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Abstract: Heuristic algorithms are used for optimizing a large diversity of engineering problems. In this study, the

performance of six commonly used and cited meta-heuristic algorithms (MhAs) is compared based on point of view

fuzzy modelling. In this study, the simplest version of MhAs is specifically used to observe and evaluate their natural

optimization performances. For the comparisons, dynamic system modelling using a neuro-fuzzy system (NFS) was

studied. Obtained results were evaluated based on commonly used statistical metrics, and then each algorithm was

ranked according to these metrics. Based on the computed average ranks, the best MhA among the six MhAs was

identified, and the effect of MhAs on fuzzy modelling was investigated.
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1. Introduction

It is well known that classical optimization techniques cannot solve complex engineering problems due to their

solution mechanisms. Their performance depends on the solution space dimension, the number of parameters

to be optimized, and the constraints on the problem. On the other hand, classical optimization algorithms have

a rigid structure in terms of adapting to a given problem.

To cope with the limitations briefly mentioned above, flexible and adaptable algorithms are required

to solve the problems of real life. Hence, in the literature, many meta-heuristic algorithms (MhAs) were

developed and showed a superior performance to that of classical optimization algorithms. So far, MhAs have

been successfully adapted to large diversity scientific problems for optimization. Following the genetic algorithm

(GA), the first meta-heuristic, many MhAs have been developed, and this algorithm discovery process is unlikely

to have come to an end.

The most important characteristics of MhAs are that they can solve many complex problems without

complex mathematical transactions compared to classical techniques. MhAs can be considered as free derivative

optimization techniques. The performance of MhAs in solving scientific or engineering problems that are very

difficult and even impossible to solve with previously existing methods made them popular for about half a

century. In the last few decades, there have been many studies in the literature on the use of MhAs with

different problems.

Recently, the usage of MhAs for neuro-fuzzy network design has become a subject of increasing interest

because of their versatile advantages such as simplicity, ease of realization, and adaptability to high-dimensional

problems. Zhenget et al. [1] showed that the neuro-fuzzy network hybridized with BBO MhA shows a superior
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performance to that of some other neuro-fuzzy systems (NFSs) on a classification problem. Karaboğa and Kaya

[2] compared ABC algorithm training performance with GA and PSO on ANFIS based on four dynamic system

modelling problems.

As seen in the literature review, MhAs have been used for solving many scientific or engineering problems.

Each study in the literature has generally been linked to the success of a studied MhA, comparing a few MhAs

familiar to the study’s author(s) for a discussed problem, but a comparative study in the field of fuzzy system

modelling using the simplest case/version of MhAs has not been found in the literature.

This paper presents a comparative performance of newsworthy MhAs on dynamic system modelling using

the most preferred fuzzy network model. For the comparison particle swarm optimization (PSO), differential

evolution (DE), artificial bee colony (ABC), the imperialist competitive algorithm (ICA), biogeography-based

optimization (BBO), and the cuckoo optimization algorithm (COA) have been chosen with regards to the

number of citations they have received and their popularity in the scientific community. Specifically, the simplest

case/version of the MhAs was used to compare their performance-based searching or optimizing nature. The

contributions of this paper are as follows: (i) being the first to carry out a comparative study of newsworthy

meta-heuristics for fuzzy modelling on five selected nonlinear systems, (ii) being the first study to consider

the performance of the simplest case MhAs using a novel well-rounded comparison systematic, (iii) identifying

which MhA is the best among the six, and (iv) investigating the effect of MhAs on fuzzy modelling.

2. Newsworthy meta-heuristic algorithms

The algorithms used in this study are introduced briefly in this section.

2.1. The particle swarm optimization (PSO) algorithm

PSO was inspired by social interactions among animals like the flocking of birds. PSO searches for the optimum

location in the solution space by means of its individuals called particles. The used case of PSO is formulated

by Eqs. (1) and (2) [3]. In the equations, r1 and r2 , and c1 and c2 , and ω are uniformly distributed random

numbers, cognitive/social constant learning rates, and weighting factor, respectively. The velocity given in Eq.

(1) is limited within the range of [vmin , vmax ]. Particles are updated by Eq. (2) at each generation.

vi (n+ 1) = ωvi (n) + c1r1 (lbest,i − pi (n)) + c2r2 (gbest − pi (n)) (1)

pi (n+ 1)=pi (n)+vi (n+ 1) (2)

2.2. The differential evolution (DE) algorithm

DE is a popular and commonly used MhA algorithm discovered by Storn and Price in 1996 [4]. The most

important feature of DE is that it generates trial parameter vectors using operations like those of GA [5]. DE

uses the difference between two individuals randomly selected from a population to add a third individual. The

DE algorithm used in this study is given in Algorithm 1.

2.3. The artificial bee colony (ABC) algorithm

ABC is a basic and efficient MhA introduced by Karaboğa in 2005 inspired by the nectar exploration behavior

of a honey bee swarm [6]. The detailed pseudo-code of the ABC algorithm can be obtained from [7].
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Algorithm 1 The DE algorithm in pseudo-code

Generate the initial population (N≥4) and set algorithm parameters {mutation scale factor F ∈ [0, 2],

crossover rate CR∈ (0,1)}

Do (Main loop)

For each individual x i in the population

Choose randomly three numbers {r1, r2, r3 ∈ [1, N] and r1 ̸= r2 ̸= r3 ̸= i}

Generate a random integer jrand ∈ [1, D]

For each element of x i

ui,j =

 xr1,j + F (xr2,j − xr3,j) if (rand ≤ CR ∨ j =jrand)

xi,j otherwise

End For

Replace xi with the offspring u i if u i is better

End For

Until the termination condition is achieved

Solution: The individual having the best fitness will be the solution for the problem

2.4. The imperialist competitive algorithm (ICA)

ICA is a MhA discovered by Atashpaz-Gargari and Lucas in 2007 [8]. Its source of inspiration is the world

system of imperialist countries. The basic steps of ICA used in this study are given in Algorithm 2.

2.5. The biogeography-based optimization (BBO) algorithm

The BBO algorithm is a relatively new MhA based on a biogeography concept. Its source of inspiration is the

idea of the migration strategy of animals. BBO was proposed by Dan Simon in 2008 [9]. The pseudo-code of

BBO used in this study is given in Algorithm 3.

2.6. The cuckoo optimization algorithm (COA)

The COA is the newest MhA used in this study. It was proposed by Ramin Rajabioun in [10]. Its source of

inspiration is the lifestyle of the cuckoo bird. The extraordinary egg laying and breeding behaviors of cuckoos

constitute the main operations of this new metaheuristic optimization algorithm. The code of the COA given in

(https://www.mathworks.com/matlabcentral/fileexchange/35635-cuckoo-optimization-algorithm) was adapted

to the problems studied here and used.

3. Dynamic systems and comparison bench

3.1. Benchmark dynamic systems

In this section, benchmark dynamic systems (BDSs) used to investigate performance of MhAs, as briefly defined

in the previous section, are introduced. The systems are listed in Table 1. These systems are often used in the
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Algorithm 2 The ICA algorithm in pseudo-code

1. Initialization and setting algorithm parameters

(a) Set the number of countries (N) and imperial countries (N imp ), searching space dimension (D),

revolution rate (rv ), assimilation coefficient β ∈ [0,1], total cost coefficient ξ , uniting threshold δ ,

maximum generation number (Gmax ), termination criterion (TC)

(b) Assign initial countries in the D dimensional search space (c i , i=1, 2, 3, . . .N))

(c) Evaluate the fitness f(c i ) of each country

(d) Determine the initial empires countries

2. Do (Main loop)

(a) For each empire i do

a) Perform assimilation for all colonies in empire i

b) Perform revolving for all colonies in empire

c) Evaluate the fitness for all colonies in empire i

d) Exchange positions of the imperialist and a colony of empire i according to fitness values

e) Compute of total cost for empire i

TotalCost i= ImperialistCost i + ξ mean i (ColoniesCosts)

(b) Uniting the empires if distance between each other is less than uniting threshold δ

(c) Perform imperialist competition

Eliminating the powerless empires

Until the termination condition is achieved

3. Solution: The imperialist having the best fitness will be the solution for the problem

literature as benchmarks for different modelling purposes. In the table, the used input arrays of the systems

for both training and test stages are defined as well as their mathematical expressions.

3.2. Neuro-fuzzy network structure

In this study, a Takagi–Sugeno (TS)-type fuzzy inference system in a five-layer neural network structure was

used as a comparison bench. Since it combines the advantages of fuzzy logic and neural network techniques in
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Algorithm 3 The BBO algorithm in pseudo-code

1. Initialization and setting algorithm parameters

(a) Set the population size (N), searching space dimension (D), number of elite (nE ), mutation proba-

bility (m), maximum generation number (Gmax ), termination criterion (TC)

(b) Assign initial population members (x i ) in the D dimensional search space

(c) Evaluate the fitness of each population member { f(x i ) }

(d) Sort the population and save the best nE solutions in the elite array

(e) Assign a zero-temporary population (z)

(f) Compute migration rates λ , assuming the population is sorted

µ = [
N

N + 1

N − 1

N + 1

N − 2

N + 1
· · · 1

N + 1
], λ= 1−µ

2. Do (Main loop)

(a) For each member i do

Perform emigration (roulette wheel selection) kth dimension

Emigration Yes: z i,k = xselected,k Emigration No: z i,k = xi,k

(b) Perform mutation for all members in temporary population

(c) Replace members with their new migrated and mutated versions {x = z}

(d) Sort the population from best to worst

(e) Replace the worst individuals with the previous generation’s elites

(f) Sort again the population from best to worst

(g) Save the best member as solution of the current generation

Until the termination condition is achieved

3. Solution: The best member having the best fitness will be the solution for the problem.

a single network structure, it could be called NFS. For the efficient and optimal usage of NFS, MhAs are used

for parameter tuning [15]. NFS, as a bench, was used to model nonlinear systems for performance comparison

of MhAs here. NFS parameters are optimized by MhAs for system modelling purposes.
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Table 1. Benchmark dynamic systems used for system modelling based on fuzzy logic learned by MhAs.

# BDSs Train Test

1 y(k) = y(k−1)y(k−2)(y(k−1)+2.5)
1+y2(k−1)+y2(k−2) + u(k)[11] u(k) = cos 2πk

100 u(k) = sin 2πk
25

2 y(k + 1) = y(k)
1+y2(k) + u3(k)[11] u(k) = cos 2πk

100 u(k) = sin 2πk
25

3 y(k + 1) = y(k) + u(k)e−3|y(k)| [12]

Random amplitude in

interval of [-1 1] with

10 sampling periods

4 y(k + 1) = 24+y(k)
30 y(k)− 0.8 u(k)2

1+u(k)2 y(k − 1) + 0.5u(k)[13]

Random amplitude in

interval of [-5 5] and

random sampling periods

in interval of [1 10]

5 y(k + 1) = 0.5( y(k)
1+y2(k) + (1 + u(k))u(k)(1− u(k)))[14]

Random amplitude in

interval of [-2 2] and

random sampling periods

in interval of [1 10]

A fuzzy system having R first order TS rules in the rule base, Gaussian membership functions (MFs),

product inference engine, and weighted average defuzzifier was used in this study. The input–output relation

of a NFS with two inputs (x, y) and a single output (z) is given by (3), where p l , q l , and r l are the l th rule’s

consequent parameters and µli is the l th rule’s ith membership function.

z(x, y) =

R∑
l=1

(plx+ qly + rl)µli(x)µlj(y)

R∑
l=1

µli(x)µlj(y)

(3)

The Gaussian membership function is given by (4), where c lj and σlj are the center and variance of the related

Gaussian membership function. Comprehensive information on the TS-type fuzzy system with a five-layer

network structure can be acquired from [16].

µli(x) = exp

(
−1

2

(
x− cli
σli

)2
)
, µlj(y) = exp

(
−1

2

(
y − clj
σlj

)2
)

(4)

To model BDS, NFSs were structured as shown in Table 2. The modelling or optimizing process can be called

training. During the training stage, the parameters of NFS were optimized by a meta-heuristic algorithm. After

this stage, the NFS model of each DBS was obtained. The performances of these models were observed by using

test data that were invisible at the training stage. In both stages, the two data sets (training and test), were

prepared beforehand. The used input arrays to obtain these sets are graphically given in Figures 1 and 2,

respectively. Figure 3 summarizes the training stage.

4. Comparison of MhAs

For comparison purposes, each MhA was separately run 50 times with 100 generations for each BDS to model it

via the NFS network. Each run included, first, a 100-generation training phase using a training set and, second,
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Figure 1. Input arrays (u(k)) to obtain training sets: (a) BDS1 and BDS2, (b) BDS3, (c) BDS4, (d) BDS5.

Table 2. NFS structures to modelling BDSs.

# Inputs # of MFs # of rules # of parameters (D)

BDS1 u(k), y(k-2), y(k-1) 2, 2, 2 8 36

BDS2 u(k), y(k), y(k-1) 2, 2, 2 8 36

BDS3 u(k), y(k) 2, 2 4 20

BDS4 u(k), y(k), y(k-1) 2, 2, 2 8 36

BDS5 u(k), y(k) 2, 2 4 20

a testing phase using a test set. The fitness value of an individual of a running algorithm, the performance of

the solution at the end of the training phase, and then the performance of the solution for the testing phase

were measured by the following MSE metric:

cost =
1

kmax

kmax∑
k=1

e (k)
2

(5)
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Figure 2. Input arrays (u(k)) to obtain testing sets: (a) BDS1 and BDS2, (b) BDS3, (c) BDS4, (d) BDS5.
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Figure 3. BDS modelling block structure using NFS by MhAs.

The parameters of each MhA are given in Table 3. These parameter values were commonly used or defined by

the founder of the related algorithm. The simplest version of MhAs was used to observe and evaluate the natural

optimization performances of the algorithms in this study. For all algorithms, the swarm/population/colony

size was used as defined in Eq. (6) taken from [17].
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Table 3. Parameters of MhAs

Metaheuristics

PSO DE ABC ICA BBO COA

Parameters∗

ω=0.8 CR =0.4 L = N D
2 Nimp=4 m=0.04 Cinitial=4

c1=2.05 F =0.3 rv=0.3 nE=5 minEgg=2

c2=2.05 β=2 maxEgg=4

ξ=0.02 regg=0.01

δ=0.02 ncluster=2

λ=2
∗The definition of each parameter can be found in the related pseudo-code or reference given in Section 2.

N = round(10 + 2
√
D) (6)

The obtained results of 50 runs of each MhA for modelling each BDS were considered according to three statistic

metrics: average cost value, average standard deviation, and average elapsed time. In Table 4, the average cost

values obtained at the end of the runs are given for both the training and the testing phases. As can be seen

from the table, for each BDS, ranks of MhAs were determined based on their average cost values in the column

labelled Rnk. The average ranks of each MhA were computed based on these rank values. Table 5 gives the

statistical results of the standard deviation of the average cost values of the runs in a manner similar to that

of Table 4. Similarly, Table 6 summarizes the result of the average elapsed time and the standard deviation for

the runs.

To evaluate convergence in terms of a graphical comparison, the point of view changes of the average cost

values of the best individuals for all runs during the course of the training stage are given in the left column of

Figure 4. The column on the right in the figure shows the course of the training stages of BDS modelling with

NFS for the best run among all the runs. From the graphics in Figure 4, the convergence behavior of each MhA

can be visually evaluated.

To give a general outline to the readers, Figure 5 gives the graphical performances of the solutions

obtained at the end of the best run for each BDS. As can be seen from the figure, a training performance with

100 generations was adequate for BDS1, BDS2, BDS3, and BDS5 but not for BDS4. The input design or NFS

structure may not be appropriate for BDS4. One should not dwell on these deficiencies since the main focus

is not this kind of modelling, but general learning performance of MhAs. On the other hand, except BDS3, it

can be stated that testing performances were generally on a parallel course with training performances. It must

be noted that these results were for only 100 generations. The observed lack of modelling may not be seen for

larger generations such as 500 or 1000.

5. Conclusions and remarks

The main objective of this study was to observe and make conclusions about the optimization performance of

commonly used and cited newsworthy MhAs on fuzzy modeling problems. MhAs were run to tune parameters

of NFS for the modelling of benchmark dynamic systems using the simplest version of each MhA to observe

and evaluate their natural optimization performances in this study. Results obtained by the repeated running

of MhAs on the problems were concluded primarily in four measuring metrics.

The first metric is the average cost values obtained at the end of the runs. Table 4 shows the values of

this metric for both the training and testing phases of each BDS. In the table, the ranks and average ranks
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Figure 4. Training course of MhAs in terms of mean cost for all runs (left column) and in terms of cost for the best

run (right column).
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Figure 5. Training (left column) and testing (right column) performance of the solution obtained at the end of the best

run among all runs with 100 generations.
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Table 6. Average elapsed times of runs and their standard deviation obtained for the training.

BDS#

Metaheuristics

PSO DE ABC ICA BBO COA

Time [s] Time [s] Time [s] Time [s] Time [s] Time [s]

Rnk Rnk Rnk Rnk Rnk Rnk

Mean elapsed time

BDS1
2.042792

3

2.085862

4

2.089168

5

1.200190

1

1.310110

2

252.5919

6

BDS2
2.114711

4

2.065126

3

2.155981

5

1.126964

1

1.183497

2

244.3371

6

BDS3
1.375803

2

1.405225

3

1.490951

5

1.309137

1

1.481025

4

262.6119

6

BDS4
2.104275

3

2.136721

4

2.251098

5

1.732459

1

2.041052

2

346.6998

6

BDS5
1.441667

4

1.386875

3

1.472106

5

0.806271

2

0.700518

1

174.2024

6

Standard deviation

BDS1
0.000409

3

0.000417

4

0.000418

5

0.000240

1

0.000262

2

0.050518

6

BDS2
0.000423

4

0.000413

3

0.000431

5

0.000225

1

0.000237

2

0.048867

6

BDS3
0.000275

2

0.000281

3

0.000298

5

0.000262

1

0.000296

4

0.052522

6

BDS4
0.000421

3

0.000427

4

0.000450

5

0.000346

1

0.000408

2

0.069340

6

BDS5
0.000288

4

0.000277

3

0.000294

5

0.000161

2

0.000140

1

0.034840

6

Average rank 3.2 3.4 5 1.2 2.2 6

of each algorithm are given. According to this metric, COA is the best MhA, but the average ranks of BBO

and ICA are close to that of COA. The others’ average ranks are far from the best ones. The second metric

is the average standard deviation of cost values obtained in the last generation of runs. Thus, if the standard

deviation value decreases, it means that the algorithm finds an approximately identical solution. On the other

hand, if it increases, the algorithm finds different solutions for each run. The standard deviations of the cost

values of 50 runs are given in Table 5. As seen from the table, DE is the best MhA, and the next best is BBO,

according to the average ranks.

The average elapsed time of 50 runs is the third statistical metric used in this study. The numerical

results for this metric are given together with its standard deviation in Table 6. This table presents remarkable

comparison results. According to ranks values given in the table, COA is, surprisingly, the slowest one while

ICA is the fastest algorithm among the MhAs. The others are sorted as BBO, PSO, DE, and ABC from good

to bad. It was concluded that the slowness of COA arises particularly from the clustering transaction beside

its other operations like egg laying, removing eggs, sorting, and combining habitat. On the other hand, ICA

is the fastest of them although it has similar complex operations such as assimilation and revolving to that of

COA except clustering. The last metric is convergence speed. The convergence behavior of MhAs cannot be

easily seen in the tables but is possible to understand from the graphics given in Figure 4. From the figure,

the convergence speed of each algorithm can be observed. Table 7 shows the convergence speed ranks of MhAs
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considering their convergence in the first decade’s generations. According to the average ranks given in the

table, COA is the fastest converging MhA, and BBO and PSO can be considered the second fastest since they

have ranks close to each other; the others have similar converging performances.

Table 7. Convergence speed comparison table from Figure 4.

BDS#

Metaheuristics

PSO DE ABC ICA BBO COA

Rnk Rnk Rnk Rnk Rnk Rnk

For average of all runs

BDS1 1 4 6 5 3 2

BDS2 2 4 5 6 3 1

BDS3 6 3 5 4 2 1

BDS4 1 4 6 5 3 2

BDS5 5 4 6 3 2 1

For the best run

BDS1 2 4 5 6 3 1

BDS2 3 4 2 6 5 1

BDS3 3 5 6 4 1 2

BDS4 1 5 3 6 4 2

BDS5 4 3 6 5 2 1

Average rank 2.8 4 5 5 2.6 1.4

Considering the four performance metrics mentioned above, a cumulative evaluation may be more rea-

sonable for a general view of the metric ranks given in Figure 6. Based on the comparison metrics used in this

study, as seen in Figure 6, BBO is a better MhA than the others. However, it cannot be concluded that BBO

is universally better than the others.

0

1

2

3

4

5

6

PSO DE ABC ICA BBO COA

cost rank

std. dev. rank

run time rank

conv. rank

mean  rank

Figure 6. Comparison bar graphic based on the computed ranks.

The concept of performance is relative based on the needs of the user. For instance, if the running time is

not important for the user, COA may be the best, but if it is important, ICA may be the best. Although MhAs

are generally used in the design phase of systems, they can also be used for real-world applications with a hybrid

structure like herein. Usage of MhAs for real-time applications needs fast computation. Due to this demand,

fast processing platforms like FPGA are well suited for implementing hybrid systems. A good example of the

real-time application of a hybrid system, as used here, is the work given in [15]. From this point of view, the

comparison presented here also provides a general framework for users in terms of real-time applications. The

good performance of BBO on the dynamic benchmark systems used here shows that BBO can be successfully

applied to practical problems in engineering and science.
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2–5 Aug 2015; İstanbul, Turkey. New York, NY, USA: IEEE. pp. 1-8.

4721

http://dx.doi.org/10.1109/TFUZZ.2014.2337938
http://dx.doi.org/10.1109/TFUZZ.2014.2337938
http://dx.doi.org/10.3906/elk-1601-240
http://dx.doi.org/10.3906/elk-1601-240
http://dx.doi.org/10.1109/CEC.2000.870832
http://dx.doi.org/10.1109/CEC.2000.870832
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/CEC.2007.4425083
http://dx.doi.org/10.1109/CEC.2007.4425083
http://dx.doi.org/10.1109/CEC.2007.4425083
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1016/j.asoc.2011.05.008
http://dx.doi.org/10.1109/72.80202
http://dx.doi.org/10.1109/72.80202
http://dx.doi.org/10.1016/S0925-2312(98)00010-1
http://dx.doi.org/10.1016/S0925-2312(98)00010-1
http://dx.doi.org/10.1109/72.279193
http://dx.doi.org/10.1109/72.279193
http://dx.doi.org/10.1016/j.neunet.2016.02.004
http://dx.doi.org/10.1016/j.neunet.2016.02.004
http://dx.doi.org/10.1109/21.256541
http://dx.doi.org/10.1109/FUZZ-IEEE.2015.7337957
http://dx.doi.org/10.1109/FUZZ-IEEE.2015.7337957
http://dx.doi.org/10.1109/FUZZ-IEEE.2015.7337957

	Introduction
	Newsworthy meta-heuristic algorithms
	The particle swarm optimization (PSO) algorithm
	The differential evolution (DE) algorithm
	The artificial bee colony (ABC) algorithm
	The imperialist competitive algorithm (ICA)
	The biogeography-based optimization (BBO) algorithm
	The cuckoo optimization algorithm (COA)

	Dynamic systems and comparison bench
	Benchmark dynamic systems
	Neuro-fuzzy network structure

	Comparison of MhAs
	Conclusions and remarks

