
Turk J Elec Eng & Comp Sci

(2017) 25: 4818 – 4828

c⃝ TÜBİTAK

doi:10.3906/elk-1703-361

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A random number generator for lightweight authentication protocols: xorshiftR+

Umut Can ÇABUK, Ömer AYDIN∗, Gökhan DALKILIÇ

Department of Computer Engineering, Faculty of Engineering, Dokuz Eylül University, İzmir, Turkey

Received: 30.03.2017 • Accepted/Published Online: 05.09.2017 • Final Version: 03.12.2017

Abstract: This paper presents the results of research that aims to find a suitable, reliable, and lightweight pseudorandom

number generator for constrained devices used in the Internet of things. Within the study, three reduced versions of

the xorshift+ generator are built. They are tested using the TestU01 suite as well as the NIST suite to measure their

ability to produce randomness and performance values along with some other existing generators. The best of our

reduced variations according to our tests, called the xorshiftR+, demonstrated great suitability for lightweight devices

considering its randomness, performance, and resource usage.

Key words: TestU01, xorshift, lightweight cryptography, Internet of things

1. Introduction

The rapidly emerging concept of the Internet of things (IoT) brings new approaches to everyday problems as well

as industrial applications. These approaches rely on bundles of cheap, efficient, and dedicated networked devices

that work and communicate continuously. These so-called lightweight devices of the IoT have limited power,

space, and computation resources; hence, there is a huge need for developing suitable security protocols and

methodologies tailored for those. Furthermore, most of the contemporary security protocols are not optimized

for lightweight environments and require more sources than IoT devices may efficiently provide. For example,

almost all authentication protocols use random number generators to function and improvements on these may

boost the usage of IoT devices in areas where security concerns exist. In this paper, we propose a lightweight

random number generator recommendation for security applications in constrained devices.

While working with random number generators (RNGs), the most important thing to take into consider-

ation is that there is no perfect generator that fits all conditions [1]. This is mostly because true randomness is a

nondeterministic process, which cannot be synthesized using mathematical methods in a software environment,

and this leads to the concept of pseudorandomness. On the other hand, even by using hardware sources, it is

practically very hard to produce a series of numbers that have the anticipated characteristics of true randomness.

In any case, the quality of a generator is correlated with its proximity to true randomness and its computational

requirements. True or high-degree randomness can be very expensive or inefficient or just unnecessary in some

cases. Hence, the best option should be chosen according to the needs of the application under development.

The main work that leads to this study is to develop a radio frequency identification (RFID) authentica-

tion protocol, which runs on RFID tags without intervention of the reader or another computer, for particularly,

but not limited to, a wireless sensing and identification platform (WISP). A very accurate use case scenario

∗Correspondence: omer.aydin@deu.edu.tr

4818

ÇABUK et al./Turk J Elec Eng & Comp Sci

was given in another study [2]. In this context, there is a need for a lightweight and reliable RNG. Besides,

there are hardware sensors like thermometers, accelerometers, etc. on the WISP and many other types of tags

that may be used to feed or seed the RNG algorithms. However, these hardware inputs cannot be used solely

to produce random numbers, since in certain stable environmental conditions, the outcomes will usually follow

certain patterns. Thus, we cannot trust hardware sources, but a pseudo-RNG seeded with hardware sources or

external inputs may provide satisfactory results if suitable RNG algorithms are used.

2. Related works

RNGs were mostly studied from the point of view of their proximity to true randomness and reliability until

the last decade since they were in use in relatively powerful computers. When smart mobile devices gained

popularity and eventually the IoT concept was introduced, the idea of moving RNGs to mobile devices with

(sometimes very) limited capabilities brought performance issues into sight. For example, the standardization

document of randomness recommendations for security, RFC 1750, suggests a data encryption standard (DES),

cryptographic hash functions, and some other (not so simple) methods to provide randomness; however, there

is no concern for lightweight devices [3].

Before proceeding to the RNG algorithms, it would be helpful to take a glance at the review criteria

for these RNGs. There are several popular randomness tests (or more accurately, test suites) used to examine

generator functions that are supposed to have random outcomes. The ones we refer to are the Diehard battery

of Marsaglia [4]; TestU01 suite of L’ecuyer and Simard [5], which consists of 6 test batteries; and the NIST test

suite having 15 tests [6]. The more recent publications of NIST, namely SP800-90 (a, b, c), are also taken into

account [7–9]. The generators we propose and the TestU01 suite comply with most (if not all) of the instructions

given in these papers. For example, SP800-90b [9] implies the need for a dataset containing at least 1,000,000

values, yet TestU01 produces around 50,000,000 numbers to test the generators [5]. Our ultimate generator can

be used in the frameworks mentioned by NIST [7], with no or very little modification depending on the scenario.

The TestU01 suite contains Small Crush, Crush, Big Crush, Alphabit, and Rabbit batteries and a pseudo-

NIST battery. This NIST battery contains 13 original tests out of the 15 included in the real NIST suite, and

the remaining 2 are replaced by more advanced variations [5]. Therefore, it will be the main measure of our

experiments.

Marsaglia in his paper [10] showed a class of RNGs, called “xorshift RNGs”, consisting of consecutive

bitwise xor and shift operations using seeds. He claimed that the algorithms are extremely fast and reliable

in terms of randomness. Since the speed of this algorithm family is proven, they will be in our scope in this

research. However, that reliability claim was invalidated in some later studies [11]. Figure 1 shows the main

members of the xorshift family of RNGs according to the development timeline.

Apart from the TestU01 suite (and the NIST suite), there is another measure of randomness for some

(especially RFID-compatible) lightweight RNGs, defined in the EPC UHF RFID Generation-2 standardization

document. It is used to test the suitability of our ultimate generator for UHF RFID devices.

One of the parallel researches by Vigna [12] revealed another xorshift-based RNG, called xorshift*. The

RNG performed well when compared to its predecessors, but was worse than the successors. However, it showed

that the xorshift family is flexible and is very open to further development.

After the famous and widespread “Mersenne Twister” [13], in a follow-up study, Saito and Matsumoto

came up with another similar algorithm, “XSadd”, which is claimed to be more reliable. This claim is verified

4819

ÇABUK et al./Turk J Elec Eng & Comp Sci

Mersenne T ter

xorsh t

xorsh ft* XSAdd

xorsh t + xorsh tR+ (our proposal)

FEEDBACK

SHIFT

REGISTERS

SUPERCLASS

Figure 1. Development lapse of (some) xorshift based RNGs.

according to the results of the tests of the TestU01 suite [14]; however, it is reported that the inverse of this

algorithm fails some of the tests of the same suite.

A later and yet very recent study of Vigna [14] again introduced another xorshift-based RNG, “xorshift+”,

claimed to pass all tests of the TestU01 suite and even inverse, which is not an invalidated claim in any newer

publication that we could analyze. For this obvious reason, this RNG is chosen as a starting point in our study.

In later sections of this paper, it is referred as the original xorshift+.

3. Candidate RNGs

Since the computational limitations may be very stringent on lightweight devices, many of the complex algo-

rithms considered as successful in related works are not considered as eligible for this purpose. Xorshift+, a

recent algorithm of the known xorshift family, is in focus with its simple structure [14]. It is also a main part of

the study to force this algorithm to run on a variety of input and output sizes. Moreover, the original xorshift+

algorithm is manipulated by removing some last steps to make it even more compact. O’Neill also mentioned

this reduction idea [11], though not tested systematically.

Within this work, we have made random scramblings (based on our predictions) of the original xorshift+

and produced many generators with slight differences in order to derive a better xorshift RNG. Nevertheless,

we have eliminated many of these, which are considerably weak or do not sufficiently mitigate the complexity.

Our efforts to find a suitable reduced xorshift+ version (which is to be named as xorshiftR+, where R stands

for reduced) resulted in these 3 candidate algorithms (later called variations or shortly var), given as follows (in

C notation);

uint64 t s[2]; // seeds

uint64 t xorshift128plus(void) {

uint64 t x = s[0];

uint64 t const y = s[1];

s[0] = y;

x ∧ = x << 23; // a, shift & xor

x ∧ = x >> 17; // b, shift & xor

4820

ÇABUK et al./Turk J Elec Eng & Comp Sci

//−−−−−−−

Var1: x ∧ = y ∧ (y >> 26) ; // c, xor

s[1] = x;

return x + y;

//−−−−−−−

Var2: x ∧ = y ∧ (y >> 26) ; // c, xor

s[1] = x + y ;

return x+ y;

//−−−−−−−

Var3: x ∧ = y ∧ (y >> 26) ; // c, xor

s[1] = x + y ;

return x + y ; }

The body of the code above (from the beginning until the first dashed line) is untouched and common

for all variations (in fact, step c is the same for all, too), while the struck code snippets are removals from and

the black-highlighted parts are additions to the original code of the xorshift+. The variations given under three

consequent tags are applied singly to the body of the code so that a full RNG algorithm is obtained.

Ending variation 1 excludes 26 right shifts and 1 xor operation per generated random number. Ending

variation 2 excludes 26 right shifts and 1 xor but adds 1 addition. Lastly, variation 3 excludes 26 right shifts

and 1 xor, removes 1 addition, and adds 1 addition, which makes it identical to variation 1 in terms of operation

count. These manipulations supposedly produce a big difference in applications where many numbers are

generated sequentially. However, from the codes themselves, it is not possible to accurately estimate the time

gain without experiments. That is because the run-time highly depends on the processor type [15]. Thus, we

make use of our test completion times to measure the algorithms’ performance on a lightweight IoT device,

given in Section 5.

Memory gain, on the other hand, is easier to calculate or estimate. The memory usage of generators is

mostly dependent on the period of their output and the number of their input (seed) states. These two factors

are determinative of the number and the size of the variables used in their source code. To make a standard,

we fixed the integer types to 32 bits, as mentioned above. Please note that the original xorshift+ (and our

reduced variations) uses two seed inputs, which makes it occupy 64 bits of input memory, while most RNGs use

only one, so it is implanted using 64 bits of seed state. Nevertheless, because of its very poor performance, we

did not use the 32-bit seed/input version of the linear feedback shift register (LFSR), but the 128-bit version

instead. The output was kept as 32 bits to fix the output sizes of all subjects. In order to see the effect of the

output or the period of the RNGs on their randomness scores, please refer to another paper [16].

Other than our xorshift+ variations, we also tested an earlier xorshift-based algorithm, namely xorshift64*

[13], a simple linear congruential generator (LCG), and an LFSR implementation to compare the results and

estimate the benefits of using each RNG. XSadd is intentionally excluded since it was already superseded by

xorshift+. A comparative breakdown is provided for a brand new xorshift-based RNG, called xoroshiro128+,

that was published at the time of the writing of this paper. The LCG is included because of its popularity,

4821

ÇABUK et al./Turk J Elec Eng & Comp Sci

even though it is not recommended as a reliable RNG anymore [1,11]. It is based on the one implemented

in the TestU01 suite as “CreateLCG()”. The LFSR is included because of its different bit-level structure and

high-speed nature. It is also based on the one introduced in the suite with the name “CreateLFSR113()”.

We had momentous efforts to functionalize the DES with such a purpose as recommended in RFC 1750

[3] with relevant modifications. Nevertheless, later we discarded it during our preevaluation phase because of

its extremely poor performance results. It was not even close to being “lightweight” when compared to the

other RNGs presented here. Information that explains why and by how much the DES, advanced encryption

standard (AES), and derivatives are slower than these lightweight algorithms can be found elsewhere [17].

4. Test methodology

The RNGs are tested using the Big Crush battery of tests, which is the most comprehensive test battery in

the TestU01 suite. It contains 106 different tests and makes a total of 160 runs (some tests are repeated with

different parameters) [5,18].

L’ecuyer and Simard defined 3 failures out of 15 tests of the Small Crush battery and 7 failures out of

38 tests of the Rabbit battery as “clearly unacceptable”, which make 80% and 81.6%, respectively. In order to

be called successful, any RNG must obtain a clearly higher score than these, preferably 100% depending on the

scenario. Nevertheless, the rate of passed tests is not solely enough to decide; the result values of each failed

test should also be taken into account. TestU01 checks p-values to determine if RNGs pass certain tests or not,

for all tests, with a pass interval of 0.001 to 0.999. It also introduces two epsilon values, namely eps and eps1,

which represent very small numbers (the latter being much smaller) and are practically equal to 0 [5,18]. Hence,

if an RNG fails at least one test with a value of eps (or eps1), then that RNG will most likely fail this test in

each run and possibly for all seeds, which means a systematic fail. However, if the p-value is very close to the

limits (while the term “very close” is essentially vague), for instance 0.999 < p < 0.9999, then the result is

not clear. Even though L’ecuyer and Simard proposed repeating suspicious tests as the best practice to get rid

of the suspicious results, our experiments show that in the case when a p-value falls in the range given above,

the test can be accepted as a pass without repeating it, especially if it is the only fail or there are very few,

since a repeat with a different seed will most likely result in a pass. However, if the p-value is not so close to

the limits, though not eps, then repeating the tests might be necessary. Note that the same seed most likely

will cause exactly the same result in further repeats. If repeating the tests is not feasible, these tests should be

taken as fails. Remember, the number of total test runs is more than the number of different tests, since some

of the tests are repeated with various parameters in all batteries [18].

Other than the randomness levels, since we also have lightness concerns, run time, seed, and output sizes

of each algorithm are taken into account to determine their memory usage. Memory usage is not at the center of

focus since no tests are seen as required besides the register size calculations, which can be done using function

definitions.

For evaluating the time performance, two measures are considered: total time lapsed during the tests

and time period required to generate 100 million numbers (not bits). The total duration of the tests is a good

indicator of speed of the generators because it represents a comprehensive usage scenario. However, it is not

always very consistent as the number of tests applied may differ for some RNGs depending on their algorithmic

structure. Thus, we also recorded the time required to create 100 million numbers to be sure about their pure

speed. This was done using the native timer function of the TestU01 suite, with the default method GetU01.

In order to improve the solidity of our tests and recommendations, we have run most of the algorithms, namely

4822

ÇABUK et al./Turk J Elec Eng & Comp Sci

the xorshift-based ones and LFSR113, also on a WISP device 10,000 times sequentially and recorded the total

creation time likewise. This additional step made us sure that our claims verified on a PC are also valid for a

real lightweight IoT device and vice versa.

When an RNG is forced to use different seed numbers without completing its regular run for its full

period, i.e. the seed is changed after each random number output, then the RNG will most probably lose its

ability to produce randomness (except for some, i.e. LFSR derivative scramblers). In this case, the degree

of the randomness of the output will depend on the randomness of the seed string, because every seed input

will cause the RNG to produce the same set of random numbers in each of its runs. This prevented us from

using hardware-generated so-called true random numbers as a seed chain. Instead, we used only a single seed

(duplicated when the RNG required multiple seeds) for each subject generator. A seed of an RNG is only

changed to renew a test if there are suspicious results.

5. Empirical results

In order to make the final evaluation, all subject generators are tested with the Big Crush battery of the TestU01

suite, which is the biggest and toughest battery in the suite, while other batteries (like Small Crush and NIST)

are used to make preliminary tests. Big Crush contains 106 tests and makes a total of 160 runs, since some of the

tests are repeated with different parameters. Furthermore, in order the find out the average time required for

generation of a single random number for each algorithm, 100 million numbers on the PC and 10,000 numbers

on the WISP are generated. Hence, the average time required for 1 number is calculated and shown in the

Table.

Table. Comparative data of empirical test results from Big Crush for all subject RNGs.

Empirical
results

Big Crush
score
(# of runs)

Big Crush
score
(# of tests)

Run time of
Big Crush

Time for
1 number
on PC

Time for 1
number on
WISP

xorshi!+
159/160
99.3%

105/106
99.1%

7h:35:03 0.02 µs 0.5515 ms

xorshi!*
156/160
97.5%

102/106
96.2%

7h:28:10 0.0202 µs 0.2703 ms

Reduced
xorshi!+var1

155/160
96.9%

103/106
97.2%

7h:27:02 0.0191 µs 0.1955 ms

Reduced
xorshi!+var2

160/160
100%

106/106
100%

7h:32:40 0.0192 µs 0.1954 ms

Reduced
xorshi!+var3
[xorshi!R+]

160/160
100%

106/106
100%

7h:30:07 0.0191 µs 0.1953 ms

Simple LCG
91/153
59.5%

57/106
53.8%

7h:25:45 0.0177 µs N/A

LFSR113
154/160
96.3%

100/106
94.3%

6h:47:57 0.0175 µs 0.1641 ms

C rand()
0/160
0%

0/106
0%

N/A N/A N/A

5.1. Testbeds

Our PC testbed was a generic server computer with an Intel Xeon E5540 processor @2.53 GHz running on

Windows utilizing 4 GB of RAM. Nevertheless, we observed that the software of TestU01 only occupies a single

core during all test runs. This leads to a more linear base time comparison and prevented us from using our

4823

ÇABUK et al./Turk J Elec Eng & Comp Sci

bed at full rate, but this might also be positive since a lightweight system most probably will only have a single

core dedicated to random number generation. Our IoT testbed is a standalone WISP5 device that includes a

built-in MSP 430 processor. Results of the tests are as follows.

5.2. xorshift+

The original xorshift+, not surprisingly, demonstrated excellent randomness according to the Big Crush tests

as Vigna claimed [14]. It passed 105 of the 106 different tests and 159 of the 160 test runs in our initial attempt.

The p-value for this test is very close to the limit and, as explained in Section 4, it can be marked as a false

positive and be ignored. In fact, repeated attempts show that this fail was not systematic, but a coincidence.

The ultimate scores might also be taken as 100% for both measures. We still kept this fail in our records for the

sake of temporal consistency. It was, however, somewhat slow in terms of speed on the PC and the slowest on

the WISP when compared to other RNGs, as can be seen in the Table, which makes our efforts more significant.

5.3. xorshift*

The original xorshift* obtained, not surprisingly, slightly lower randomness scores on the Big Crush suite, though

not bad. It failed four tests systematically. On the PC, its speed was unsatisfactory, actually slightly the worst

among all. However, on the WISP device it was (only) better than xorshift+. Please see the Table. Hence, it

cannot be recommended as a lightweight IoT solution, but it might be used on PC platforms depending on the

scenario.

5.4. Reduced xorshift+ var1 (s[1] = x, return x + y)

Our first variation obtained test scores very close to the original xorshift*; they also share the 81st LinearComp

test as a fail. On the other hand, our variation was super-fast. On the PC, it was the fastest (along with

variation 3) among other xorshift-based subjects. It failed five tests systematically.

From the p-values of the failed tests, we can say that these are clear fails, because they are far outside

the limits. However, considering its speed, this might still be a useful generator since its score is much higher

than the (bad) examples given in Section 4 (which were 80% and 81.6%).

5.5. Reduced xorshift+ var2 (s[1] = x + y, return x + y)

Our second variation got excellent scores of 100% from the Big Crush suite by passing all the tests in all runs

with no exception. Even though it was not the fastest, it was still clearly faster than the original xorshift+ and

xorshift*. This agility difference is much more obvious on the WISP than the PC. On the PC, all our variations

showed very similar results.

5.6. Reduced xorshift+ var3 (s[1] = x + y, return x)

This third variation, which we have named xorshiftR+, demonstrated excellent scores (again 100%) by passing

all the tests in all runs without any exception, too. In fact, variation 3 was slightly faster than variation 2 on

both the PC and WISP. It was also slightly faster than variation 1 on the WISP, while having the same speed

on the PC. Hence, it is the fastest of its kind. Considering its perfect and consistent randomness scores and

very good time performance, it can safely and properly replace the original xorshift+. There are no statistics

in which the original xorshift+ is better than our variation 3, as can be seen in the Table. A bitmap graph

4824

ÇABUK et al./Turk J Elec Eng & Comp Sci

using TestU01’s PlotUnif function is seen in Figure 2. It shows how the bits are randomly distributed under

the function’s drawing rules.

100.00

un

0

1

un+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.

.

.

.

.. .

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.
.

.

.

.

.

..

.

.

..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

Figure 2. Bitmap of xorshiftR+; 1000 points plotted using scatter in TestU01 (un and un+1 stand for sequential

random numbers; see definitions in [18]).

Even though the TestU01 suite is already superior to the well-known NIST suite, because of its widespread

use and fame, we have tested xorshiftR+ using the NIST suite, too. The result was a complete pass for all

instances of all tests in the suite, as expected. The test was made with 1,000,000 generated 64-bit numbers.

Detailed documentation of the test results is given online at http://srg.cs.deu.edu.tr/publications/2017/xor/.

To assure the algorithm’s compliance with the RFID tags’ security standards, three conditions mentioned

in the EPC Gen-2 Class 1 document were tested, too. The first implies that the probability of a single 16-bit

random number should be 0.8/216 < P(RN16) < 1.25/216 for 230 numbers. xorshiftR+ satisfies this condition;

moreover, even for 226 numbers, the result was 0.852/216 < P(RN16) < 1.18/216 . The second condition is

that the probability of simultaneously identical sequences for 10,000 tags should be < 0.1%. With xorshiftR+,

since there are two 64-bit seeds, this probability is calculated as (1/264) × (1/264) = 1/2128 and then the

result is [10,000 × (1/2128)] × 100 = 2.94% × 10−34 < 0.1%. Lastly, the third implies that an RN16 drawn

from a tag’s RNG shall not be predictable with a probability of greater than 0.025%. This is proven via the

ENT suite, another old yet popular test suite. There, we have also used the original xorshift+ for the sake of

a consistent comparison, and xorshiftR+ demonstrated a very high performance that is practically equivalent

to that of the original xorshift+. Detailed information regarding these conditions as well as the test results can

also be found via the link given above.

Overall, for xorshiftR+, NIST, and EPC Gen-2 Class 1 (incl. ENT), examinations were successful, too,

in addition to TestU01.

5.7. Simple LCG

The simple LCG, implemented with parameters (2147483647, 16807, 0, 12345), was very weak in terms of

randomness, since it can only pass a little more than the half of the tests and test runs, which is far below

4825

ÇABUK et al./Turk J Elec Eng & Comp Sci

the unacceptable examples given in Section 4 and the lowest among our subjects. Figure 3, generated by the

scatter of TestU01, reveals a repeating pattern and thus clearly shows that the generated bits are not random.

The total number of test runs was lower because some tests were not repeated as a result of the RNG’s poor

performance as described in Section 4. Names and parameters of the failed tests are not presented because of

their huge count. All fails were clear considering their p-values. Note that the run time for the suite given in

the Table (which is very short) might be misleading since the number of test runs was fewer than the others

(because of its poor randomness performance). The number creation times show that this RNG is very fast in

scale (not tested on the WISP). Despite its speed, the LCG as implemented here is not recommended in any

scenario and should not be used in applications where a high level of randomness is required.

100.00 un

0

1

un+1

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3. Bitmap of simple LCG; 1000 points plotted using scatter in TestU01 (un and un+1 stand for sequential

random numbers; see definitions in [18]).

5.8. LFSR113

LFSR113, with parameters (12345, 12345, 12345, 12345), was the fastest RNG on the PC among our candi-

dates with a decent difference when compared to the xorshift-based subjects including our variations. It was

approximately 8% faster than all our variations on the PC. Nevertheless, it is remarkable that it demonstrated

even better performance on the WISP. Conversely, LFSR has indecisive test scores, which can be found accept-

able depending on the scenario, but surely not better than the xorshift family. The generator failed six tests

systematically. This RNG is recommendable on PCs and in a cases where the randomness requirements are

loose but time limitation is a more dominant concern.

5.9. xoroshiro+

After we had concluded our tests and most of this study as well, a brand new xorshift-based generator, namely

xoroshiro128+, was announced by Vigna. It is claimed that this is the fastest of all. Hence, we could not ignore

it and made a comparative analysis, although we could not run a new TestU01.

xoroshiro128+ contains the following operations: 105 left shifts, 37 right shifts, 1 addition (64 bit number),

2 or (64 bit numbers), and 2 xor (64 bit numbers), for a total of 462 bitwise operations. Our xorshiftR+ only

4826

ÇABUK et al./Turk J Elec Eng & Comp Sci

contains 23 left shifts, 17 right shifts, 2 xor (64 bit numbers), and 1 addition (64 bit number), which makes

232 bitwise operations. Since the types of the operations required are the same for both and the number of

operations for xorshiftR+ are almost half that for xoroshiro+, xorshiftR+ is clearly lighter and expected to run

faster. Thus, xorshiftR+ is apparently superior to xoroshiro+, too.

5.10. Further notes

As further information, test results of the given xorshift-based generators represent their 32-bit output versions,

instead of the contemporarily used 64-bit (or more) versions, where the integers and the outputs are 64-bit

numbers. This is because, in the lightweight family of devices, 32-bit is a common upper limit. Presumably,

64-bit versions get the same or better results from the tests. In contrast, 16-bit integer-sized versions of the

generators (including the original xorshift+) fail almost all tests, even in the Small Crush battery. This is

because many tests of TestU01 assume an output of at least 30 bits and fail the subject generator otherwise

[18]. The test results of these 16-bit versions are still very weak (they fail most of the tests in the suite) and

are not statistically valuable. This also explains why the standard rand() function of the C language (initiated

by the srand(time(NULL)) code) fails all the tests in the Big Crush suite (obtaining a score of 0% in both

measures). Because of their very poor performance, rand() and simple LCG are not tested on the WISP.

Please note that the runtime or number generation time difference between the RNGs may look small or

even negligible, but it surely is not. When slower machines are used as hosts or extensive repeats will be made,

these differences will become more obvious. All three of our reduced variations were faster than the xorshift+

itself, but our variation 1 could not pass all the tests and so was discarded during the final evaluation. Even

though variation 2 also passed all the tests, variation 3 was the fastest among all our variations and consequently

selected as the xorshiftR+. It can be used wherever xorshift+ can be used and it can safely replace the xorshift+

in further studies and applications.

Additionally, xorshift* can be considered as deprecated since xorshift+ (and xorshiftR+) was introduced,

as was also mentioned in [14]. The simple LCG was expectedly very weak (in terms of randomness) and should

not be used in any scenario without further modifications. LFSR was very fast but weaker than all the xorshift

family members given here. Lastly, bitmap graphs were not drawn for other subject generators, since it was

not possible for the human eye to detect a pattern from them as well. Only the best and the worst generators’

graphs are shown (see Figures 2 and 3).

6. Conclusion

According to our experiments, the xorshiftR+ (also mentioned as the reduced xorshift+ variation 3; R stands for

reduced; pronounced xorshifter plus) has demonstrated outstanding results when compared to other candidates

in terms of both randomness and speed performance. It passes all the tests in the Big Crush battery of TestU01

in all runs and is slightly (but noticeably) superior to its ancestors, especially the xorshift+, with its higher

speed. This superiority becomes even more obvious in lightweight environments. It also occupies less memory

due to its compacted nature, and it passes all tests of the NIST and ENT suites and complies with EPC-Gen 2

Class 1 security standards. This RNG, xorshiftR+, is strongly recommended for use in both powerful computer

environments and lightweight devices, where high levels of randomness and temporal performance are desired.

As an addition to the conclusion given in [14], our experiments showed that, even if integer sizes are set to 32

bits (this makes 64-bit input/seed and 32-bit output), xorshift+ and xorshiftR+ can still pass all TestU01 tests

in all runs systematically.

4827

ÇABUK et al./Turk J Elec Eng & Comp Sci

LFSR113, on the other hand, was the fastest on the PC, although it was not able to pass all tests.

Plus, it occupies vast memory. As its original form (used here), it can only be recommended when randomness

requirements are loose but time limitations are dominant. If it is possible to make it fail-free hereafter, then

it might be a good alternative to xorshiftR+. Such improvements on the LFSR could definitely be a worthy

future work.

Acknowledgment

We sincerely thank Hakan Altaş for his valuable efforts during our experiments.

References

[1] Hellekalek P. Good random number generators are (not so) easy to find. Math Comput Simulat 1998; 46: 485-505.

[2] Özcanhan MH, Dalkılıç G. Mersenne twister-based RFID authentication protocol. Turk J Elec Eng & Comp Sci

2015; 23: 231-254.

[3] Eastlake D 3rd, Crocker S, Schiller J. Randomness Recommendations for Security. RFC 1750. Fremont, CA, USA:

IETF, 1994.

[4] Marsaglia G. The DIEHARD Battery of Tests of Randomness. Technical Report. Tallahassee, FL, USA: Florida

State University, 1995.

[5] L’Ecuyer P, Simard R. TestU01: A C library for empirical testing of random number generators. ACM T Math

Software 2007; 33: 22.

[6] Bassham LE 3rd. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic

Applications. NIST Special Publication 800-22rev1a. Gaithersburg, MD, USA: NIST, 2010.

[7] Barker E, Kelsey J. Recommendation for Random Bit Generator (RBG) Constructions. NIST Special Publication

800-90C Second Draft. Gaithersburg, MD, USA: NIST, 2016.

[8] Barker E, Kelsey J. Recommendation for Random Number Generation Using Deterministic Random Bit Generators.

NIST Special Publication 800-90A. Gaithersburg, MD, USA: NIST, 2012.

[9] Turan MS, Barker E, Kelsey J, McKay KA, Baish ML, Boyle M. Recommendation for the Entropy Sources Used for

Random Bit Generation. NIST Special Publication 800-90B Second Draft. Gaithersburg, MD, USA: NIST, 2016.

[10] Marsaglia G. Xorshift RNGs. J Stat Softw 2003; 8: 1-6.

[11] O’Neill ME. PCG: A family of simple fast space-efficient statistically good algorithms for random number generation.

Available online at http://www.pcg-random.org/pdf/toms-oneill-pcg-family-v1.02.pdf.

[12] Vigna S. An experimental exploration of Marsaglia’s xorshift generators, scrambled. ArXiv e-print 2014. Available

online at https://arxiv.org/abs/1402.6246.

[13] Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally equi-distributed uniform pseudo-random

number generator. ACM T Model Comput S 1998; 8: 3-30.

[14] Vigna S. Further scramblings of Marsaglia’s xorshift generators, J Comput Appl Math 2016; 315: 175-181.

[15] Singh KP, Kumar D. Performance evaluation of low power MIPS crypto processor based on cryptography algorithms.

International Journal of Engineering Research and Applications 2012; 2: 1625-1634.

[16] Brent RP. Some long-period random number generators using shifts and xors. ANZIAM J 2007; 48: 188-201.

[17] Thakur J, Kumar N. DES, AES and Blowfish: Symmetric key cryptography algorithms simulation based perfor-

mance analysis. International Journal of Emerging Technology and Advanced Engineering 2011; 1: 2250-2459.

[18] L’Ecuyer P, Simard R. TestU01: A Software Library in ANSI C for Empirical Testing of Random Number Generators

User’s Guide Document. Montreal, Canada: University of Montreal, 2014.

4828

http://dx.doi.org/10.1016/S0378-4754(98)00078-0
http://dx.doi.org/10.3906/elk-1212-95
http://dx.doi.org/10.3906/elk-1212-95
http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.18637/jss.v008.i14
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1016/j.cam.2016.11.006
http://dx.doi.org/10.21914/anziamj.v48i0.40

	Introduction
	Related works
	Candidate RNGs
	Test methodology
	Empirical results
	Testbeds
	xorshift+
	xorshift*
	Reduced xorshift+ var1 (s[1] = x, return x + y)
	Reduced xorshift+ var2 (s[1] = x + y, return x + y)
	Reduced xorshift+ var3 (s[1] = x + y, return x)
	Simple LCG
	LFSR113
	xoroshiro+
	Further notes

	Conclusion

