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Abstract: Many economies in the world have adopted energy-efficiency requirements or incentive programs mandating

or promoting the use of energy-efficient transformers. On the other hand, increases in transformer efficiency are subject to

increases in transformer weight and size, sometimes as much as 50% or more. The transformer manufacturing industry is

therefore faced with the challenge to develop truly optimum designs. Transformer design optimization (TDO) is a mixed-

integer nonlinear programming problem having a complex and discontinuous objective function and constraints, with the

objective of detailed calculation of the characteristics of a transformer based on national and/or international standards

and transformer user requirements, using available materials and manufacturing processes, to minimize manufacturing

cost or total owning cost while maximizing operating performance. This paper gives a detailed comparative analysis

of the application of five modern nature-inspired metaheuristic optimization algorithms for the solution of the TDO

problem, demonstrated on three test cases, and proposes two algorithms, for which it has been verified that they possess

guaranteed global convergence properties in spite of their inherent stochastic nature. A pragmatic benchmarking scheme

is used for comparison of the algorithms. It is expected that the use of these two algorithms would have a significant

contribution to the reduction of the design and manufacturing costs of transformers.

Key words: Distribution transformer, transformer design optimization, high efficiency, metaheuristics, swarm intelli-

gence, differential evolution

1. Introduction
Electrical energy undergoes on average four voltage transformations between being generated and being con-

sumed, and as a result a large number of transformers of different classes and sizes with a wide range of operating

voltages are employed in the transmission and distribution network. Traditionally, transformers at the end of

this chain providing power to end users at domestic consumer voltage levels (usually 400 V or less) are called

distribution transformers [1,2].

The estimated global stock of distribution transformers in 2014 was 118 million units. Total installed

power capacity was estimated to be 13,848 GVA, with an average unit rating of 117 kVA. Installed capacity is

forecast to reach 22,400 GVA in 2030 [2]. The global market for distribution transformers is forecast to exceed

USD 20 billion by 2018 [3].

Distribution transformers are very efficient compared with other electrical equipment, having losses in

the order of 2%–3% or better. However, energy losses in distribution transformers are highly significant due to

the huge number installed, as given above.
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Due to the substantial savings potential, as of 2014 some 15 economies (including the European Union),

representing approximately 54% of the installed stock of distribution transformers by capacity, have adopted

energy-efficiency requirements or incentive programs promoting energy-efficient designs.

It is estimated by the European Commission that roughly 2.5% of energy in the European Union

is consumed as a result of transformer losses. The European Commission defined Ecodesign standards for

transformers and introduced them in the new European Standard EN 50588-1, which was put in force on

01.07.2015. The standard will be implemented in two steps; in the first step, already effective from July 2015,

the maximum allowable no-load losses will be reduced by 30% as compared to the C0Ck (AC’) loss combination

alternative of the European Standard EN 50464-1 that it replaced. In the second step, effective from July 2021,

maximum allowable no-load losses will be reduced by another 10%, and the load losses by ∼30%. Furthermore,

the 10%–15% tolerances on losses allowed in the previous standard have been zeroed in the new one.

It is important to note that increases in transformer efficiency are normally also subject to increases in

transformer weight and size. This occurs due to increases in the quantity of material used in the design, to

reduce either the no-load or load losses, or both.

Although not prepared for the loss values stated in the European Standards, the illustration of size and

weight differences between standard and efficient 100 kVA and 400 kVA distribution transformers given in [2]

reveals that the weight of a 100 kVA transformer would increase by 37% and that of the 400 kVA would increase

by 48%.

2. Transformer design optimization

After the recent introduction of new regulations mandating the use of high efficiency distribution transformers,

the transformer manufacturing industry is faced with the challenge to develop indisputably the best (optimum)

designs since, in today’s highly competitive market environment, it will be too difficult to expect customers to

fully compensate for the inevitable increase in material costs.

Transformer design optimization (TDO) is a mixed-integer nonlinear programming problem having a

complex and discontinuous objective function and constraints, with the objective of detailed calculation of

the characteristics of a transformer based on national and/or international standards and transformer user

requirements, using available materials and manufacturing processes, to minimize the manufacturing cost or

total owning cost (TOC) while maximizing operating performance [1,4].

There are several different types of objective functions defined in the literature for TDO, but the most

commonly used ones are minimization of transformer manufacturing cost and minimization of TOC, which can

be defined as the life cycle costs associated with purchasing and operating a transformer. A detailed description

of the objective function types can be found in Chapter 2 of [1].

Minimization of main material cost, manufacturing cost, and TOC are the three objective function options

available in the software prepared for this study.

Even though governing bodies impose regulations mandating the use of high-efficiency transformers,

transformer customers are advised to continue using TOC since the regulations are only for setting a minimum

level for the transformer efficiency [5].

Transformers and transformer design optimization are two areas that have been extensively studied in

the literature. For instance, a literature survey conducted in 2009 [6] revealed general backgrounds of research

and developments in the field of transformer design and optimization for the past 35 years, based on more than

420 published articles, 50 transformer books, and 65 standards.
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Other surveys in the areas of transformers and transformer design optimization can be found in review

papers [7–11].

It is clearly stated in the literature that global transformer design optimization is still an appealing

research area since several approaches for its accomplishment have yet to be explored [4].

3. Methodology

3.1. Purpose and scope of the study

The purpose of this study is to compare the application of several modern nature-inspired metaheuristic

optimization algorithms to global transformer design optimization and suggest suitable algorithms dedicated

to the TDO problem as well as to meet the challenging requirements of the transformer industry. Only those

algorithms that have not been previously used for the TDO problem are considered in this study.

Twenty algorithms were investigated within the scope of this study, and results of the best five of them

are presented in this paper.

The scope of the study is the design optimization of distribution transformers with the following technical

characteristics, where the objective is to minimize the main material cost:

• Three-phase, oil-immersed distribution transformers

• Wound core construction

• Copper foil for low voltage (LV) and enameled copper round wire for high voltage (HV) conductors

3.2. Objective function, design variables and constraints

The objective function used in this study is to minimize the transformer main material cost, as defined with

the following formula:

minZ (x⃗)=min
∑8

j=1
cjfj(x⃗), (1)

where cj and fj are the unit cost (USD/kg) and the weight (kg) of each component j of the eight main

materials, and x⃗ is the vector of the design variables [4]. The eight main materials and their unit costs are

LV winding material (12.01 USD/kg), HV winding material (12.01 USD/kg), core material (6.01 USD/kg),

insulating paper (7.72 USD/kg), duct strips (8.58 USD/kg), insulating liquid (1.72 USD/kg), tank sheet steel

(1.03 USD/kg), and corrugated panel material (1.20 USD/kg), as given in Chapter 2 of [1].

Design variables are similar to those given in [12]; however, based on our experience in the transformer

industry, two more were added to have the result in a single run instead of having several runs for different

combinations of these two parameters. The eight design variables used in this study, together with their type

and unit of measure, are given below:

1. Number of turns of the LV winding (integer)

2. Magnetic induction (real, Gauss)

3. Width of the core leg (real, mm) – dimension D in Figure 1

4. Height of the core window (real, mm) – dimension G in Figure 1
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5. Current density of the LV conductor (real, A/mm2)

6. Current density of the HV conductor (real, A/mm2)

7. Number of end cooling ducts in the LV winding (integer)

8. Number of end cooling ducts in the HV winding (integer)

The TDO problem must satisfy the following constraints:

• The designed no-load losses must be smaller than guaranteed no-load losses plus tolerance

• The designed load losses must be smaller than guaranteed load losses plus tolerance

• The designed total losses must be smaller than guaranteed total losses plus tolerance

• The transformer impedance voltage must be between a minimum and a maximum impedance voltage plus

tolerance

• The total heat produced by the total losses of the transformer must be smaller than the total heat that

can be dissipated by the combined effects of conduction, convection, and radiation

• The transformer temperature rise must be smaller than maximum temperature rise

• lb j ≤ xj ≤ ub j , j = 1, 2, . . . , 8, where lb and ub are lower and upper boundaries on the design variables,

respectively

• xj ≥ 0, j = 1, 2, . . . , 8

Figure 1. Active part (core and windings) of a wound core type distribution transformer.

Weights of the 8 main materials in the objective function are calculated by using the conventional design

method given in Chapter 2 of [1], which, in our opinion based on our experience in the transformer industry, is

the most realistic and complete method available in the literature to the best of our knowledge. The method was

coded in MATLAB, extended where necessary to cover other power/voltage ratings based on past experience.

Mathematical functions of core loss and heat transfer curves were obtained by curve-fitting. A routine was added

to calculate the minimum width of the corrugated panel with which the heat produced in the transformer can

be dissipated.

4676
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3.3. Optimization algorithms

Metaheuristic algorithms included in this study are very briefly described below, where basically relevant

references to the algorithms are given and key parameters used in this study are specified. According to

surveys [6–11], these algorithms, all of which are population-based, have not been previously used for the TDO

problem.

3.3.1. Artificial bee colony (ABC) algorithm

The ABC algorithm, proposed by Karaboğa [13], is a swarm intelligence-based algorithm that simulates the

simplified food searching behavior of honey bees.

ABC has three key parameters: limit, modification rate MR, and scout production period SPP. The key

parameter values used in this study are limit = 10 × np ×D , SPP = np ×D , and MR = 0.9, as used in [14],

where np = number of population and D = dimension of the problem, which is 8 for this study.

The constrained optimization version of ABC is used in this study [13]. The Delphi code, available from

[14], has been converted to MATLAB.

3.3.2. Backtracking search optimization algorithm (BSA)

The BSA, developed by Civicioglu [15], is a population-based evolutionary algorithm.

The BSA has two key parameters: mix rate mixrate and scale factor F . In this study, for the first

key parameter mixrate = 1 is used as suggested in [15], and among the five alternatives available for F , the

Levy-like pseudo-stable walk option that simulates inverse gamma distribution is chosen, which yielded slightly

better results as compared to the other alternatives.

The MATLAB code used in this study for the BSA is given in [16].

3.3.3. Competitive-Adaptive Differential Evolution Algorithm (b6e6rl)

b6e6rl is a population-based differential evolution algorithm developed by Tvrdik [17].

There are two key parameters in b6e6rl: competition control parameters n0 and δ , which are taken as

n0 = 2 and δ= 1 / (5 × 12), as suggested in [18]. The MATLAB code for b6e6rl used in this study is also

given in [18].

3.3.4. Cuckoo search (CS) algorithm

CS, developed by Yang and Deb [19], is a swarm intelligence-based optimization algorithm based on brood

parasitism of some cuckoo species.

There is basically a single key parameter for CS, discovery rate pa , which is taken as pa = 0.25 in this

study as suggested in [19].

The MATLAB code for the constrained optimization version is used in this study [20].

3.3.5. Flower pollination algorithm (FPA)

The FPA was developed by Yang [19] and is inspired by the pollination process of flowering plants.

There is basically a single key parameter for FPA, switching probability p , which is taken as p = 0.8 in

this study as suggested in [19].
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The MATLAB code for the constrained optimization version is used in this study [21].

3.4. Parameter tuning of algorithms

Impacts of key parameters on the performance of optimization algorithms were analyzed for all of the five

algorithms by conducting parameter tuning studies, and it was observed that these algorithms are in general

insensitive to their key parameters for the TDO problem, with the exception of the BSA, for which the Levy-

like pseudo-stable walk option of its key parameter F yielded slightly better results as compared to the other

alternatives, as pointed out in Section 3.3.2.

3.5. Penalty calculation method

In this study, the static penalty method is used for no-load loss and load loss-related constraints, and the death

penalty is used for impedance voltage and temperature rise constraints for all algorithms.

3.6. Benchmarking methodology

Based on input from senior transformer design engineers, the following “pragmatic” method was devised to

compare stochastic algorithms, as seen from the point of view of a transformer design engineer:

• Robustness

◦ Accuracy - An algorithm is rated as “fair” if mean accuracy of multiple consecutive test runs (minimum

10) as compared to the global optimum is 99.5% (in other words, mean error εmean = 0.5%)

◦ Precision - An algorithm is rated as “fair” if minimum accuracy in any of the multiple consecutive test

runs (minimum 10) as compared to the global optimum is 99% (in other words, maximum error εmax

= 1%)

• Speed - An algorithm is rated as “fair” if the CPU time of a single test run is 15 s (CPU time, measured

with the cputime function of MATLAB, is roughly equal to clock time on a mainstream notebook when

MATLAB is the only program running)

Based on the above, the scheme in Table 1 was used to score the tests.

Table 1. Benchmark scoring scheme.

Rating Score εmean% εmax % CPU s
Outstanding 100 0.0 0.0 0
Excellent 90 0.1 0.2 3
Very good 80 0.2 0.4 6
Good 70 0.3 0.6 9
Fairly good 60 0.4 0.8 12
Fair 50 0.5 1.0 15
Poor 40 0.6 1.2 18
Fairly poor 30 0.7 1.4 21
Very poor 20 0.8 1.6 24
Extremely poor 10 0.9 1.8 27
Unacceptable 0 1.0 2.0 30
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4. Computational results and discussion

4.1. Technical characteristics and constraints of the transformers studied

Design optimizations were performed for three transformers with the following technical characteristics, in

addition to those given in Section 3.1:

• Three-phase, oil-immersed distribution transformers

• 160, 400, and 630 kVA power ratings

• Primary/secondary voltages 20/0.4 kV

• Wound core construction

• Copper foil for low voltage (LV) and enameled copper round wire for high voltage (HV) conductors

• Loss and short-circuit impedance values in accordance with designs in [1] given below:

◦ 160 kVA P0 = 425 W, Pk = 2350 W, Uk = 4%

◦ 400 kVA P0 = 750 W, Pk = 4600 W, Uk = 4%

◦ 630 kVA P0 = 1100 W, Pk = 8900 W, Uk = 6%

where P0 = no-load losses, Pk = load losses, and Uk = short-circuit impedance

• Other characteristics in accordance with the standard IEC 60076-1

Active part (core and windings) of a wound core type distribution transformer is shown in Figure 1.

4.2. Performance tests

The software prepared for this study using MATLAB 2014a consists of a main program, one subroutine for

each of the five optimization algorithms, and one subroutine for design calculation, which is shared by all of the

optimization algorithm subroutines. The user interface of the TDO software is shown in Figure 2.

Performance tests have been conducted on a mainstream notebook with 2.60 GHz Intel Core i5-3320M
CPU and 4 GB RAM:

• For the three types of transformers with specifications as given in Section 4.1

• By using the five algorithms (ABC, b6e6rl, BSA, CS, FPA)

• With the following generation and population values

◦ Number of generations: 1000, 1500, 2000, 2500

◦ Population size: 20, 40, 60, 80, 100

• Key parameter values used for each algorithm are as given in Section 3.3

• No stopping criterion was used

• Tests were repeated 20 times for each algorithm

Ranges of values were used for number of generations and population size parameters for all algorithms instead

of fixed values since the best combinations of these two would be different for each algorithm.
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Figure 2. TDO user interface.

4.3. Benchmark of algorithms

Based on the definitions given in Section 3.6, a robustness score where accuracy and precision factors are taken

into account with equal weights, and a total score where weight of robustness is 80% and speed is 20%, are

calculated for each test run. A list of the top 20 robustness scores is given in Table 2; lists of top robustness

scores and top total scores for each algorithm are given in Tables 3 and 4, respectively, and the scores in these

tables are overall for the three types of transformers. Figure 3 shows a comparison of the best robustness scores

of algorithms for each transformer type and overall.
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Figure 3. Per transformer type and overall robustness scores.

It should be noted that we first considered using the 4 test cases (160, 400, 630, and 1000 kVA 20/0.4

kV transformers) given in [4] for comparison with the results of our proposed method. However, some essential
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Table 2. Benchmark of algorithms – top 20 robustness scores.

Algorithm Generation Population εmean % εmax%
CPU Robust Speed Total
time score score score

b6e6rl 1000 100 0.01 0.02 15.8 99.1 47.4 88.8
b6e6rl 2000 100 0.01 0.04 31.3 98.6 0.0 0.0
b6e6rl 2500 100 0.01 0.04 39.1 98.6 0.0 0.0
b6e6rl 1000 80 0.01 0.05 12.9 98.4 57.2 90.2
b6e6rl 1500 80 0.01 0.05 18.9 98.4 37.0 86.1
b6e6rl 1500 100 0.01 0.13 23.9 96.2 20.4 81.1
b6e6rl 2000 60 0.01 0.19 18.7 94.8 37.6 83.3
b6e6rl 2500 80 0.01 0.19 31.6 94.7 0.0 0.0
CS 2500 80 0.05 0.13 19.0 94.5 36.5 82.9
CS 2500 100 0.04 0.14 23.8 94.5 20.8 79.7
CS 2500 40 0.05 0.13 9.7 94.4 67.6 89.1
b6e6rl 1500 60 0.01 0.20 14.1 94.4 53.2 86.1
b6e6rl 1000 60 0.02 0.19 9.4 94.1 68.5 89.0
CS 2500 60 0.05 0.16 14.4 93.4 52.1 85.1
CS 2000 100 0.06 0.15 19.0 93.2 36.7 81.9
b6e6rl 2000 80 0.01 0.27 25.1 92.6 16.3 77.3
b6e6rl 2500 60 0.02 0.27 22.9 92.1 23.5 78.4
BSA 2500 100 0.04 0.27 11.8 91.3 60.7 85.2
CS 2000 60 0.07 0.22 11.5 90.9 61.6 85.0
b6e6rl 1000 40 0.05 0.27 6.1 90.8 79.5 88.6

Table 3. List of top robustness scores for each algorithm.

Algorithm Generation Population εmean % εmax%
CPU Robust Speed Total
time score score score

b6e6rl 1000 100 0.01 0.02 15.8 99.1 47.4 88.8
CS 2500 80 0.05 0.13 19.0 94.5 36.5 82.9
BSA 2500 100 0.04 0.27 11.8 91.3 60.7 85.2
FPA 2500 60 0.17 0.31 10.9 84.0 63.6 79.9
ABC 1500 100 0.22 0.55 8.5 75.2 71.7 74.5

Table 4. List of top total scores for each algorithm.

Algorithm Generation Population εmean % εmax%
CPU Robust Speed Total
time score score score

b6e6rl 1000 80 0.01 0.05 12.9 98.4 57.2 90.2
CS 2500 40 0.05 0.13 9.7 94.4 67.6 89.1
BSA 2000 60 0.08 0.27 5.7 89.0 80.9 87.4
FPA 2500 20 0.16 0.54 3.5 78.5 88.2 80.5
ABC 2000 60 0.24 0.56 6.9 74.1 77.0 74.6

information needed to be able to make one-to-one comparisons, such as no-load loss and gradient curves, was

not provided in [4]. We therefore made the comparison of algorithms among themselves instead of comparing

our results with the results of previous studies. Nevertheless, a comparison of the proposed method with the

630 kVA design example given in Chapter 2 of [1] is presented in Section 4.5.
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4.4. Evaluation of results

The performance tests clearly showed that the competitive-adaptive differential evolution algorithm (b6e6rl)

outperforms all the others from the robustness point of view; it is, on the other hand, the slowest of all the five

algorithms studied. The robustness of CS is close to that of b6e6rl, and it is slightly faster that b6e6rl even

though CS needs to calculate the objective function twice for each iteration.

The BSA, FPA, and ABC algorithms are faster than b6e6rl and CS, and the speeds of these three

algorithms are comparable. BSA is the most robust one among them, its score being close to the robustness of

CS. However, the robustness score reduces rapidly between BSA and FPA, and furthermore between FPA and

ABC as well.

4.5. Comparison of proposed method with previous studies

In this section, the 630 kVA design example in Chapter 2 of [1] is used as a reference design and optimized with

the proposed method in this study.

Two alternatives were prepared for comparison; in the first one, the same magnetic induction value of

1.7 T was used as in the reference design and kept fixed. In the second alternative, magnetic induction was

allowed to vary.

As some of the important variables of the reference design, such as diameter of HV winding conductor,

height of core window, etc., have discrete-like or integer values, the discrete version of the TDO software prepared

for this study was used to have a comparison on the same basis. The results obtained are given in Table 5, where

the first alternative is 8.4% and the second alternative is 10.2% more economical compared to the reference

design.

Table 5. Comparison of 630 kVA optimization results with reference design in [1].

Design variables/
Unit

Lower/upper Example
Alt-I Alt-II

constraints /weights bounds in [1]

LV number of turns - 10–50 15 16 16

Magnetic induction Tesla 1.40–1.75 1.70 1.70 1.75

Width of core leg mm 100–500 220 261 257

Core window height mm 100–500 261 281 281

LV current density A/mm2 1.00–5.00 4.76 4.96 4.96

HV current density A/mm2 1.00–5.00 4.13 4.13 4.13

LV number of ducts - 0–12 10 8 8

HV number of ducts - 0–12 12 9 9

Thickness of LV cond mm - 0.79 0.70 0.70

Diameter of HV cond mm - 1.80 1.80 1.80

No-load losses W 1100 + 15% 1202 1097 1210

Load losses W 8900 + 15% 9587 9903 9789

Total losses W 10,000 + 10% 10,789 11,000 11,000

Impedance % 6 ± 10% 5.76 5.54 5.48

Main material cost USD 8423 7712 7560

Weight of active part kg 885 824 803

Oil weight kg 563 511 506

Total weight kg 1899 1840 1811
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In both alternatives, calculated total losses are equal to the maximum value of the relevant constraint plus

the tolerance; this can be considered as a justification of the proper functioning of the optimization algorithm

used.

It should be noted that the reference design has dual primary voltages rated at 20 kV and 6.6 kV; however,

the losses and weights given in Table 5 for this design have been calculated as if the transformer has a single

primary voltage rated at 20 kV.

5. Conclusions

In this study, 20 modern nature-inspired metaheuristic optimization algorithms were investigated by conducting

performance tests for suitability for the TDO problem, and the results of the best five algorithms are presented

in this paper. These five algorithms are the ABC, BSA, b6e6rl, CS, and FPA, none of which have previously

been used for the full TDO problem.

A pragmatic benchmarking scheme was developed for comparison of the algorithms. It is quite straight-

forward and can easily be adapted to specific needs.

The comparison of the results of performance tests conducted by using three different distribution

transformer ratings proved that the competitive-adaptive differential evolution (b6e6rl) algorithm yields results

with better than 99.9% accuracy and precision in a single run, in less than 30 s. Furthermore, it was

mathematically proved in [19] and [22] that the CS algorithm, the performance of which is very close to that of

b6e6rl, can satisfy the global convergence requirements and thus has guaranteed global convergence properties.

The results of the performance tests conducted in this study verify the validity of this property, and hence both

b6e6rl and CS can be considered as a viable alternatives to deterministic methods for the solution of the TDO
problem.

It should be noted that, when some or all of the design variables used for the TDO problem are continuous,

as generally is the case in the available literature, including this study, the resulting optimum solution would

be a theoretical one due to nonstandard dimensions; hence, the design engineer needs to convert the theoretical

solution to a feasible one. This problem is addressed in another study by the same authors of this paper [23],

where a discrete transformer design optimization method is proposed that yields solutions with commercially

available or productionally feasible dimensions, thus eliminating the need for the additional efforts of the design

engineer.

It should also be noted that both theoretical and practical optimization methods should be used together;

a design engineer should first determine where the theoretical optimum solution lies, and then use practical

optimization to approach the theoretical optimum as much as possible. The reason for this is that practical

optimization can sometimes get trapped at a local optimum far away from the theoretical optimum, and without

using theoretical optimization the design engineer may not be aware of such a situation. In short, theoretical

and practical optimization methods should complement each other in a transformer design optimization process.
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