A gun is actually fired one time in the original record. A malicious user can modify it so that the gun is

fired twice.

Figure 1 contains an example of frame duplication forgery. Figure 1a contains original frame sequences, whereas

Figure 1b indicates the forged version of this sequence. The man in the forged video sequence leaves the elevator

twice.

Wang et al. proposed the first method in the literature, which uses temporal correlation matrices to

detect frame duplication forgery [1]. Their work divides the entire video into overlapping subsequences and

calculates correlation matrices from the subsequences. If any two matrices correlate, the method assumes that

corresponding subsequences are a candidate for frame duplication. In the second phase of the algorithm, spatial

correlation matrices are created among these candidate subsequences to decide the exact forgery. Following this

work, many techniques have been proposed to detect frame duplication forgery, and their details are given in

Section 2.

The methods in the literature aim to improve two factors: detection accuracy and runtime performance.

If a method attempts to improve detection accuracy, it is possible to be affected by time complexity. In this

work, we aim to improve detection accuracy with better runtime. The experimental data set is created from

a set of compressed videos to render the method more realistic. The proposed method creates a correlation

image from the feature vectors, which represent corresponding frames. The correlation image accommodates

lines with a slope of –45◦ , referred to as forgery lines, if any forgery operation has been applied on the current

test video. The method utilizes a line detection algorithm to determine the location of the forgery line. Then

shrinking/expanding algorithms are applied to the forgery line to determine the exact location of the forgery

(integer valued points on the line correspond to the indexes of the copied and pasted frames) on the test video.

The outline of the algorithm can be summarized as follows.

The proposed method divides the test video into frames, and partitions each frame into nonoverlapping

12 × 12 sub-blocks. It applies discrete cosine transform (DCT) to each sub-block at each frame and transforms

them into the frequency domain. Average DCT value for each sub-block is calculated, and a row vector is

obtained from each frame that contains averaged DCT values. The obtained row vectors for each frame are

then binarized. The proposed method calculates a correlation matrix from binary row vectors and creates a

correlation image for the current test video. Brighter pixels in the correlation image denote similar frames. If
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Figure 1. Frame duplication examples: a) original video image, b) forgery video images.

some frames in the video are copied and pasted into another point, the correlation image will accommodate a

line with slope of –45◦ , called forgery line. The proposed method applies the Hough transform to the correlation

image to find such a line, and then applies exact localization procedure to it to detect the correct location of the

forgery operation. Exact localization procedure investigates the neighboring lines and then decides the exact

location of the forgery line. Furthermore, the method applies the shrinking/expanding approach on the forgery

line to eliminate false matches. Experimental results show that the proposed method gives better detection

accuracy with improved run time when compared to similar works in the literature [1–4].
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Although the average detection accuracy for the method is approximately 0.99 s, the others show

approximately 0.59, 0.79, 0.85, and 0.87 s, respectively [1–4]. The method processes a frame in 0.07 s when

average run time is considered. The run time durations for other methods are approximately 294.67, 140.6,

0.41, and 0.063 s, respectively.

The paper is organized as follows. Section 2 introduces related works for frame duplication detection. The

outline of the proposed method is given in Section 3, and Section 4 contains experimental results. Conclusions

are given in the last section.

2. Related work

The works in the literature can be grouped into three categories according to their goals [5]. The methods in

the first category aim to detect forgery operations by using traces of double or multiple compression, because

the malicious user must resave the forged video after the tampering operation.

Wang and Farid proposed the first work in this category in 2006 [6]. Their work showed that a forgery

operation leaves some artifacts on static and temporal statistical perturbations. In 2009, the authors used

the double quantization effect, which is the result of double MPEG compression, to detect forgery operations

[7]. Their technique can detect tampered regions even if their size is as small as 16 × 16 pixels. Sun et al.

indicated that double compression explains the violation on the parametric law for first-digit distribution of

alternating current (AC) coefficients [8]. Their method extracts a feature vector with a size of 1 × 12 from

each group of pictures (GOP), and the original bit rate scale is estimated by using a support vector machine

(SVM). Vazquez-Padin et al. introduced a new footprint to detect forgery operation [9]. Their technique used a

variation of the macroblock prediction types in the re-encoded P frames. However, their algorithm only works

with a fixed-size GOP. Jiang et al. modeled first-order Markov statistics on the DCT coefficients [10]. Their

results showed better results compared to other works, even if the first quality scale is a divisor of a second

quality scale. Huang et al. emphasized that the number of different coefficients between the I-frames of singly

and doubly compressed MPEG-2 videos is larger than doubly and triply compressed MPEG-2 videos [11].

The methods in the second category deal with “region-based forgery”, which copies a region of the frame

and pastes it onto another region on the same frame or other ones, to hide or replicate a region. In 2007, Wang

and Farid showed that spatial and temporal correlations of the deinterlacing algorithms could be disturbed due

to the tampering operation [12]. Their results showed that the method can localize tampering in a spatial and

temporal domain. Li et al. extracted motion information from the frames to apply the block-based motion

estimation method [13]. Orientation and gradient information of the motion vectors was used to determine

the forged regions. Hsu et al. modeled the distribution of correlation of temporal noise residue as a Gaussian

mixture model [14]. The block-level correlation of noise residue was used to localize the regions tampered with

by the algorithm. In 2015, Su et al. proposed a method based on compressive sensing to detect a specific

forgery type: moving foreground was removed from the background [15]. Their method utilized k-singular

value decomposition (k-SVD) to obtain the features of the difference between the frames. The algorithm that

projects the features onto a smaller subspace uses k-means as well. However, the method only works with

static background videos. Bidokhti et al. proposed a method that divides each frame in a video sequence

into suspicious and remaining areas [16]. An optical flow coefficient is calculated for each part, and abnormal

condition on the optical flow coefficient designates the forgery operation.

The methods in the third category are used to detect “frame-based forgery”. In 2011, Lin et al. divided the

video into subsequences and calculated color histogram difference over them [2]. The correlation of histograms
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for any subsequences indicates the forgery operation in a coarser manner. Additionally, their method employs

the block-based approach on the candidate subsequences to determine the exact location of the forgery. In [17],

the authors showed that optical flow in the X and Y direction of adjacent frames is consistent for nontampered

videos. Frame-based forgery will destroy the optical flow, as can be seen in their results. This method divides

the video into subsequences and calculates the optical flow in each subsequence. Optical flow is thresholded,

and binary search is applied according to the result of the thresholding operation to determine the forgery point.

However, their method gives better results when the inserted frame has a different background scene, resulting

from obvious forgery operation. The method in [18] processes the video frame-by-frame and divides each frame

into four sub-blocks. Nine features are used to represent each frame and lexicographical sort is applied to group

the similar frames. Root mean square error (RMSE) is calculated for neighboring frames’ feature vectors to

determine the forgery. However, compression decreases the performance of their method, because it works with

correlation. In [3], Yang et al. used singular value decomposition (SVD) to extract features from the frames.

Then the Euclidean distance between each frame and the reference frame, which is the first frame of the video,

is calculated to determine temporal similarity. Additionally, the authors investigate similar clips with random

block matching.

3. Proposed method

In this section, we give a detailed outline of the proposed method. The main challenges considered in the

literature are the running time of the detection process and detection accuracy of the method. We aim to

propose a new approach to enhance these two factors in the frame duplication detection problem. Our work

proposes three new algorithms, namely “correlation image generation”, “coarser forgery line detection”, and

“finer forgery line localization”, to ensure better detection performance and lower execution time. The details

of these algorithms are given in the following subsections.

A general outline of the proposed method is presented in Figure 2.

Correlation

 Image

 Generation

Coarser Forgery Line 

Detection

Finer Forgery Line 

Localization

.  Divide video into frames

.  Construct tiny frames

.  Apply DCT transform on tiny frames

.  Binarize DCT results to create corresponding feature vectors

.  Construct correlation image CI using feature vectors

.  Apply binarization procedure on CI, bCI

.  Apply Hough transform on bCI

.  Determine the longest line on bCI, l

.  Calibrate the end point(Xe, Ye) of the coarser forgery line l

.  Find the neighboring lines or l through the x and y direction

.  Vote the alternative lines using average PSNR

.  Choose the line which gives best score as finer forgery line

.  Apply shrinking and expanding procedure on forgery line

Figure 2. General outline of the proposed method.

3.1. Correlation image generation

The main goal of this function is to construct a correlation image that represents the similarity between the

frames using brightness values. The function divides the video V into frames F1, F2, . . . , Fk and converts them
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into gray scale. Each frame F1, F2, · · · , Fk is divided into nonoverlapping 12 × 12 cells. The size of each cell

becomes ⌊N/12⌋ × ⌊M/12⌋ for a frame of size N ×M .

Assume that 144 cells for the ith frame Fi are denoted by C1, C2, · · · , C144 , where C1 and C144

represent the upper left and lower right cells, respectively. The function calculates average intensity values in

the cells and constructs ith tiny frame TFi of size 12× 12 from the cells. Discrete cosine transform (DCT) is

applied to the tiny frame. Then DCT coefficients are binarized according to the phase of the DCT transform.

Binary value 0 is used to represent the DCT coefficients, which have negative values, whereas Binary 1 is used

to denote the other coefficients. After the binarization procedure, the zigzag-scanning procedure is applied to

the binarized 12× 12 cells to construct binary feature vector Vi of size 1× 144. Figure 3 shows the tiny frame

generation and binary feature vector construction phase of the proposed method.
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Figure 3. Tiny frame generation and feature construction.

All frames are processed in the same way, and binary feature vectors V1, V2, · · · , Vk are created for each

frame. The last step of the “correlation image generation” function is to construct a correlation matrix denoted

by I = {cxy |cxy ∈ [0, 1] , x ∈ 1 · · · k, y ∈ 1 · · · k } , where cxy denotes the correlation value between Vx and Vy .

The matrix CI is represented by the proposed method as a normalized image, where values 0 and 1 correspond

to the least similar and most similar feature vectors, respectively.

We perform an experiment to show the reason for choosing 12 as a cell size during the construction of

the correlation image. Figure 4 indicates the results of the experiment. Sizes 4, 12, 24, and 48 are chosen as

cell sizes, and the created correlation images are given in this figure. When cell size becomes 4, the forgery

line cannot be viewed clearly, as can be seen in Figure 4a. When cell size increases, the forgery line can be

viewed exactly, as can be seen in Figures 4b–4d. However, when we choose cell size to be larger (such as 48),

the running time of the proposed method deteriorates. The main reason for worse running time is the size of

the feature vector. The feature vector for each frame becomes 242 and 482 for cell sizes 24 and 48, respectively.

Thus, even though larger cell sizes give better forgery lines, we must consider running time performance during

the construction of the algorithm. In this regard, we choose to use 12 as cell size because it gives moderate

forgery line visibility, as can be seen in Figure 4, and better running time performance when compared to larger

cell sizes (24 and 48).
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Figure 4. Different sizes of block representation: a) 4 × 4, b) 12 × 12, c) 24 × 24, d) 48 × 48.

3.2. Coarser forgery line detection

The function obtains the correlation image CI as input, and outputs the coarser forgery line. When a malicious

user makes a forgery operation on the video, a line with slope –45◦ will appear on CI. Let us assume that frames

10–30 are copied and pasted onto frames 110–130. If the malicious user saves the forged video in uncompressed
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format, CI will contain a line that starts from (10, 110) and ends on (30, 130) with slope –45◦ . However, the

attacker will often save the forged video with an encoder. Thus, some effort must be made to find the exact

location of the forgery line. In this work, we apply the coarser-to-finer approach to determine the line. While

the “coarser forgery line detection” function estimates the approximate location of the forgery line, the next

function (Section 3.3) will detect its exact location.

The proposed method extracts the longest line from CI as the first step. The Hough transform is applied

to CI to detect lines with slope –45◦ . CI must be binarized before the line detection algorithm is applied. Pixels

on the lower triangular part (the upper triangular part contains the same information) and at the diagonal (they

represent autocorrelation values) are set to zero on CI during binarization, as can be seen in Figure 5. The

region that is restricted by the yellow and blue lines is similarly set to zero, because it contains high correlation

values that are the result of spatially near frames. The width of this region is determined to be 60 by the

proposed method, which assumes that a forgery operation does not occur within two seconds for a video of 30

fps. The other pixel values in CI are binarized to obtain bCI, using threshold value th, and its initial value is

set to 1. If the line detection algorithm, explained below, cannot detect any line on bCI, threshold value th is

decremented by 0.1 and a new bCI is obtained. The threshold value determination process continues until a

line is detected on bCI. The method stops the decrement of th when a line is detected on bCI. The following

steps are applied on bCI by the line detection algorithm to obtain the longest line:

Figure 5. Coarser forgery line detection on CI.

• Apply Hough transform on bCI and return Hough transform matrix H , ρ , and θ values.

• Locate p peaks in H.

• Use peaks p, ρ , and θ values and determine the line segments with minimum length lengthmin .

• Return line l = {(xs, ys) , (xe, ye)} , which has the maximum length.

The slope of the longest line l , returned by the line detection algorithm, can change in a range (−46◦,−44◦),

because the forged video is recompressed by the malicious user. The start (xs, ys) and end points (xe, ye) of

the line are calibrated to give the correct slope, as in Eq. (1). The distance on the x-axis between the start and
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end points of l must be equal to the distance on the y -axis, because the slope must be −45◦ . Assume that the

distance on the x-axis is dx = |xs − xe| and similarly the distance on the y-axis is dy = |ys − ye| .

If (dy/dx) > 1 ⇒ xe = xe + (dy − dx) If (dy/dx) < 1 ⇒ ye = ye − (dx − dy) (1)

The equation given in (1) updates the start and end points of line l to give the correct slope value−45◦ . Forgery

line l is detected in a coarser manner in this section. The next function will locate the forgery line with higher

precision.

3.3. Finer forgery line localization

In this function, the proposed method locates the forgery line at exact position and returns the index values of

the forged frames. The function gets the coarser forgery line l from the previous function. The first step is to

investigate the exact position of the line. The line l is slid in sequence on the x-axis, and lx1, lx2, lx3 lines,

which start from (xs + 1, ys) , (xs + 2, ys) , (xs + 3, ys) , respectively, are obtained. Furthermore, the sliding

operation is realized through the y-axis, and the ly1, ly2, ly3 lines are constituted. Figure 6 shows an example

of sliding operation. Frames 10–30 are copied and pasted onto frames 110–130 to create the test video in the

example. The red line represents the forgery line that is the output of the “coarser forgery line detection”

function, whereas blue and yellow lines represent lx1, lx2, lx3 and ly1, ly2, ly3 , respectively.

Figure 6. Example of a sliding operation.

Points on the line that have integer-valued coordinates correspond to the indexes of the similar frames.

For example, point (10, 110) means that the 10th frame is similar to the 110th frame. The function processes

the lines separately and calculates a score to determine their exact forgery line. The score for each line is

calculated as follows.

3.3.1. Score generation

Peak signal-to-noise ratio (PSNR) values for similar frames, which are represented by the points that have

integer coordinates on the line, are calculated, and the score for the current line is determined to be the average
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of all PSNRs. PSNR for the ith and jth frame Fi and Fj is calculated as in Eq. (2), where F xy
i denotes the

pixel values at xth row and yth column of the ith frame.

MSE =
1

MN

N−1∑
x=0

M−1∑
y=0

(
F xy
i − F xy

j

)2
PSNR (Fi, Fj) = 10log10

(
2552

MSE

)
(2)

Figure 7 shows the score generation for each line. The function chooses as forgery line the line that gives

maximum score maxscore . The last part of the “finer forgery line localization” is the shrinking/expanding

procedure. Shrinking/expanding procedure steps are shown in Figure 8.

Max

PSNR(F10,F113)

PSNR(F11,F114)

.

.

.

PSNR(F30,F133)

ly3

Avg

PSNR(F10,F112)

PSNR(F11,F113)

.

.

.

PSNR(F30,F132)

ly2

Avg

PSNR(F13,F110)

PSNR(F14,F111)

.

.

.

PSNR(F33,F130)

lx3

Avg

PSNR(F10,F111)

PSNR(F11,F112)

.

.

.

PSNR(F30,F131)

ly1

Avg

PSNR(F10,F110)

PSNR(F11,F111)

.

.

.

PSNR(F30,F130)

l

Avg

PSNR(F11,F110)

PSNR(F12,F111)

.

.

.

PSNR(F31,F130)

lx1

Avg

PSNR(F12,F110)

PSNR(F13,F111)

.

.

.

PSNR(F32,F130)

lx2

Avg

Max Score

Score 

generation 

for the 

lines

Figure 7. Score generation for each line.

3.3.2. Shrinking and expanding procedure

The shrinking procedure investigates the correctness of the start and end points of the forgery line, according

to PSNR values. The procedure that is given below is termed separately for the start and end points of the

forgery line. The values of the start (xs, ys) and end points (xe, ye) of the forgery line can be updated with the

shrinking procedure, with which the third parameter determines the shrinking direction. If the third parameter

is ‘S’, the first two parameters correspond to the start point of the line. If the third parameter is ‘E’, the first

two parameters of the function are the end point of the line. The shrinking procedure is shown in Figure 9.

The expanding procedure will be applied according to the result of the shrinking procedure. If one of

the start or end points of the forgery line is not modified by the shrinking procedure, the expanding operation

will be applied, and the forgery line can be modified by the expanding operation. This procedure realizes the

expanding operation in a window w and uses parameter “StartOrEnd” to determine the expanding direction.

Thus, the expanding procedure is applied from the start position, and a new start position for the line is

determined as in Figure 10. “Finer forgery line localization” function reports the integer points on the forgery

line l = {(xs, ys) , (xe, ye)} as forged frame numbers.

4. Experimental results

In this section, we conduct experiments to show the effectiveness of the method and compare it to similar

works. The experiments are carried out on a notebook computer with 2.4 GHz dual core i7 processor, running

MATLAB R2014b. Tests are performed on a set of forged videos created with Virtual Dub, an open source

video editor. Randomly picked videos from the Surrey University Library for Forensic Analysis (SULFA) [19]
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Figure 8. Shrinking and expanding procedure steps.

are used to create forged samples. A resolution of 320 × 240 is used to create the test video database. Another

ten forged test videos are generated using movies. Table 1 lists the details of the videos in the current test data

set, which is published at http://ceng2.ktu.edu.tr/%7Egulutas/test database2.zip.

Table 1 indicates the forgery positions for each test video. For example, frames 11–61 are inserted

after the 221st frame in test Video 1 to create a forged video. The test videos after Video 20 are created

using various move files. Randomly chosen frames from a video are copied and inserted into the randomly

chosen positions in the same video during the generation of the test data set, and forged videos are encoded

with open source MPEG-4 (Level 5 Advanced Simple Profile, ASP@L5) algorithm of Xvid codec with Virtual

Dub. We group the experiments into two subsections, effectiveness and comparison tests. The first section

gives an idea about the runtime performance and detection capability under compression for the proposed

method, whereas the second section makes a comparison with similar works using runtime performance and

detection capability metrics. Precision rate (PR), recall rate (RR), and detection accuracy (DA) are evaluated

to compare the method to similar detection methods reported in the literature according to detection capability.

The definitions for PR, RR, and DA are given in Eq. (3), where TP, TN, FP, and FN represent “authentic is
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detected as authentic”, “forged is detected as forged”, “authentic is detected as forged”, and “forged is detected

as authentic”, respectively.

PR =
TP

TP + FP
RR =

TP

TP + FN
DA =

TP + TN

TP + TN + FP + FN
(3)

A method’s performance is satisfactory if it has higher precision and recall values. The total number of detections

is represented by (TP + TN), and (TP + TN + FP + FN) is the total number of frames in the experiment.
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Table 1. Details of the test videos.

Video name Frame rate Forgery operation Total time (s) Time (s/frame)
can 220 book 29 fps 11–61 are copied behind 221 25.5704 0.0628
can 220 flap(1) 29 fps 101–161 are copied behind 316 27.8090 0.0648
can 220 flap(2) 29 fps 61–101 are copied behind 281 20.0714 0.0540
can 220 garden(1) 29 fps 11–61 are copied behind 251 22.1294 0.0549
can 220 garden(4) 29 fps 101–141 are copied behind 181 22.0051 0.0610
can 220 man(2) 29 fps 11–61 are copied behind 161 22.0353 0.0565
can 220 road(1) 29 fps 151–221 are copied behind 241 21.9476 0.0592
can 220 road(5) 29 fps 131–191 are copied behind 221 23.2352 0.0653
can 220 room(3) 29 fps 131–171 are copied behind 261 26.1826 0.0601
can 220 street(3) 29 fps 31–71 are copied behind 211 25.2114 0.0773
can 220 street 29 fps 86–146 are copied behind 221 25.5235 0.0606
fuji 2800 busstop(4) 30 fps 6–61 are copied behind 191 25.4684 0.0717
nik s3000 bridge 30 fps 11–41 are copied behind 281 27.9125 0.0864
fuji 2800 outdoor(4) 30 fps 31–71 are copied behind 131 25.4200 0.0820
fuji 2800 road(2) 30 fps 6–56 are copied behind 188 25.2308 0.0664
fuji 2800 road(5) 30 fps 61–101 are copied behind 264 27.8161 0.0605
fuji 2800 stair outdoor 30 fps 41–81 are copied behind 216 27.8127 0.0752
fuji 2800 street(1) 30 fps 111–171 are copied behind 201 27.7623 0.0712
nik s3000 bridge(1) 30 fps 121–171 are copied behind 221 27.9934 0.0710
nik s3000 indoor stairs 30 fps 11–51 are copied behind 106 27.8080 0.1220
Film 1 29 fps 166–293 are copied behind 331 29.2634 0.0585
Film 2 23 fps 235–305 are copied behind 572 65.6037 0.0914
Film 3 23 fps 1–55 are copied behind 100 11.1669 0.0634
Film 4 29 fps 233–342 are copied behind 355 84.3100 0.0969
Film 5 29 fps 459–519 are copied behind 735 190.5691 0.1454
Film 6 25 fps 65–230 are copied behind 631 83.5779 0.0955
Film 7 25 fps 571–632 are copied behind 731 107.7579 0.1089
Film 8 23 fps 895–935 are copied behind 41 112.6632 0.1138
Film 9 23 fps 0–236 are copied behind 855 188.8240 0.1530
Film 10 25 fps 0–115 are copied behind 601 97.1462 0.1055

Therefore, higher DA means that the method has a better detection rate. The details of the experiments are

given in the following sections.

4.1. Effectiveness tests

In this section, we give the results of the experiments that were conducted to show the effectiveness of the

proposed method. The first experiment reports the run time performance of the proposed method for all test

videos given in Table 1, which lists the total and per frame execution time for the test videos. For example,

the method reports forgery location for Video 2 within approximately 27.8 s, and the per frame duration for

this video becomes approximately 0.06 s. Test videos given in Table 1 can be grouped into two parts. While

the first 20 videos in Table 1 are created from the videos in the SULFA, the remaining videos are created using

various movie files. The average per frame execution time for the videos in the first part (which are created

using the videos in SULFA) is approximately 0.07 s. This value becomes 0.1 s for the videos in the second part.

Furthermore, we give the DA, PR, and RR values for each video in the test database in Table 2. Average per

4570



BOZKURT et al./Turk J Elec Eng & Comp Sci

video DA, PR, and RR values in the first part (which are created using the videos in SULFA) is approximately

0.979, 0.995, and 0.978. These values become 1, 0.953, and 0.964 for the videos in the second part.

Table 2. General outline of the proposed method.

Video name DA PR RR

can 220 book 0.9954 1.0000 0.9940

can 220 flap(1) 0.9565 1.0000 0.9441

can 220 flap(2) 0.9946 1.0000 0.9932

can 220 garden(1) 0.9950 1.0000 0.9934

can 220 garden(4) 0.9950 1.0000 0.9938

can 220 man(2) 0.9950 1.0000 0.9934

can 220 road(1) 0.8859 1.0000 0.8502

can 220 road(5) 0.9504 1.0000 0.9336

can 220 room(3) 0.9954 1.0000 0.9944

can 220 street(3) 0.9954 0.9045 0.9944

can 220 street 0.9266 1.0000 0.9930

fuji 2800 busstop(4) 1.0000 1.0000 1.0000

nik s3000 bridge 0.9957 1.0000 0.9950

fuji 2800 outdoor(4) 0.9908 1.0000 0.9888

fuji 2800 road(2) 0.9954 1.0000 0.9940

fuji 2800 road(5) 1.0000 1.0000 1.000

fuji 2800 stair outdoor 0.9957 1.0000 0.9947

fuji 2800 street(1) 0.9391 1.0000 0.9235

nik s3000 bridge(1) 0.9957 1.0000 0.9944

nik s3000 indoor stairs 0.9957 1.0000 0.9947

Film 1 1.0000 0.9384 0.968

Film 2 1.0000 0.9965 0.9972

Film 3 1.0000 0.9705 0.9886

Film 4 1.0000 0.9938 0.9954

Film 5 1.0000 0.9834 0.9847

Film 6 1.0000 0.7552 0.7988

Film 7 1.0000 1.0000 1.0000

Film 8 1.0000 1.0000 1.0000

Film 9 1.0000 1.0000 1.0000

Film 10 1.0000 0.8937 0.9108

Another experiment shows the detection capability of the proposed method when the test videos are re-

encoded after forgery operation. The last ten test videos given in Table 1 are re-encoded using various quality

factors (QF), such as 1, 15, and 31, where 31 indicates the best compression ratio. DA, PR, and RR values are

measured with these compressed test videos to show the robustness of the method against recompression.

Figure 11 indicates that the proposed method has approximately 1 and 0.996 values for DA, PR, and RR,

respectively, when the forged video is resaved without any compression. If the forged test videos given in Table

1 are resaved with QF = 31 after forgery operation, DA, PR, and RR become 1, 0.953, and 0.964, respectively.
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Figure 11 indicates that although DA value never changes, PR and RR values decrease when compression ratio

increases. However, the method can detect forged videos with PR = 0.95 and RR = 0.96, even if the forged

videos have been resaved QF = 31.

4.2. Comparison tests

In this section, we give the comparison results according to execution time and detection capability. The first

experiment gives the average execution time for the proposed method and the other, as can be seen in Table

3. The average execution time results for the methods indicate that the proposed method can detect forgery

operations on the test videos with less time. While the average per frame execution time for the methods in

[1–4] is approximately 294.6, 140.6, 0.4, and 0.063, the proposed method can detect forgery operation on a

frame within 0.07 s. Enhancing per frame execution time in video processing is important, because test videos

can accommodate many frames, especially when surveillance videos are considered. Another experiment gives

comparison results for the methods when their detection capabilities are considered. Figure 12 shows PR, RR,

and DA values for the proposed method and other [1–4] for test videos given in Table 2. While the methods

in [1–4] have approximately 0.3, 0.82, 0.94, and 0.98 PRs, respectively, the proposed method gives PR = 1.

Moreover, recall rates and detection accuracy results indicate the superiority of the work compared to similar

works.

0.92
0.94
0.96
0.98

1
1.02

Uncompressed 1-QF 15-QF 31-QF

DA-PR-RR

DA PR RR

0.5915 

0.7910 
0.8547 0.8697 

0.9864 

0.3010 

0.8278 
0.9473 0.9776 0.9812 

0.6901 
0.8035 

0.8445 0.8669 
0.9735 

0.0000 

0.2000 

0.4000 

0.6000 

0.8000 

1.0000 

1.2000 

Wang et al.[1] Lin et al.[2] Yang et al.[3] Guzin et al.[4] Proposed 
Method 

DA PR RR 

DA PR RR 

Figure 11. Detection capability of the proposed method

according to different quality factors.

Figure 12. Comparison results according to detection

capability.

Table 3. Tiny frame generation and feature construction.

Method Execution time (s/frame)
Wang et al. [1] 294.67
Lin et al. [2] 140.60
Yang et al. [3] 0.41
Guzin et al. [4] 0.063
Proposed method 0.07

5. Conclusion

In this work, we proposed a new video forgery detection approach. The method extracts binarized DCT features

from the frames and represents the similarity between them to be a correlation image. Elements of the correlation

image give an idea about the similarity between corresponding frames. The method then investigates a line

called forgery line on the correlation image, to determine the location of the forgery line in a coarser manner.

The Hough transform is applied to the image to determine the location of the line. Furthermore, the proposed
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method suggests two new procedures, shrinking and expanding, to locate the forgery line in a finer manner.

The integer-valued points on the line indicate the corresponding index values of forged frames. Comparison

and effectiveness tests, given in the experimental result section, show that the proposed method gives better

execution time than [1–3] and better detection capability when compared to similar works [1–4].

The main difficulty in the frame duplication detection literature is to develop new methods that are

resistant to compression attacks. Only one work in the literature considers this issue in their results [4]. Our

results indicate that the proposed method gives better detection performance when compared to [4] under

compression attacks. Finally, we aim to improve our method against frame mirroring attacks in our future

work.
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