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Abstract: This paper establishes a probabilistic scenario-based framework for the stochastic dynamic economic emission

dispatch with unit commitment (SDEED-UC) problem, by considering wind power integration. The scenario generation

and reduction method are implemented to describe wind power uncertainty. Accordingly, each wind power scenario

is analyzed separately to determine the on/off status of the units. As for a predetermined significance level, the UC

scheduling solution can be obtained with a probabilistic point of view, considering all the original scenarios. Then the

SDEED problem is converted into a number of deterministic scheduling problems. For each scenario in the reduced set,

an enhanced multiobjective particle swarm optimization algorithm is proposed to produce the Pareto optimal solutions.

The practicability and performance of the proposed approach are illustrated through a case study, and the results are

compared with the existing multiobjective evolutionary algorithms.

Key words: Wind power, unit commitment, dynamic economic emission dispatch, probabilistic analysis method,

enhanced multiobjective particle swarm optimization

1. Introduction

The intermittency and uncertainty of wind power generation have posed new challenges to power system optimal

dispatch with high integration of wind energy. The unit commitment (UC) problem, considering wind power

uncertainty, has been studied by many researchers [1]. Additionally, the stochastic programming method [2,3]

and the robust optimization model [4,5] have been studied.

On the other hand, different evolutionary algorithms have been implemented for the dynamic economic

dispatch problem [6,7]. The pollutant emission caused by thermal plants was not considered in the above

studies. However, the dynamic economic emission dispatch (DEED) problem has received much attention

[8]. The economic emission dispatch problem was converted to single-objective by price penalty and weighted

factors [9,10]. Since DEED is a multiobjective optimization problem (MOOP), the classic multiobjective evo-

lutionary algorithms (MOEAs) include nondominated sorting genetic algorithm (NSGA-II) [11], multiobjective

particle swarm optimization (MOPSO) [12], and multiobjective evolutionary algorithm based on decomposition

(MOEA/D) [13]. Many researchers have studied different MOEAs to solve DEED with wind power integration,

such as modified particle swarm optimization [14], gravitational search based on a nondominated sorting genetic

approach [15], normalized normal constraint algorithm [16], and summation-based MOEA [17]. However, the
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DEED problem with UC has rarely been reported in the existing research. Although it has been presented, the

stochastic characteristics of wind power and the ramp-up/down capacity limits of units have not been considered

[18].

Considering the current research, the purpose of this work was to establish a comprehensive framework

to solve the stochastic dynamic economic emission dispatch with unit commitment (SDEED-UC) problem,

integrated with wind power. The Pareto optimal solutions by the proposed enhanced MOPSO are compared

to the results of the other algorithms, and the best compromise solutions under different significance levels are

analyzed across the aspects of economic, emission and reliability.

2. Problem formulation

2.1. Economic objective function

The generation cost of thermal plants can be expressed as

Min F =

S∑
s=1

Pr(s) · fs
cos t =

S∑
s=1

Pr(s)·


T∑

j=1

N∑
i=1

[
SCi · (1− ui,j−1) · ui,j + ui,j · fi(P s

i,j)
] , (1)

where

SCi =

{
SChot

i : MDTi ≤ TOFFi,j ≤ MDTi + T cold
i

SCcold
i : TOFFi,j > MDTi + T cold

i

(2)

fi(P
s
i,j) = ai + biP

s
i,j + ci(P

s
i,j)

2, (3)

where ai , bi , and ci are the fuel cost coefficients of unit i .

2.2. Environmental objective function

The pollution emission caused by thermal plants can be expressed as

Min E =
S∑

s=1

Pr(s) · fs
emi =

S∑
s=1

Pr(s) ·


T∑

j=1

N∑
i=1

[
ui,j · (αi + βi · P s

i,j + γi · (P s
i,j)

2 + ηi exp(δi · P s
i,j))

] , (4)

where αi , βi , γi , ηi , and δi are the emission coefficients of unit i .

2.3. Constraints

1) System power balance:

N∑
i=1

ui,j · P s
i,j +W s

j = PD,j (5)

2) System up/down spinning reserve constraints:
N∑
i=1

ui,j · Pi,max ≥ (1 + η) · PD,j − (1− us) ·W s
j

N∑
i=1

ui,j · Pi,min ≤ PD,j − (1 + ds) ·W s
j

(6)
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3) Generation power limits:

Pi,min ≤ P s
i,j ≤ Pi,max (7)

4) Minimum up/down time limits: {
TONi,j ≥ MUTi

TOFFi,j ≥ MDTi

(8)

5) Unit ramp-up/down capacity limits:

−DRi ≤ P s
i,j − P s

i,j−1 ≤ URi (9)

3. Determination of the unit scheduling solution

The procedures for determining unit scheduling solution can be described as follows.

Step 1: Assume that the probability density function (PDF) of wind power prediction error is normal

distribution, and the wind power scenario set X M can be generated by Latin hypercube sampling (LHS) [19]

with Cholesky decomposition (CD) [20].

XM = {Xm} m = 1, 2, · · · ,M
Xm = [Wm

1 ,Wm
2 , · · · ,Wm

T ]
, (10)

where the wind power output can be expressed as

Wm
j = Ŵj +∆Wm

j ,∆Wm
j ∼ N(0, δ2w,j)

j = 1, 2, · · · , T ; m = 1, 2, · · · ,M
(11)

Step 2: Calculate priority list for the thermal units:

πi = ω1 ×
Pi,max

N∑
i=1

Pi,max

+ ω2 ×
1/(fi(Pi,max)/Pi,max)

N∑
i=1

1/(fi(Pi,max)/Pi,max)

, (12)

where ω1 and ω2 are weight coefficients and fi represents the fuel cost function of unit i .

Step 3: Set m = 1.

Step 4: Define the agent Um as the unit scheduling solution for Xm .

Um =


um
1,1 um

1,2 · · · um
1,T

um
2,1 um

2,2 · · · um
2,T

...
...

...
...

um
N,1 um

N,2 · · · um
N,T

 , (13)

where the element values in Um represent the units’ on/off status and are set to 0.

Step 5: Modify the element values in Um according to system spinning reserve and the minimum up/down

time limits.

Step 6: Shut down the excess units in Um , according to [21].

4807



ZHANG et al./Turk J Elec Eng & Comp Sci

Step 7: For scenario Xm , the satisfying unit scheduling solution Um can be obtained.

Step 8: If m < M , then m = m+ 1 and return to Step 4; otherwise, go to Step 9.

Step 9: Generate the probability matrix Puc with Eq. (14), the elements of which can be calculated by

Eq. (15).

Puc =


p1,1 p1,2 · · · p1,T

p2,1 p2,2 · · · p2,T

...
...

...
...

pN,1 pN,2 · · · pN,T

 (14)

pi,j =
1

M

M∑
m=1

um
i,j (15)

Step 10: The final unit scheduling solution for the scenario set X M is defined as UR by Eq. (16), whose

elements can be obtained by Eq. (17). In addition, the elements in UR should satisfy the minimum up/down

time constraints.

UR =


u1,1 u1,2 · · · u1,T

u2,1 u2,2 · · · u2,T

...
...

...
...

uN,1 uN,2 · · · uN,T

 (16)

ui,j =

{
1 if pi,j ≥ α

0 otherwise
, (17)

where α denotes a predefined significance level.

4. Enhanced multiobjective particle swarm optimization

4.1. Overview of multiobjective particle swarm optimization

Particle swarm optimization (PSO) is a heuristic intelligent optimization algorithm [22]. During the optimization

process, all particles update their positions in the feasible space according to their own experience and social

information in pursuit of the optimal solution. The main improvements of MOPSO are described in the following

section.

4.1.1. Establishment of external repository

Create external repository composed of a number of elites [12], which can be represented as R l , l= 1, 2,. . . ,

rep, and rep is the number of elites. The individual P i can be deposited into the repository if, and only if:

∀j ∈ [1, 2, · · · , pop] ∧ j ̸= i, ¬∃Pi ∈ Ω : Pj ≺ Pi (18)

4.1.2. Selection of the global best position

A variation in the adaptive grid is used to generate uniformly distributed Pareto front. In this way, each elite

in the external repository is assigned a grid index, and the elites with the same grid index form a group and
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are assigned the same fitness value. Then a randomly selected elite from the chosen group is regarded as the

global best position.

4.2. Enhanced MOPSO for DEED

4.2.1. Structure of individuals

In this study, the simultaneous backward reduction technique [23] is implemented to obtain the reduced set

{Xs } . For the scenario Xs , the individual P i can be defined as

P i =


P s
1,1 P s

1,2 · · · P s
1,T

P s
2,1 P s

2,2 · · · P s
2,T

...
...

...
...

P s
N,1 P s

N,2 · · · P s
N,T

 , i = 1, 2, · · · , pop (19)

4.2.2. Dual population evolution mechanism

The initial population can be divided into main population and secondary population. For the main population,

the selection of the best individual is detailed in [12]. In contrast, a unique selection and combination strategy

is proposed to choose the best individual for the secondary population. The best individual and elites for the

secondary population are defined as Ṗ g and Ṙl , respectively, and Ṙl can be expressed as

Ṙl =


P s
1,1 P s

1,2 · · · P s
1,T

P s
2,1 P s

2,2 · · · P s
2,T

...
...

...
...

P s
N,1 P s

N,2 · · · P s
N,T

 = [P s
l,1, P

s
l,2, · · · , P s

l,T ]

P s
l,j = [P s

1,j , P
s
2,j , · · · , P s

N,j ]
T ; l = 1, 2, · · · , rep; j = 1, 2, · · · , T

(20)

The diagram of the selection and combination strategy is shown in Figure 1. As is shown, Ṗ g consists of T

column vectors, which are selected from the corresponding column vectors of Ṙl . For each selection process,

the equiprobable roulette wheel selection strategy is adopted to choose an elite.

Figure 1. Schematic diagram of the selection and combination strategy.

4.2.3. Elitism-preserving strategy based on crowding entropy

A new elitism-preserving strategy is used to uniformly distribute the Pareto optimal solutions in the objective

function space.
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Combined with the crowding distance and distribution entropy, the crowding entropy (CE) is presented

to measure the crowding degree of the solutions in the objective function space [24]. The crowding entropy of

elite l can be defined as CEl , the calculation procedure of which is detailed in [24]. The elites with objective

function extrema are retained. The elites with smaller CEl will be removed if the repository size is larger than
rep.

5. Implementation of EMOPSO for solving DEED

5.1. Initialization

Based on the unit scheduling solution UR determined in Section 3, the elements in Pi can be initialized as

follows:

P s
i,j = ui,j · (P s,min

i,j + rand · (P s,max
i,j − P s,min

i,j )), (21)

where rand is random value uniformly distributed within a range from 0 to 1.

For scenario s , the generation output limits of unit i at hour j can be obtained by{
P s,max
i,j = min{Pi,max, P

s
i,j−1 + URi}

P s,min
i,j = max{Pi,min, P

s
i,j−1 −DRi}

(22)

The generation power limits and ramp-up/down limits before hour j can be satisfied by Eq. (22). However,

the time periods after hour j may have an impact on P s
i,j , which can be illustrated in Figure 2.

Figure 2. Diagram of generation output limits of unit i at hour j .

As shown in Figure 2, assume that the status of unit i at hour j+ 2 is off; then P s
i,j+2 is 0. As a result,

the value of P s
i,j+1 cannot exceed DRi , considering the ramp-down rate limit. Furthermore, the range of P s

i,j

should be limited between Pi,min and 2DRi , taking into account the influence of the time periods after hour

j . Combined with the generation output limits in Eq. (22), the value of P s,max
i,j should be modified as follows:

P s,max
i,j = min{Pi,max, P

s
i,j−1 + URi, (jstop − j) ·DRi}, (23)

where jstop denotes the first time that the status of unit i is off after hour j .

Then adjust the power output of the thermal units to meet system power balance constraints, according

to [25].
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5.2. Calculation of the objective and violation function values

The cost and emission values of the individual can be obtained by Eqs. (1)–(4), and the violation function value

can be calculated by

fs
viol =

T∑
j=1

∣∣∣∣∣PD,j −
N∑
i=1

ui,j · P s
i,j −W s

j

∣∣∣∣∣ (24)

5.3. Establishment of external repositories

Two different external repositories, noted as {R l } and {Ṗ l } , are established for the main population and the

secondary population, respectively.

5.4. Main loop of EMOPSO for solving the DEED problem

1. Set the iteration gen = 1.

2. Select R g from {R l } according to the principle described in Section 4.1.2.

3. Update and mutate the individuals of the main population.

4. Select Ṗ g from {Ṙl } according to the proposed selection and combination strategy.

5. Update and mutate the individuals of the secondary population.

6. Update the elite sets {Ṙl } and {R l } and control their size with the elitism-preserving strategy based on

CE, if necessary.

7. Set gen = gen + 1. If gen< MaxG, return to 2; otherwise the main loop is finished.

The flowchart of EMOPSO for DEED is shown in Figure 3.

6. Numerical simulation

This study has chosen a thermal wind system composed of 10 thermal units and a wind farm for validation.

The scheduling period is one day with 24 intervals. The detailed unit parameters, load demand, and forecasted

wind power can be seen in [18]. The standard deviation (Std) δw,j of wind power prediction error is set to 20%

of the prediction at hour j . The demand factors ds, us, and η are assigned 20%, 20%, and 10%, respectively.

Initially, 1000 wind power scenarios (M = 1000) are generated by LHS-CD. Then the reduced set,

composed of 10 scenarios, can be obtained as shown in Figure 4, and the corresponding occurrence probabilities

are listed in Table 1. The significance level α is set to 0.05, 0.1, and 0.15. The unit scheduling solution under

different significance levels can be obtained with the procedures for determining UR .

Table 1. Occurrence probabilities of 10 scenarios.

Scenario 1 2 3 4 5
Pr(s) 0.138 0.111 0.125 0.079 0.114
Scenario 6 7 8 9 10
Pr(s) 0.081 0.074 0.048 0.116 0.114
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Start

Initialize individuals for dual population

Establish the external repositories for dual population

Set the iteration gen=1

Select Pg from {Rl}

Update and mutate individuals from

the main population, handle the constraints,

and calculate the objective and violation values

Update by the secondary population

Update {Rl} by the main population and

Set gen = gen+1

gen<MaxG
Yes

No

End

Select from { }lRgP

Update and mutate individuals from the

secondary population, handle the constraints,

and calculate the objective and violation values

{ }lR

{ }lR

Selection and

recombination strategy

Elitism preserving

strategy based on

crowding entropy

Calculate the objective and violation values for individuals

Figure 3. Flowchart of EMOPSO for DEED.
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Figure 4. Reduced scenario set of wind power generation. Figure 5. Convergence property of different algorithms.
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In this study, several previously reported multiobjective optimization algorithms that contain NSGA-II,

MOPSO, and MOEA/D have been chosen for comparison. The number of individuals and the size of the

external repository are set to 60 and 30, respectively. The maximum number of iterations for all the algorithms

is set to 500. When the significance level α is 0.05, the convergence property of different algorithms for Scenario

1 can be seen in Figure 5. It is shown that the objective function values tend to show no improvement when it

reaches 350 iterations. Consequently, the maximum number of iterations is set to 350 in our study.

The Pareto fronts (PFs) for Scenario 1, generated by the above algorithms when α is 0.05, are shown in

Figure 6, and the corresponding cost and emission values are listed in Table 2. It has been found that: (1) the

Pareto optimal solutions obtained by EMOPSO can dominate those generated by other algorithms; (2) the PFs

by MOEA/D, NSGA-II, and MOPSO partially overlap; (3) EMOPSO achieved the largest scope in objective

function space, whereas MOEA/D obtained the smallest range; (4) compared to MOPSO, EMOPSO can obtain

superior Pareto optimal solutions. The reason is that the introduced secondary population follows a unique

updating strategy for the global optimal position, which is conducive to improving population diversity and

enhancing search ability. Moreover, the PF by EMOPSO shows more uniform distribution in the objective func-

tion space, which demonstrates that the elitism-preserving strategy based on CE can optimize the distribution

of the solutions.

Table 2. Comparison of cost and emission by different algorithms for Scenario 1.

Algorithms
Best compromise Minimum cost Minimum emission
Cost ($) Emission (t) Cost ($) Emission (t) Cost ($) Emission (t)

MOEA/D 528,482 204,433 526,642 211,612 531,997 193,996
NSGA-II 529,144 203,871 524,671 229,437 533,352 191,069
MOPSO 528,847 203,513 522,724 235,073 532,489 194,982
EMOPSO 528,048 200,689 522,591 233,596 533,025 189,583

Regarding the best compromise solution by EMOPSO in Scenario 1, when α is 0.05, the power outputs

of the thermal units that meet the operation constraints of the units are shown in Figure 7. To test the stability

of EMOPSO, this study performed the simulation 20 times, and the best compromise solutions in the 20 trials

are shown in Figure 8. Additionally, the best, worst, average, and Std values of cost and emission are listed in

Table 3, which shows that the cost and emission of the best compromise solutions have a fluctuation in a small
range.

Table 3. Statistical results for the best compromise solutions by EMOPSO.

Objective Best Worst Average Std
Cost ($) 527,668 528,341 528,008 194
Emission (t) 199,840 202,663 201,282 799

To solve the SDEED problem for the reduced scenario set by EMOPSO, the PFs under different sig-

nificance levels are shown in Figure 9, and the expected values of the best compromise solutions and extreme

solutions are listed in Table 4. The reserve not served (RNS) can be calculated by

RNSs
j =

{
−temp if temp < 0
0 if temp ≥ 0

,

temp =
N∑
i=1

(P s,max
i,j · ui,j − P s

i,j)− η · PD,j

(25)
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0.05.

Figure 7. Power outputs by EMOPSO for Scenario 1

when α = 0.05.
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EMOPSO.

Figure 9. Pareto optimal fronts for SDEED under differ-

ent significance levels.

The RNS for the reduced scenario set, under different significance levels, is illustrated in Figures 10–12.

Table 4. Comparison of the expected values of the cost and emission by EMOPSO.

Significance level
Best compromise Minimum cost Minimum emission
Cost ($) Emission (t) Cost ($) Emission (t) Cost ($) Emission (t)

0.05 526,178 207,887 521,617 241,202 532,761 188,692
0.1 525,337 206,192 519,972 243,837 530,884 191,528
0.15 523,957 204,514 518,617 241,075 528,759 192,269

In Table 4, as the significance level α decreases, the operational reliability for the unit-scheduling solution

is enhanced, and more units will be committed during the entire scheduling period. Consequently, the expected

values of cost and emission for the best compromise solution have increased gradually. In contrast, as the value

of α increases, the reserve not served increases prominently. Figures 10–12 show that the summation of RNS

for the reduced scenario set is 30.24 MWh, 124.50 MWh, and 370.57 MWh, respectively, as α rises from 0.05

to 0.15.
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Figure 10. The reserve not served for different scenarios

when α = 0.05.

Figure 11. The reserve not served for different scenarios

when α = 0.1.
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Figure 12. The reserve not served for different scenarios when α = 0.15.

7. Conclusion

This paper established a probabilistic scenario-based framework to solve SDEED-UC integrated with wind

power. The UC solution can be obtained for a predefined significance level α . Lower value of α denotes that

more units will be committed during the whole scheduling period. To solve the DEED problem, the units’

on/off status and the ramp up/down capacity limits were considered simultaneously. The proposed EMOPSO

algorithm has great advantages over other comparison algorithms. Moreover, simulation results under different

significance levels demonstrate that the expected values of cost and emission for the best compromise solution

at a higher significance level are lower; however, the corresponding reserve capacity not served increased.
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Nomenclature
i thermal unit index

j time interval index

m original scenario index

s reduced scenario index

N number of thermal units

M number of original scenarios

S number of reduced scenarios

T number of time intervals

Pr(s) probability of scenario s

X M original scenario set

Ŵj wind power prediction at hourj

∆Wm
j wind power forecasting error at hour j for scenario m

Wm
j wind power output at hour j for scenario m

PD,j load demand at hour j

Pi,max maximum power output of unit i

Pi,min minimum power output of unit i

P s,max
i,j maximum generation output of unit i at hour j for scenario s

P s,min
i,j minimum generation output of unit i at hour j for scenario s

MUT i minimum up time of unit i

MDT i minimum down time of unit i

UR i ramp-up rate of unit i

DRi ramp-down rate of unit i

us demand factor of up-spinning reserve for wind power fluctuation

ds demand factor of down-spinning reserve for wind power fluctuation

η demand factor of up-spinning reserve for load forecast errors

SChot
i hot startup cost of unit i

SCcold
i cold startup cost of unit i

SCi startup cost of unit i

T cold
i cold startup time of unit i

TON i,j time period that unit i has been on until hour j

TOFF i,j time period that unit i has been off until hour j

ui,j on/off state of unit i at hour j

P s
i,j generation power of unit i at hour j for scenario s

RNSs
j reserve not served at hour j for scenario s
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