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Abstract: This paper proposes an approach to solve the transient stability constraint optimal power flow (TSC-OPF)

problem. The transient stability constraints are expressed as the critical clearing time (CCT) of different contingencies,

and are approximated using artificial neural networks (ANNs). The ANNs provide a nonlinear, differentiable mapping

between the load flow variables and the CCT. As a result, the TSC-OPF with multiple transient stability constraints

can be solved very efficiently with little additional computational burden. The effectiveness of the proposed method is

demonstrated with the IEEE 39 bus and the IEEE 300 bus systems.

Key words: Power system stability, critical clearing time, transient stability constrained optimal power flow, artificial

neural networks

1. Introduction

During the real-time operation and planning of electric power systems, having a rapid and accurate assessment of

the power system stability boundary is an essential requirement. According to the definition and classification

of IEEE/CIGRE [1], power system stability can be divided into 3 categories: frequency, voltage, and rotor

angle stability. The large disturbance rotor angle stability, which is often referred to as transient stability, is the

ability of the power system generators to remain in synchronism after severe short-circuit faults. An accurate

assessment of transient stability requires a detailed time domain simulation, which is a computationally extensive

study, particularly when several contingencies must be considered.

A stability-constrained optimal power flow is essentially a traditional OPF formulation coupled with

additional constraints to consider various stability constraints [2–5]. A common solution to include transient

stability constraints into an OPF problem is to use discretized dynamic equations as the constraints. The main

disadvantage of this approach is that the number of constraints of the transient stability-constrained optimal

power flow (TSC-OPF) problem is very large, which significantly increases the computation burden.

Recently, many studies have proposed using independent dynamic simulation in the TSC-OPF framework.

References [6–8] propose the use of an independent dynamic simulation code to determine the transient stability

at each iteration step. The drawback to this approach is that there is no explicit analytical expression between

the transient stability boundary and the optimization variables, which enables the gradient of the stability

boundary to be derived, with regard to the optimization variables. Without the gradient information, the

convergence rate would be slow.
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To improve the convergence rate of TSC-OPF algorithms, several studies have proposed the use of

sensitivity analysis. The results of [9–11] clearly show that sensitivity-based algorithms can help reduce the

computation time of the TSC-OPF problem. However, time-domain simulations remain necessary during the

OPF calculation. The computation time for contingency simulation can be substantial, particularly when several

contingencies are considered.

In addition to the conventional gradient-based method, several studies also proposed heuristic algorithms

to solve the TSC-OPF problem [12–17]. However, heuristic algorithms usually incur very high computational

cost. Reference [18] proposed a multiobjective genetic algorithm, based on the Pareto front principle. This

approach can potentially reduce the computation time, because the optimization is stopped when there is no

further improvement in the CCT and the overall objective function.

This paper proposes an alternative approach to solve the TSC-OPF problem, where the transient stability

constraints are approximated using artificial neural networks (ANNs). The study is motivated by previous

research, which showed that the CCT can be approximated with very high accuracy from prefault load flow

data using various artificial intelligence networks [19–22]. Hence, the ANNs can provide analytical expressions

of the stability boundaries and their sensitivity with respect to optimization variables.

The paper is organized as follows: Section 2 introduces some background on the problem of OPF

with augmented stability constraints, and Sections 3 and 4 present the proposed approach of using ANNs

to approximate the system’s CCT. Section 5 presents the results obtained with the New England 39 bus system

and the IEEE 300 bus system.

2. TSC-OPF

The TSC-OPF problem is an extended formulation of the conventional OPF. The original OPF problem consists

of minimizing an objective function by generation scheduling, as follows:

f (Pg) → min (1)

The steady-state constraints are essentially power flow equations at system buses and their physical limits:

Pg − PL − P (U, θ) = 0 (2)

Qg − QL − Q (U, θ) = 0 (3)

Umin ≤ U ≤ Umax (4)

Pg.min ≤ P g ≤ Pg.max (5)

Qg.min ≤ Qg ≤ Qg.max (6)

In Eqs. (2)–(6), Pg and PL are the active injected power and the active load at the system buses, respectively.

Similarly, Qg and QL are the reactive power injected and the reactive load at system buses. The functions

P (U, θ) and Q (U, θ) are the power flow equations, and U is the vector of bus voltages, where Umin and

Umax are the lower and upper limits. The generators active and reactive power are also subjected to operating

constraints, as shown in Eqs. (5) and (6).
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The TSC-OPF problem extends the OPF formulation by adding constraints that are related to the

stability criteria. In the most direct form, these constraints can be written as

CCTk (Pg, Qg, U, θ) ≥ CCTmin, k = 1, .., N, (7)

where subscript k denotes the k th contingency. However, there is no analytical function for CCT as in Eq. (7)

because time-domain simulations must be performed to determine the CCT values. As discussed in Section 1,

in order to derive an approximate analytical expression of Eq. (7), several research works proposed a sequential

approach, where the stability boundary is estimated outside the OPF calculation [7,9,16–18]. However, because

there is no analytical function of the stability margin, the convergence rate of the optimization can be slower

than that of a conventional OPF. In addition, the time required at each optimization step to determine the

CCT is considerable. To increase the convergence rate, CCT sensitivity must be estimated with respect to the

input variables.

3. Approximation of CCT using ANNs

3.1. Using the ANN to approximate the stability boundary

As discussed above, the main difficulty in solving the TSC-OPF is associated with methods to incorporate

stability constraints into the optimization problem. Previous studies [19] have shown that the CCT can be

approximated with high accuracy, based on the load flow data, using a polynomial function. For the purpose

of CCT approximation, feed-forward ANNs have been used in many studies [20–23]. The structure of a feed-

forward neural network has been thoroughly described in the literature, and is not shown here for brevity.

If the ANN can provide a nonlinear mapping between the initial load flow data and the CCTs of different

faults, it can provide the gradient information, which helps increase the convergence rate of the OPF. In

addition, the problem size of the TSC-OPF only slightly increases compared to the traditional OPF, with one

contingency: there is one additional constraint.

3.2. Input selection

To approximate CCTs with high accuracy, it is important that parameters with a high correlation with the

critical clearing time be selected as the input for the ANN. In principle, the vector of bus voltage magnitudes and

angles contains the full load flow data and can thus be used as the input vector [19]. However, previous studies

have shown that the prefault active power generation of the generators Pg has the most effect on the CCT of

the corresponding machine. Moreover, it has been shown that Pg and CCT have a quasilinear relationship [24].

In addition to the active power output Pg , the reactive power output Qg also influences the CCT. For a small

system, [25,26] showed that very good estimation accuracy can be achieved with Pg and Qg as the input.

4. The proposed framework for TSC-OPF

In this work, the ANNs are used to approximate CCT. Each considered contingency in the TSC-OPF is

expressed using a separate ANN, as in Eq. (7). Because no new optimization variable is introduced in the

proposed approach, the TSC-OPF formulation is essentially identical to the conventional OPF with additional

constraints on the CCT of all considered faults. The proposed OPF formulation can be described by Eq. (1)

and Eqs. (2)–(7).
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4.1. Database generation and ANN training

To create the training data, the method in [19] was followed. Each operating condition is created based on the

following equations:

P i
L (k) = P i

L [1 + 2∆PL (0.5 − εPL(k))] (8)

Qi
L (k) = Qi

L [1 + 2∆QL (0.5 − εQL(k))] (9)

P j
G (k) = P j

G [1 + 2∆PG (0.5 − εPG(k))] (10)

U j
G (k) = U j

g [1 + 2∆Ug (0.5 − εUg(k))] , (11)

where P i
L (k) and Qi

L (k) are the initial load demand at bus i and P j
G (k) and U j

G (k) are the active power

and voltage set points at the j th bus. The operating point is indexed by k , and εPL, εQL, εPG, εUg are

independent random variables, which vary in the range of [0; 1]. The range of variation of the load flow

data variables is controlled by parameters ∆PL, ∆QL, ∆PG and ∆Ug . In this work, dynamic simulations are

performed using the MatDyn tool [27]. To improve the accuracy of simulations, the variable time step solver

Runge-Kutta Fehlberg was used. CCT was determined by performing consecutive time-domain simulations with

varying fault clearing times. The transient stability was assessed by observing the generators’ relative angles

with respect to the COI, up to a stop time of ts = 4 s. A relative angle larger than 100◦ is considered unstable

[2]. In this work only the relative angle at the stop time 4 s is assessed. With this approach, both first-swing

and multiswing instability can be detected. For brevity, the detailed procedures of the CCT calculation are not

shown here.

4.2. The transient stability constraints

After the ANN training has finished, an analytical function fk that represents Eq. (7) is obtained. First-

and second-order analytical expressions of fk with respect to the input variables can be deduced. The OPF

problem can now be augmented with additional transient stability constraints in the functional form. In addition,

a multistep OPF is proposed: At each iteration, the functions fk are linearized. The new transient stability

constraints are as follows:

f0k +
∂fk
∂x

∆x ≥ CCTmin (12)

In Eq. (12), x = [Pg, Qg]
T
is the input vector of fk ; f0k is the estimated CCT value for contingency k and

is evaluated at the current solution x∗ ; CCTmin is the minimum required CCT; and ∆x = x − x∗ . Eq. (12)

can be rewritten as

∂fk
∂x

x ≥ CCTmin − f0k +
∂fk
∂x

x∗ (13)

Therefore, the final TSC-OPF formulation consists of Eq. (1), Eqs. (2)–(6), and N stability constraints in the

form of Eq. (13).

After each OPF iteration, the convergence is evaluated based on the difference between the desired CCT

values and the actual CCT. Another measure for convergence is the change in active power output of the

generator after each iteration, i.e. ∆Pg = P g (k) − Pg(k − 1). Figure 1 summarizes the proposed framework.
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Load flow calculation

Establish linearized TS constraints, as in (13)

Solve TSC-OPF to get solution x*(k)

 ΔPg = Pg(k) - Pg(k-1)

 ΔPg ≤  ε ?

CCT  ≥ CCTmin  ?

STOP

Yes

No

Figure 1. The proposed framework.

5. Test results

5.1. The IEEE 39 bus system

The proposed approach was first tested on the New England (IEEE 39-bus) system. A single-line diagram of

this system is shown in Figure 2 [28]. The OPF problem was solved using MATPOWER [29]. In total, 2000

operating points were created. Seventy percent of this data set was used for training, and the remainder was

used for testing and validation. The ANN structure (number of hidden nodes and the activation functions) was

determined on a trial-and-error basis. For the New England system, the best accuracy was achieved with 35–40

nodes in the hidden layer and with the hyperbolic tangent sigmoid activation function. This result is similar to

those reported in previous studies [17,21,23].

It should be noted that the transient stability of all generators should be considered in a realistic planning

study. In this paper, due to limited spacing, the results of TSC-OPF are presented with 3 independent

contingencies, which are three-phase faults at generators 7, 8, and 9 terminals. As discussed in Section 3.2, in

this work, the combination of the generator active and reactive outputs [Pg, Qg]
T
was selected as input for the

ANNs.

Based on the optimal operating conditions obtained without the stability constraints, the simulation

results for each of these contingencies are shown in Figure 3. The limit angle (100◦) is shown is red dashed

lines. The system was unstable for all considered contingencies. For generator 7, it was a multiswing instability

that involved a group of generators. For generator 8, it was a multiswing instability that involved one generator

only. For generator 9, it was a first-swing instability.

The stability constraints were then applied in the proposed TSC-OPF. The imposed minimum CCT for

generators 7, 8, and 9 faults was 180, 180, and 110 ms, respectively. For the New England system, the solution

converged at desired CCT after 2 iterations. In Figure 4, the CCTs are shown for up to 4 iterations in order to

show the good convergence characteristic of the proposed algorithm.

The operating points that were obtained with OPF and TSC-OPF are shown in Table 1. It is interesting

to note the active generation changes of three generators 7, 8, and 9. To mitigate the multiswing instability,
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Figure 2. Single-line diagram of the New England system.
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Figure 3. Angle responses of the initial OPF solution. a) 3-phase fault at G7, tc = 180 ms; b) 3-phase fault at G8, tc

= 180 ms; c) 3-phase fault at G9, tc = 110 ms.

generator 7 must slightly reduce its active output, whereas generator 8 does not need to change its active power

at all. In fact, the reduction of active power output from the nearby generator 9 and the increase in reactive

power at generator 8 are enough to stabilize the contingency.
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Figure 4. Convergence characteristic of the proposed TSC-OPF, New England system.

Table 1. Comparison of OPF and TSC-OPF solutions.

Machine
OPF solution TSC-OPF solution
Pg (MW) Ug(pu) Qg (MVAr) Pg (MW) Ug (pu) Qg (MVAr)

1 274.99 1.04 140.00 274.99 1.04 140.00
2 622.07 1.03 300.00 698.11 1.00 282.24
3 617.62 1.02 263.86 698.35 0.99 218.80
4 602.16 1.01 116.64 614.19 1.01 118.60
5 558.79 1.02 157.37 499.33 1.02 167.00
6 607.02 1.06 227.95 585.08 1.06 230.28
7 615.96 1.06 71.53 610.70 1.06 75.61
8 593.97 1.03 0.00 593.97 1.03 20.26
9 912.99 1.04 53.70 822.36 1.04 27.30
10 900.13 1.01 -7.58 902.60 1.01 33.55

The angle responses of the aforementioned contingencies were now reevaluated. The results are shown

in Figure 5. The system is stabilized with the TSC-OPF. It should be noted that the relative transient angle

may exceed 100◦ , but the generators can still remain in synchronism afterward. The 100◦ limit is thus quite

conservative; therefore this criterion is only applied at the stop time to avoid this issue.
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Figure 5. Angle responses of TSC-OPF solution. a) 3-phase fault at G7, tc = 180 ms; b) 3-phase fault at G8,

tc = 180 ms; c) 3-phase fault at G9, tc = 110 ms.

To evaluate the consistency of the proposed algorithm, the TSC-OPF was performed with 100 different

initial operating points. For this test, the original cost data of the New England system were used. Table

2 shows the performance of the proposed algorithm and other algorithms for solving TSC-OPF of the New
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England system. Because of the difference in the contingencies and in the generator model, an algorithm with

smaller reported costs is not necessarily better than the others. The costs are shown to compare the consistency

of different approaches. All algorithms shown in Table 2 have consistent performance with very small deviations.

However, the proposed approach has better performance in terms of accuracy control and particularly CPU

time.

Table 2. Performance comparison of different TSC-OPF algorithms.

Proposed method Ref [14] Ref [13] Ref [12]
Maximum cost ($/h) 36,349 36,368 36,413 -
Minimum cost ($/h) 36,318 36,350 36,382 -
Standard deviation 10.7 $ (<0.01%) 5.09 (<0.01%) - 0.05%
CCT error (ms) ≤ 5 ≤ 10 ≤ 10 10
CPU time (s) 0.89 145 950.8 86–91

5.2. IEEE 300 bus system

The proposed TSC-OPF approach was also tested on the IEEE 300 bus system with 69 generators. The load

flow and generator cost data for this system are available in MATPOWER. The dynamic data for this system

were created using the IEEE AC4A excitation model and TGOV1 governors. Three contingencies were selected

to evaluate the performance of the proposed algorithm: 3-phase faults at generators 6, 21, and 40. With the

original load flow and generator cost data, the CCT for these contingencies are 110, 220, and 76 ms, respectively.

Since the fault-clearing time of modern digital relays and circuit breakers is typically in the range of 80–100

ms, the CCT of generator 6, and especially that of generator 40, are rather small. Therefore, the CCT levels of

these generators are set to 180 ms and 200 ms, respectively.

After the proposed TSC-OPF converged to the optimal solution, time-domain simulations were performed

to determine the CCT of the considered contingencies. As seen in Table 3, the actual CCT for generators 6 and

40 were 183 and 204 ms, which satisfied the imposed constraints. The simulation results are not shown, due to

limited space. Because generator 21 was already stable with the fault being considered, the TSC-OPF did not

affect its CCT value.

Table 3. Comparison of desired values of CCT and their actual values.

Gen. Desired CCT (ms) Actual CCT (ms)
6 180 183
21 180 220 (nonbinding)
40 200 204

The average CPU time of the proposed TSC-OPF algorithm is 3.5 s for the IEEE 300 bus system. To

solve the TSC-OPF of this system with multiple contingencies, the reported CPU time is 69.66 s in [18], 23 s

in [30], and 102.6 s in [31].

6. Conclusion

This paper proposes a new framework to solve the TSC-OPF problem. In the proposed approach, CCT and its

sensitivity to input variables are approximated using ANNs. Compared to sequential methods, which perform

time-domain simulations during OPF calculation, and compared to the heuristic methods, the proposed method

achieves faster computation time. Simulation results show that the convergence rate of the proposed approach
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is notably good because of the quasilinear relationship between the generators active power and the transient

stability margin. Another advantage of the proposed method compared to other heuristic methods [12–18] is

that CCT performance of critical faults can be controlled more precisely, thanks to the sensitivity measures

provided by the ANN. The proposed algorithm can handle several types of angle stability, including first-swing

and multiswing instability, which involve one or a group of generators.

Nowadays, there is an increasing need to perform stability-constrained OPF in a near-real–time frame-

work. For such application, the time performance of OPF calculation is critical. The proposed approach allows

one to perform fast TSC-OPF calculation during operation, while the database generation and ANN training

can be prepared in the day ahead planning process.
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