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Abstract: This study aims to determine the mapping rule for signal-to-interference ratio (SIR) to channel quality

indicator (CQI) based on DC-HSDPA real field measurements. The measurements were performed using the TEMS

Investigation Tool at 85 different propagation mediums. The measurement results showed that the SIR-to-CQI mapping

methods in the literature were insufficient to characterize actual radio environments; thus, proposal of a new empirical

SIR-to-CQI mapping rule was aimed. This rule provides substantially better performance than the existing methods,

and with this rule CQI can be generated from SIR with an accuracy of around 90% for DC-HSDPA systems.
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1. Introduction

High Speed Packet Access (HSDPA) technology is defined by Release-5 of the 3GPP (3rd Generation Partnership

Project) UMTS standard. In this technology, shorter transmit time interval (TTI); adaptive modulation and

coding (AMC), in which the modulation scheme and coding rate are adaptively changed according to the

downlink channel quality; fast retransmission using hybrid automatic repeat requests; and new physical channels

help to achieve higher data rates [1,2]. The 3GPP developed Release-8, named dual carrier HSDPA (DC-

HSDPA), to eliminate destructive effects of frequency selectivity of the channel on high data rate communication

[3]. In DC-HSDPA, up to 42 Mbps data rates are achievable with the simultaneous use of two adjacent 5 MHz

HSDPA carriers. DC-HSDPA mainly improves the user’s individual throughput, while overall system capacity

remains the same [4–9]. In HSDPA-based systems, downlink channel conditions are defined by the CQI values.

These values are reported by user equipment (UE) to the base station (Node-B) in each 2 ms. According

to the CQI value, Node-B adapts the next transport block size (TBS), modulation scheme, and number of

channelization codes dynamically. CQI is a key indicator determining the downlink channel quality and is

closely related to AMC accuracy and maximum throughput. Thus, it is crucial to generate the correct CQI

values that describe the real channel conditions.

2. SIR-to-CQI mapping methods

In HSDPA the CQI varies within the range of 1–30 depending on many factors. The main factors are the distance

of UE from Node-B, transmission power, and fading. The higher the CQI value, the better channel conditions
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are. It is possible to achieve higher data rates by using a larger TBS and a higher modulation index (i.e.

64QAM). The channel’s destructive effect is decreased by using more robust modulation schemes (i.e. QPSK)

at lower CQI. The CQI value is determined by the UE depending on its brand and model, considering the SIR

value and a less than 10% block error rate (BLER) [10]. In order to obtain the highest system performance,

the exact CQI values must be determined. If CQI were to be estimated as higher than it actually is, many

bits would be received inaccurately due to a larger TBS and system performance would decrease. However,

if the CQI is lower than its real value, channel capacity cannot be used effectively, causing the throughput

to decrease. Thus, determining the most appropriate CQI value is necessary to maximize throughput. There

have been several studies [11–29] on SIR or SINR (signal-to-interference plus noise ratio) and CQI in a HSDPA

system, but only a few of them [25–29] focused on SIR-to-CQI mapping methods for a HSDPA system. In [25]

SINR-to-CQI mapping is defined for an AWGN channel, and the linear relation between them is determined

for a BLER of 0.1. The authors of [26] also performed AWGN simulations to derive the relation between SINR

and CQI that is approximated through a linear function. A novel SIR-to-CQI mapping method that satisfies

the 3GPP requirements was proposed in [27]. The performance of the proposed mapping method was verified

via the link level simulator for ITU channels. The work in [28] also proposed a novel mapping method that

helps to achieve optimum throughput for ITU propagation channels. In [29] the calculation of SIR of a HSDPA

system was performed through the analysis of CQI and simulations. However, there are no studies on a DC-

HSDPA system. Moreover, the studies [25–29] given in Table 1 investigated the SIR-to-CQI mapping methods

for AWGN and ITU test channels; so far there have not been any assessments based on real field measurements.

This study aims to propose a novel SIR-to-CQI mapping method that represents the exact DC-HSDPA service

environment based on real field measurements.

3. DC-HSDPA system measurements

In this study, DC-HSDPA field measurements were carried out in different propagation environments in Samsun,

Turkey, by using the TEMS Investigation Tool, version 12.1.

The air interface between the UE and Node-B for many wireless technologies including HSDPA, WiMAX,

and LTE can be tested by using the TEMS Investigation Tool. The measurements were performed at 2114.7 MHz

carrier frequency with the total transmitter power of Node-B being 44.7 dBm and a fixed user location using

a HUAWEI E372 double carrier modem. The mentioned modem is in category 24 and uses QPSK modulation

for CQI values in the range of 1–15, 16-QAM in the range of 16–25, and 64-QAM in the range of 26–30 in

accordance with 3GPP standards [30]. Data were collected in 85 different fully surrounded environments during

the download process of a 100 MB data file. During measurements received power (received signal code power,

RSCP), CQI, user throughput, and SIR, which is the ratio of energy in the DPCC (dedicated physical control

channel) to that of the interference and noise received by the UE, were recorded. Measurement routes are

shown in Figure 1. In Figure 1, each cyan dot corresponds to a rough fixed unique UE location; the yellow line

represents the route; the white star represents Node-B. Additional details of the measurements can be found in

[31].

4. Analysis and results

In the measurements, the location that yields the highest throughput is named Ch1. The changes in received

power, SIR, CQI, and user throughput versus time for Ch1 are shown in Figure 2. Since the signal reception

power is high for Ch1 (between –34 dBm and –50 dBm), the measured SIR value is also high, measuring
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Figure 1. Measurement routes for different environments.

between 14 dB and 27 dB with an average value of 20.71 dB. As a result of a high SIR value, high CQI values

are obtained, varying between 28 and 30. As seen in Figure 2, according to variations in channel conditions

the SIR value also changes and results in a change of CQI value. Because of the CQI value, 100 MB of data

was downloaded in 38.5 s using 64-QAM. Meanwhile, the highest throughput was 23.1 Mbps and the average

throughput was 20.9 Mbps for Ch1.

Similar measurements were conducted at the remaining 84 locations, and the collected data were then

assessed. In order to eliminate sharp discontinuities in the data, the smooth function in MATLAB was used for

smoothing and the span and the method of the function were chosen as 0.1 and rloess, respectively. The changes

in average SIR and CQI values for all measurement locations are shown in Figure 3a, while the measured CQI

values versus SIR are given in Figure 3b. Figure 3a shows how the increase in SIR causes an increment in CQI

and vice versa. These parameters can be related mathematically, as follows:
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Figure 2. a) Received power, b) SIR, c) CQI, d) user throughput for Ch1.

Figure 3. a) SIR and CQI values versus location, b) CQI versus SIR.
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CQIi = SIRi +∆i, (1)

where CQI i is the measured CQI value, SIR i is the measured SIR value, and ∆i is the relative change for the

ist UE location.

However, ∆i is not the same for all locations. For example, the maximum relative change is ∆64 =

15.61, while the minimum relative change is ∆70 = 6.36. The mean of the relative change is 11.01.

Using the mean of the relative change gives rise to a new mathematical expression for the generated CQI

(CQIp), as follows:

CQIp = SIR+ 11.01. (2)

The accuracy of the method is evaluated in terms of normalized root mean squared error (NRMSE), as given

in Eq. (3):

NRMSE =

√
1
n

n∑
i=1

(CQIi − CQIp)2

max(CQI)−min(CQI)
, (3)

where i is measurement location and n is total measurement locations.

The NRMSE of the method from Eq. (2) is 0.1374. The mapping methods given in Table 1 in [25–29]

are applied to measured data, and the NRMSEs are calculated and given in Table 2.

Table 1. Mapping rules in the literature.

Mapping rule Reference

CQI = SINR+ 4.5 [25]

CQI =


0 SINR ≤ −3.96

SINR
1.02 + 4.81 −3.96 < SINR < 26.04

30 26.04 ≤ SINR

[26]

CQI =

 14.004686135 + 0.640014549(SIR) SIR ≥ 20

5.249450552 + 1.07142637(SIR) SIR < 20
[27]

CQI =


SINR+ 2.5 SINR < 6

SINR+ 3.0 6 ≤ SINR ≤ 10.5

SINR+ 3.5 SINR > 10.5

[28]

CQI = 10 log(SIR) + 4.5 [29]

Since the NRMSE values are very high, even higher than Eq. (2), these methods are insufficient for

estimating CQI values for real-time systems. When using these methods, channel capacity cannot be used

efficiently and the maximum achievable throughput cannot be reached. Therefore, a more accurate novel SIR-

to-COI mapping method must be proposed, which is very crucial in DC-HSDPA systems. In order to clarify the

relationship between SIR and CQI, commonly used curve-fitting methods (i.e. power, polynomial, exponential,

rational) are applied to data. The purpose of curve-fitting is to find a function, f(x), that minimizes the residual

and the distance between the data samples (y i) and f(x). The relation between the dependent variables y i and
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Table 2. The NRMSEs of previous studies [25–29].

Reference NRMSE

[25] 0.4397

[26] 0.4357

[27] 0.3436

[28] 0.5115

[29] 0.3705

the independent variable x i is given in Eq. (4):

yi = f(a, b;xi) + ei i = 1, 2, ..., n, (4)

where a and bare the curve-fitting coefficients, x i is the SIR value at the ith location, and ei is the error for

the ith data point as defined by the following:

ei = f(a, b;xi)− yi. (5)

The sum of the square of the errors (SEE) is given in Eq. (6):

SSE =
n∑

i=1

e2i =
n∑

i=1

[f(a, b;xi)− yi]
2
. (6)

The unknowns a and b can be determined by minimizing the SEE. In order to do this, the partial derivatives of

the SEE with respect to a and b are set to zero. The calculation process is given only for the rational method,

since the other methods’ NRMSEs are higher. The partial derivative of the rational method is as follows:

∂SEE

∂a
= ax2

i − bxiyi − x2
i yi = 0,

∂SEE

∂b
= −axiyi + by2i + xiy

2
i = 0. (7)

If matrix notation is used, a and b can be calculated using Eq. (8):


n∑

i=1

x2
i

n∑
i=1

−xiyi

n∑
i=1

−xiyi
n∑

i=1

y2i


[

a

b

]
=


n∑

i=1

x2
i yi

n∑
i=1

−xiy
2
i

 ,

[
a

b

]
=


n∑

i=1

x2
i

n∑
i=1

−xiyi

n∑
i=1

−xiyi
n∑

i=1

y2i


−1 

n∑
i=1

x2
i yi

n∑
i=1

−xiy
2
i

 . (8)

The a and b values that yield the minimum SEE are obtained by using Eq. (6) for polynomial, exponential,

power, and rational curve-fitting methods. The CQIp and the NRMSEs are given in Table 3. As seen in Table

3, the rational curve-fitting method yields the minimum NRMSE value of 0.0991 and produces the best fit. The

NRMSE value obtained by using the proposed rational equation (Eq. (3)) is approximately 3.4 times lower than
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Table 3. NRMSE performances of the curve-fitting methods.

Curve-fitting method CQIp = f(a,b;SIR) NRMSE

Polynomial f(a, b;xi) = a+ bxi CQIp = 15.37 + 0.6734(SIR) 0.1067 (9)

Exponential f(a, b;xi) = aebxi CQIp = 17.14e0.0259(SIR) 0.1113 (10)

Power f(a, b;xi) = axb
i CQIp = 9.307(SIR)0.3757 0.1002 (11)

Rational f(a, b;xi) =
axi

b+xi
CQIp = 36.603(SIR)

6.1212+(SIR) 0.0991 (12)

the one in [27]. Because of being proposed on the basis of real-time link-level network results, the rule yields

much lower NRMSE values than the others. Therefore, the actual radio environment can be best determined

by using the proposed equation and the channel capacity can be improved.

As mentioned above, many frequently used fitting methods were applied; for the sake of brevity, the four

best results and corresponding methods are provided in this study. However, forgoing complexity allows one

to have lower NRMSEs, which is possible by using more coefficients in the previously mentioned methods .For

this purpose, additional analyses were performed for the listed methods with more coefficients. The method

among them that yielded the minimum NRMSE of 0.0966 is as shown in Eq. (13), and the generated CQI

values obtained through Eq. (13) are illustrated in Figure 3b.

CQIp = −67.91(SIR)−0.539 + 41.84 (13)

Analyses show that using more coefficients does not lead to significant improvement in NRMSE when compared

with Eq. (3) (0.0991). It is concluded from the NRMSEs that if complexity is important one should use Eq. (3).

Otherwise, Eq. (13) may be preferred for mapping with lower NRMSE values. However, using Eq. (13), CQI

values can be determined with 90% accuracy. Despite giving better NMRSEs than the literature, there is still

10% inaccuracy, and one parameter-mapping rule may not be considered as sufficient enough for determining

CQI for a real-time DC-HSDPA system.

5. Conclusions

In this study, a novel empirical SIR-to-CQI mapping rule based on real field measurements is proposed for a

DC-HSDPA system. It is shown that the proposed method yields approximately 3.4 times lower NRMSE than

in [27]. With the proposed method, CQI values, which represent actual radio environments, can be determined

with an accuracy of about 90% and higher throughput can be achieved with the efficient use of channel capacity.

The precision of the proposed equation can be increased with the use of extra channel parameters apart from

SIR.
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